Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwNone_GeomW4P1_c.c
Location:line 412, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: None
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset1;
73 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74 int vdwioffset2;
75 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76 int vdwioffset3;
77 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
81 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
82 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int vfitab;
86 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
87 real *vftab;
88
89 x = xx[0];
90 f = ff[0];
91
92 nri = nlist->nri;
93 iinr = nlist->iinr;
94 jindex = nlist->jindex;
95 jjnr = nlist->jjnr;
96 shiftidx = nlist->shift;
97 gid = nlist->gid;
98 shiftvec = fr->shift_vec[0];
99 fshift = fr->fshift[0];
100 facel = fr->epsfac;
101 charge = mdatoms->chargeA;
102
103 vftab = kernel_data->table_elec->data;
104 vftabscale = kernel_data->table_elec->scale;
105
106 /* Setup water-specific parameters */
107 inr = nlist->iinr[0];
108 iq1 = facel*charge[inr+1];
109 iq2 = facel*charge[inr+2];
110 iq3 = facel*charge[inr+3];
111
112 outeriter = 0;
113 inneriter = 0;
114
115 /* Start outer loop over neighborlists */
116 for(iidx=0; iidx<nri; iidx++)
117 {
118 /* Load shift vector for this list */
119 i_shift_offset = DIM3*shiftidx[iidx];
120 shX = shiftvec[i_shift_offset+XX0];
121 shY = shiftvec[i_shift_offset+YY1];
122 shZ = shiftvec[i_shift_offset+ZZ2];
123
124 /* Load limits for loop over neighbors */
125 j_index_start = jindex[iidx];
126 j_index_end = jindex[iidx+1];
127
128 /* Get outer coordinate index */
129 inr = iinr[iidx];
130 i_coord_offset = DIM3*inr;
131
132 /* Load i particle coords and add shift vector */
133 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
134 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
135 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
136 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
137 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
138 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
139 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
140 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
141 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
142
143 fix1 = 0.0;
144 fiy1 = 0.0;
145 fiz1 = 0.0;
146 fix2 = 0.0;
147 fiy2 = 0.0;
148 fiz2 = 0.0;
149 fix3 = 0.0;
150 fiy3 = 0.0;
151 fiz3 = 0.0;
152
153 /* Reset potential sums */
154 velecsum = 0.0;
155
156 /* Start inner kernel loop */
157 for(jidx=j_index_start; jidx<j_index_end; jidx++)
158 {
159 /* Get j neighbor index, and coordinate index */
160 jnr = jjnr[jidx];
161 j_coord_offset = DIM3*jnr;
162
163 /* load j atom coordinates */
164 jx0 = x[j_coord_offset+DIM3*0+XX0];
165 jy0 = x[j_coord_offset+DIM3*0+YY1];
166 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
167
168 /* Calculate displacement vector */
169 dx10 = ix1 - jx0;
170 dy10 = iy1 - jy0;
171 dz10 = iz1 - jz0;
172 dx20 = ix2 - jx0;
173 dy20 = iy2 - jy0;
174 dz20 = iz2 - jz0;
175 dx30 = ix3 - jx0;
176 dy30 = iy3 - jy0;
177 dz30 = iz3 - jz0;
178
179 /* Calculate squared distance and things based on it */
180 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
181 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
182 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
183
184 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
185 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
186 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
187
188 /* Load parameters for j particles */
189 jq0 = charge[jnr+0];
190
191 /**************************
192 * CALCULATE INTERACTIONS *
193 **************************/
194
195 r10 = rsq10*rinv10;
196
197 qq10 = iq1*jq0;
198
199 /* Calculate table index by multiplying r with table scale and truncate to integer */
200 rt = r10*vftabscale;
201 vfitab = rt;
202 vfeps = rt-vfitab;
203 vfitab = 1*4*vfitab;
204
205 /* CUBIC SPLINE TABLE ELECTROSTATICS */
206 Y = vftab[vfitab];
207 F = vftab[vfitab+1];
208 Geps = vfeps*vftab[vfitab+2];
209 Heps2 = vfeps*vfeps*vftab[vfitab+3];
210 Fp = F+Geps+Heps2;
211 VV = Y+vfeps*Fp;
212 velec = qq10*VV;
