Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sse4_1_single.c
Location:line 515, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LennardJones
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
97 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
98 __m128i ewitab;
99 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100 real *ewtab;
101 __m128 dummy_mask,cutoff_mask;
102 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103 __m128 one = _mm_set1_ps(1.0);
104 __m128 two = _mm_set1_ps(2.0);
105 x = xx[0];
106 f = ff[0];
107
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = _mm_set1_ps(fr->epsfac);
117 charge = mdatoms->chargeA;
118 nvdwtype = fr->ntype;
119 vdwparam = fr->nbfp;
120 vdwtype = mdatoms->typeA;
121
122 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
123 ewtab = fr->ic->tabq_coul_FDV0;
124 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
125 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
126
127 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128 rcutoff_scalar = fr->rcoulomb;
129 rcutoff = _mm_set1_ps(rcutoff_scalar);
130 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
131
132 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
133 rvdw = _mm_set1_ps(fr->rvdw);
134
135 /* Avoid stupid compiler warnings */
136 jnrA = jnrB = jnrC = jnrD = 0;
137 j_coord_offsetA = 0;
138 j_coord_offsetB = 0;
139 j_coord_offsetC = 0;
140 j_coord_offsetD = 0;
141
142 outeriter = 0;
143 inneriter = 0;
144
145 for(iidx=0;iidx<4*DIM3;iidx++)
146 {
147 scratch[iidx] = 0.0;
148 }
149
150 /* Start outer loop over neighborlists */
151 for(iidx=0; iidx<nri; iidx++)
152 {
153 /* Load shift vector for this list */
154 i_shift_offset = DIM3*shiftidx[iidx];
155
156 /* Load limits for loop over neighbors */
157 j_index_start = jindex[iidx];
158 j_index_end = jindex[iidx+1];
159
160 /* Get outer coordinate index */
161 inr = iinr[iidx];
162 i_coord_offset = DIM3*inr;
163
164 /* Load i particle coords and add shift vector */
165 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
166
167 fix0 = _mm_setzero_ps();
168 fiy0 = _mm_setzero_ps();
169 fiz0 = _mm_setzero_ps();
170
171 /* Load parameters for i particles */
172 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
173 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
174
175 /* Reset potential sums */
176 velecsum = _mm_setzero_ps();
177 vvdwsum = _mm_setzero_ps();
178
179 /* Start inner kernel loop */
180 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181 {
182
183 /* Get j neighbor index, and coordinate index */
184 jnrA = jjnr[jidx];
185 jnrB = jjnr[jidx+1];
186 jnrC = jjnr[jidx+2];
187 jnrD = jjnr[jidx+3];
188 j_coord_offsetA = DIM3*jnrA;
189 j_coord_offsetB = DIM3*jnrB;
190 j_coord_offsetC = DIM3*jnrC;
191 j_coord_offsetD = DIM3*jnrD;
192
193 /* load j atom coordinates */
194 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195 x+j_coord_offsetC,x+j_coord_offsetD,
196 &jx0,&jy0,&jz0);
197
198 /* Calculate displacement vector */
199 dx00 = _mm_sub_ps(ix0,jx0);
200 dy00 = _mm_sub_ps(iy0,jy0);
201 dz00 = _mm_sub_ps(iz0,jz0);
202
203 /* Calculate squared distance and things based on it */
204 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
205
206 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
207
208 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
209
210 /* Load parameters for j particles */
211 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
212 charge+jnrC+0,charge+jnrD+0);
213 vdwjidx0A = 2*vdwtype[jnrA+0];
214 vdwjidx0B = 2*vdwtype[jnrB+0];
215 vdwjidx0C = 2*vdwtype[jnrC+0];
216 vdwjidx0D = 2*vdwtype[jnrD+0];
217
218 /**************************
219 * CALCULATE INTERACTIONS *
220 **************************/
221
222 if (gmx_mm_any_lt(rsq00,rcutoff2))
223 {
224
225 r00 = _mm_mul_ps(rsq00,rinv00);
226
227 /* Compute parameters for interactions between i and j atoms */
228 qq00 = _mm_mul_ps(iq0,jq0);
229 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
230 vdwparam+vdwioffset0+vdwjidx0B,
231 vdwparam+vdwioffset0+vdwjidx0C,
232 vdwparam+vdwioffset0+vdwjidx0D,
233 &c6_00,&c12_00);
234
235 /* EWALD ELECTROSTATICS */
236
237 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238 ewrt = _mm_mul_ps(r00,ewtabscale);
239 ewitab = _mm_cvttps_epi32(ewrt);
240 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
241 ewitab = _mm_slli_epi32(ewitab,2);
242 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
243 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
244 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
245 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
246 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
247 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
248 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
249 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
250 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
251
252 /* LENNARD-JONES DISPERSION/REPULSION */
253