213 FF = Fp+Geps+2.0*Heps2;
214 felec = -qq10*FF*vftabscale*rinv10;
215
216 /* Update potential sums from outer loop */
217 velecsum += velec;
218
219 fscal = felec;
220
221 /* Calculate temporary vectorial force */
222 tx = fscal*dx10;
223 ty = fscal*dy10;
224 tz = fscal*dz10;
225
226 /* Update vectorial force */
227 fix1 += tx;
228 fiy1 += ty;
229 fiz1 += tz;
230 f[j_coord_offset+DIM3*0+XX0] -= tx;
231 f[j_coord_offset+DIM3*0+YY1] -= ty;
232 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
233
234 /**************************
235 * CALCULATE INTERACTIONS *
236 **************************/
237
238 r20 = rsq20*rinv20;
239
240 qq20 = iq2*jq0;
241
242 /* Calculate table index by multiplying r with table scale and truncate to integer */
243 rt = r20*vftabscale;
244 vfitab = rt;
245 vfeps = rt-vfitab;
246 vfitab = 1*4*vfitab;
247
248 /* CUBIC SPLINE TABLE ELECTROSTATICS */
249 Y = vftab[vfitab];
250 F = vftab[vfitab+1];
251 Geps = vfeps*vftab[vfitab+2];
252 Heps2 = vfeps*vfeps*vftab[vfitab+3];
253 Fp = F+Geps+Heps2;
254 VV = Y+vfeps*Fp;
255 velec = qq20*VV;
256 FF = Fp+Geps+2.0*Heps2;
257 felec = -qq20*FF*vftabscale*rinv20;
258
259 /* Update potential sums from outer loop */
260 velecsum += velec;
261
262 fscal = felec;
263
264 /* Calculate temporary vectorial force */
265 tx = fscal*dx20;
266 ty = fscal*dy20;
267 tz = fscal*dz20;
268
269 /* Update vectorial force */
270 fix2 += tx;
271 fiy2 += ty;
272 fiz2 += tz;
273 f[j_coord_offset+DIM3*0+XX0] -= tx;
274 f[j_coord_offset+DIM3*0+YY1] -= ty;
275 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
276
277 /**************************
278 * CALCULATE INTERACTIONS *
279 **************************/
280
281 r30 = rsq30*rinv30;
282
283 qq30 = iq3*jq0;
284
285 /* Calculate table index by multiplying r with table scale and truncate to integer */
286 rt = r30*vftabscale;
287 vfitab = rt;
288 vfeps = rt-vfitab;
289 vfitab = 1*4*vfitab;
290
291 /* CUBIC SPLINE TABLE ELECTROSTATICS */
292 Y = vftab[vfitab];
293 F = vftab[vfitab+1];
294 Geps = vfeps*vftab[vfitab+2];
295 Heps2 = vfeps*vfeps*vftab[vfitab+3];
296 Fp = F+Geps+Heps2;
297 VV = Y+vfeps*Fp;
298 velec = qq30*VV;
299 FF = Fp+Geps+2.0*Heps2;
300 felec = -qq30*FF*vftabscale*rinv30;
301
302 /* Update potential sums from outer loop */
303 velecsum += velec;
304
305 fscal = felec;
306
307 /* Calculate temporary vectorial force */
308 tx = fscal*dx30;
309 ty = fscal*dy30;
310 tz = fscal*dz30;
311
312 /* Update vectorial force */
313 fix3 += tx;
314 fiy3 += ty;
315 fiz3 += tz;
316 f[j_coord_offset+DIM3*0+XX0] -= tx;
317 f[j_coord_offset+DIM3*0+YY1] -= ty;
318 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
319
320 /* Inner loop uses 126 flops */
321 }
322 /* End of innermost loop */
323
324 tx = ty = tz = 0;
325 f[i_coord_offset+DIM3*1+XX0] += fix1;
326 f[i_coord_offset+DIM3*1+YY1] += fiy1;
327 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
328 tx += fix1;
329 ty += fiy1;
330 tz += fiz1;
331 f[i_coord_offset+DIM3*2+XX0] += fix2;
332 f[i_coord_offset+DIM3*2+YY1] += fiy2;
333 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
334 tx += fix2;
335 ty += fiy2;
336 tz += fiz2;
337 f[i_coord_offset+DIM3*3+XX0] += fix3;
338 f[i_coord_offset+DIM3*3+YY1] += fiy3;
339 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
340 tx += fix3;
341 ty += fiy3;
342 tz += fiz3;
343 fshift[i_shift_offset+XX0] += tx;
344 fshift[i_shift_offset+YY1] += ty;
345 fshift[i_shift_offset+ZZ2] += tz;
346
347 ggid = gid[iidx];
348 /* Update potential energies */
349 kernel_data->energygrp_elec[ggid] += velecsum;
350
351 /* Increment number of inner iterations */
352 inneriter += j_index_end - j_index_start;
353
354 /* Outer loop uses 31 flops */
355 }
356
357 /* Increment number of outer iterations */
358 outeriter += nri;
359
360 /* Update outer/inner flops */
361
362 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*31 + inneriter*126)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_VF] += outeriter*31 + inneriter
*126
;
363}
364/*
365 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_c
366 * Electrostatics interaction: CubicSplineTable
367 * VdW interaction: None
368 * Geometry: Water4-Particle
369 * Calculate force/pot: Force
370 */
371void
372nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_c
373 (t_nblist * gmx_restrict__restrict nlist,
374 rvec * gmx_restrict__restrict xx,
375 rvec * gmx_restrict__restrict ff,
376 t_forcerec * gmx_restrict__restrict fr,
377 t_mdatoms * gmx_restrict__restrict mdatoms,
378 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
379 t_nrnb * gmx_restrict__restrict nrnb)
380{
381 int i_shift_offset,i_coord_offset,j_coord_offset;
382 int j_index_start,j_index_end;
383 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
384 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
385 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
386 real *shiftvec,*fshift,*x,*f;
387 int vdwioffset1;
388 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
389 int vdwioffset2;
390 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
391 int vdwioffset3;
392 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
393 int vdwjidx0;
394 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
395 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
396 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
397 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
398 real velec,felec,velecsum,facel,crf,krf,krf2;
399 real *charge;
400 int vfitab;
401 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
402 real *vftab;
403
404 x = xx[0];
405 f = ff[0];
406
407 nri = nlist->nri;
408 iinr = nlist->iinr;
409 jindex = nlist->jindex;
410 jjnr = nlist->jjnr;
411 shiftidx = nlist->shift;
412 gid = nlist->gid;
Value stored to 'gid' is never read
413 shiftvec = fr->shift_vec[0];
414 fshift = fr->fshift[0];
415 facel = fr->epsfac;
416 charge = mdatoms->chargeA;
417
418 vftab = kernel_data->table_elec->data;
419 vftabscale = kernel_data->table_elec->scale;
420
421 /* Setup water-specific parameters */
422 inr = nlist->iinr[0];
423 iq1 = facel*charge[inr+1];
424 iq2 = facel*charge[inr+2];
425 iq3 = facel*charge[inr+3];
426
427 outeriter = 0;
428 inneriter = 0;
429
430 /* Start outer loop over neighborlists */
431 for(iidx=0; iidx<nri; iidx++)
432 {
433 /* Load shift vector for this list */
434 i_shift_offset = DIM3*shiftidx[iidx];
435 shX = shiftvec[i_shift_offset+XX0];
436 shY = shiftvec[i_shift_offset+YY1];
437 shZ = shiftvec[i_shift_offset+ZZ2];
438
439 /* Load limits for loop over neighbors */
440 j_index_start = jindex[iidx];
441 j_index_end = jindex[iidx+1];
442
443 /* Get outer coordinate index */
444 inr = iinr[iidx];
445 i_coord_offset = DIM3*inr;
446
447 /* Load i particle coords and add shift vector */
448 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
449 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
450 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
451 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
452 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
453 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
454 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
455 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
456 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
457
458 fix1 = 0.0;
459 fiy1 = 0.0;
460 fiz1 = 0.0;
461 fix2 = 0.0;
462 fiy2 = 0.0;
463 fiz2 = 0.0;
464 fix3 = 0.0;
465 fiy3 = 0.0;
466 fiz3 = 0.0;
467
468 /* Start inner kernel loop */
469 for(jidx=j_index_start; jidx<j_index_end; jidx++)
470 {
471 /* Get j neighbor index, and coordinate index */
472 jnr = jjnr[jidx];
473 j_coord_offset = DIM3*jnr;
474
475 /* load j atom coordinates */
476 jx0 = x[j_coord_offset+DIM3*0+XX0];
477 jy0 = x[j_coord_offset+DIM3*0+YY1];
478 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
479
480 /* Calculate displacement vector */
481 dx10 = ix1 - jx0;
482 dy10 = iy1 - jy0;
483 dz10 = iz1 - jz0;
484 dx20 = ix2 - jx0;
485 dy20 = iy2 - jy0;
486 dz20 = iz2 - jz0;
487 dx30 = ix3 - jx0;
488 dy30 = iy3 - jy0;
489 dz30 = iz3 - jz0;
490
491 /* Calculate squared distance and things based on it */
492 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
493 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
494 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
495
496 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