254 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
255 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
256 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
257 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
258 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
259 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
260
261 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
262
263 /* Update potential sum for this i atom from the interaction with this j atom. */
264 velec = _mm_and_ps(velec,cutoff_mask);
265 velecsum = _mm_add_ps(velecsum,velec);
266 vvdw = _mm_and_ps(vvdw,cutoff_mask);
267 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
268
269 fscal = _mm_add_ps(felec,fvdw);
270
271 fscal = _mm_and_ps(fscal,cutoff_mask);
272
273 /* Calculate temporary vectorial force */
274 tx = _mm_mul_ps(fscal,dx00);
275 ty = _mm_mul_ps(fscal,dy00);
276 tz = _mm_mul_ps(fscal,dz00);
277
278 /* Update vectorial force */
279 fix0 = _mm_add_ps(fix0,tx);
280 fiy0 = _mm_add_ps(fiy0,ty);
281 fiz0 = _mm_add_ps(fiz0,tz);
282
283 fjptrA = f+j_coord_offsetA;
284 fjptrB = f+j_coord_offsetB;
285 fjptrC = f+j_coord_offsetC;
286 fjptrD = f+j_coord_offsetD;
287 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
288
289 }
290
291 /* Inner loop uses 64 flops */
292 }
293
294 if(jidx<j_index_end)
295 {
296
297 /* Get j neighbor index, and coordinate index */
298 jnrlistA = jjnr[jidx];
299 jnrlistB = jjnr[jidx+1];
300 jnrlistC = jjnr[jidx+2];
301 jnrlistD = jjnr[jidx+3];
302 /* Sign of each element will be negative for non-real atoms.
303 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
304 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
305 */
306 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
307 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
308 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
309 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
310 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
311 j_coord_offsetA = DIM3*jnrA;
312 j_coord_offsetB = DIM3*jnrB;
313 j_coord_offsetC = DIM3*jnrC;
314 j_coord_offsetD = DIM3*jnrD;
315
316 /* load j atom coordinates */
317 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
318 x+j_coord_offsetC,x+j_coord_offsetD,
319 &jx0,&jy0,&jz0);
320
321 /* Calculate displacement vector */
322 dx00 = _mm_sub_ps(ix0,jx0);
323 dy00 = _mm_sub_ps(iy0,jy0);
324 dz00 = _mm_sub_ps(iz0,jz0);
325
326 /* Calculate squared distance and things based on it */
327 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
328
329 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
330
331 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
332
333 /* Load parameters for j particles */
334 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
335 charge+jnrC+0,charge+jnrD+0);
336 vdwjidx0A = 2*vdwtype[jnrA+0];
337 vdwjidx0B = 2*vdwtype[jnrB+0];
338 vdwjidx0C = 2*vdwtype[jnrC+0];
339 vdwjidx0D = 2*vdwtype[jnrD+0];
340
341 /**************************
342 * CALCULATE INTERACTIONS *
343 **************************/
344
345 if (gmx_mm_any_lt(rsq00,rcutoff2))
346 {
347
348 r00 = _mm_mul_ps(rsq00,rinv00);
349 r00 = _mm_andnot_ps(dummy_mask,r00);
350
351 /* Compute parameters for interactions between i and j atoms */
352 qq00 = _mm_mul_ps(iq0,jq0);
353 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
354 vdwparam+vdwioffset0+vdwjidx0B,
355 vdwparam+vdwioffset0+vdwjidx0C,
356 vdwparam+vdwioffset0+vdwjidx0D,
357 &c6_00,&c12_00);
358
359 /* EWALD ELECTROSTATICS */
360
361 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
362 ewrt = _mm_mul_ps(r00,ewtabscale);
363 ewitab = _mm_cvttps_epi32(ewrt);
364 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
365 ewitab = _mm_slli_epi32(ewitab,2);
366 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
367 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
368 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
369 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
370 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
371 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
372 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
373 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
374 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
375
376 /* LENNARD-JONES DISPERSION/REPULSION */
377
378 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
379 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
380 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
381 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
382 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
383 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
384
385 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
386
387 /* Update potential sum for this i atom from the interaction with this j atom. */
388 velec = _mm_and_ps(velec,cutoff_mask);
389 velec = _mm_andnot_ps(dummy_mask,velec);
390 velecsum = _mm_add_ps(velecsum,velec);