497 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
498 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
499
500 /* Load parameters for j particles */
501 jq0 = charge[jnr+0];
502
503 /**************************
504 * CALCULATE INTERACTIONS *
505 **************************/
506
507 r10 = rsq10*rinv10;
508
509 qq10 = iq1*jq0;
510
511 /* Calculate table index by multiplying r with table scale and truncate to integer */
512 rt = r10*vftabscale;
513 vfitab = rt;
514 vfeps = rt-vfitab;
515 vfitab = 1*4*vfitab;
516
517 /* CUBIC SPLINE TABLE ELECTROSTATICS */
518 F = vftab[vfitab+1];
519 Geps = vfeps*vftab[vfitab+2];
520 Heps2 = vfeps*vfeps*vftab[vfitab+3];
521 Fp = F+Geps+Heps2;
522 FF = Fp+Geps+2.0*Heps2;
523 felec = -qq10*FF*vftabscale*rinv10;
524
525 fscal = felec;
526
527 /* Calculate temporary vectorial force */
528 tx = fscal*dx10;
529 ty = fscal*dy10;
530 tz = fscal*dz10;
531
532 /* Update vectorial force */
533 fix1 += tx;
534 fiy1 += ty;
535 fiz1 += tz;
536 f[j_coord_offset+DIM3*0+XX0] -= tx;
537 f[j_coord_offset+DIM3*0+YY1] -= ty;
538 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
539
540 /**************************
541 * CALCULATE INTERACTIONS *
542 **************************/
543
544 r20 = rsq20*rinv20;
545
546 qq20 = iq2*jq0;
547
548 /* Calculate table index by multiplying r with table scale and truncate to integer */
549 rt = r20*vftabscale;
550 vfitab = rt;
551 vfeps = rt-vfitab;
552 vfitab = 1*4*vfitab;
553
554 /* CUBIC SPLINE TABLE ELECTROSTATICS */
555 F = vftab[vfitab+1];
556 Geps = vfeps*vftab[vfitab+2];
557 Heps2 = vfeps*vfeps*vftab[vfitab+3];
558 Fp = F+Geps+Heps2;
559 FF = Fp+Geps+2.0*Heps2;
560 felec = -qq20*FF*vftabscale*rinv20;
561
562 fscal = felec;
563
564 /* Calculate temporary vectorial force */
565 tx = fscal*dx20;
566 ty = fscal*dy20;
567 tz = fscal*dz20;
568
569 /* Update vectorial force */
570 fix2 += tx;
571 fiy2 += ty;
572 fiz2 += tz;
573 f[j_coord_offset+DIM3*0+XX0] -= tx;
574 f[j_coord_offset+DIM3*0+YY1] -= ty;
575 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
576
577 /**************************
578 * CALCULATE INTERACTIONS *
579 **************************/
580
581 r30 = rsq30*rinv30;
582
583 qq30 = iq3*jq0;
584
585 /* Calculate table index by multiplying r with table scale and truncate to integer */
586 rt = r30*vftabscale;
587 vfitab = rt;
588 vfeps = rt-vfitab;
589 vfitab = 1*4*vfitab;
590
591 /* CUBIC SPLINE TABLE ELECTROSTATICS */
592 F = vftab[vfitab+1];
593 Geps = vfeps*vftab[vfitab+2];
594 Heps2 = vfeps*vfeps*vftab[vfitab+3];
595 Fp = F+Geps+Heps2;
596 FF = Fp+Geps+2.0*Heps2;
597 felec = -qq30*FF*vftabscale*rinv30;
598
599 fscal = felec;
600
601 /* Calculate temporary vectorial force */
602 tx = fscal*dx30;
603 ty = fscal*dy30;
604 tz = fscal*dz30;
605
606 /* Update vectorial force */
607 fix3 += tx;
608 fiy3 += ty;
609 fiz3 += tz;
610 f[j_coord_offset+DIM3*0+XX0] -= tx;
611 f[j_coord_offset+DIM3*0+YY1] -= ty;
612 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
613
614 /* Inner loop uses 114 flops */
615 }
616 /* End of innermost loop */
617
618 tx = ty = tz = 0;
619 f[i_coord_offset+DIM3*1+XX0] += fix1;
620 f[i_coord_offset+DIM3*1+YY1] += fiy1;
621 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
622 tx += fix1;
623 ty += fiy1;
624 tz += fiz1;
625 f[i_coord_offset+DIM3*2+XX0] += fix2;
626 f[i_coord_offset+DIM3*2+YY1] += fiy2;
627 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
628 tx += fix2;
629 ty += fiy2;
630 tz += fiz2;
631 f[i_coord_offset+DIM3*3+XX0] += fix3;
632 f[i_coord_offset+DIM3*3+YY1] += fiy3;
633 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
634 tx += fix3;
635 ty += fiy3;
636 tz += fiz3;
637 fshift[i_shift_offset+XX0] += tx;
638 fshift[i_shift_offset+YY1] += ty;
639 fshift[i_shift_offset+ZZ2] += tz;
640
641 /* Increment number of inner iterations */
642 inneriter += j_index_end - j_index_start;
643
644 /* Outer loop uses 30 flops */
645 }
646
647 /* Increment number of outer iterations */
648 outeriter += nri;
649
650 /* Update outer/inner flops */
651
652 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*30 + inneriter*114)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_F] += outeriter*30 + inneriter
*114
;
653}