391 vvdw = _mm_and_ps(vvdw,cutoff_mask);
392 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
393 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
394
395 fscal = _mm_add_ps(felec,fvdw);
396
397 fscal = _mm_and_ps(fscal,cutoff_mask);
398
399 fscal = _mm_andnot_ps(dummy_mask,fscal);
400
401 /* Calculate temporary vectorial force */
402 tx = _mm_mul_ps(fscal,dx00);
403 ty = _mm_mul_ps(fscal,dy00);
404 tz = _mm_mul_ps(fscal,dz00);
405
406 /* Update vectorial force */
407 fix0 = _mm_add_ps(fix0,tx);
408 fiy0 = _mm_add_ps(fiy0,ty);
409 fiz0 = _mm_add_ps(fiz0,tz);
410
411 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
412 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
413 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
414 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
415 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
416
417 }
418
419 /* Inner loop uses 65 flops */
420 }
421
422 /* End of innermost loop */
423
424 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
425 f+i_coord_offset,fshift+i_shift_offset);
426
427 ggid = gid[iidx];
428 /* Update potential energies */
429 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
430 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
431
432 /* Increment number of inner iterations */
433 inneriter += j_index_end - j_index_start;
434
435 /* Outer loop uses 9 flops */
436 }
437
438 /* Increment number of outer iterations */
439 outeriter += nri;
440
441 /* Update outer/inner flops */
442
443 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*65)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*9 + inneriter
*65
;
444}
445/*
446 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_single
447 * Electrostatics interaction: Ewald
448 * VdW interaction: LennardJones
449 * Geometry: Particle-Particle
450 * Calculate force/pot: Force
451 */
452void
453nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_single
454 (t_nblist * gmx_restrict nlist,
455 rvec * gmx_restrict xx,
456 rvec * gmx_restrict ff,
457 t_forcerec * gmx_restrict fr,
458 t_mdatoms * gmx_restrict mdatoms,
459 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
460 t_nrnb * gmx_restrict nrnb)
461{
462 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
463 * just 0 for non-waters.
464 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
465 * jnr indices corresponding to data put in the four positions in the SIMD register.
466 */
467 int i_shift_offset,i_coord_offset,outeriter,inneriter;
468 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
469 int jnrA,jnrB,jnrC,jnrD;
470 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
471 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
472 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
473 real rcutoff_scalar;
474 real *shiftvec,*fshift,*x,*f;
475 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
476 real scratch[4*DIM3];
477 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
478 int vdwioffset0;
479 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
480 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
481 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
482 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
483 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
484 real *charge;
485 int nvdwtype;
486 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
487 int *vdwtype;
488 real *vdwparam;
489 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
490 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
491 __m128i ewitab;
492 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
493 real *ewtab;
494 __m128 dummy_mask,cutoff_mask;
495 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
496 __m128 one = _mm_set1_ps(1.0);
497 __m128 two = _mm_set1_ps(2.0);
498 x = xx[0];
499 f = ff[0];
500
501 nri = nlist->nri;
502 iinr = nlist->iinr;
503 jindex = nlist->jindex;
504 jjnr = nlist->jjnr;
505 shiftidx = nlist->shift;
506 gid = nlist->gid;
507 shiftvec = fr->shift_vec[0];
508 fshift = fr->fshift[0];
509 facel = _mm_set1_ps(fr->epsfac);
510 charge = mdatoms->chargeA;
511 nvdwtype = fr->ntype;
512 vdwparam = fr->nbfp;
513 vdwtype = mdatoms->typeA;
514
515 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
Value stored to 'sh_ewald' is never read
516 ewtab = fr->ic->tabq_coul_F;
517 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
518 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
519
520 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
521 rcutoff_scalar = fr->rcoulomb;
522 rcutoff = _mm_set1_ps(rcutoff_scalar);
523 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
524
525 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
526 rvdw = _mm_set1_ps(fr->rvdw);
527
528 /* Avoid stupid compiler warnings */
529 jnrA = jnrB = jnrC = jnrD = 0;
530 j_coord_offsetA = 0;
531 j_coord_offsetB = 0;
532 j_coord_offsetC = 0;
533 j_coord_offsetD = 0;
534
535 outeriter = 0;
536 inneriter = 0;
537
538 for(iidx=0;iidx<4*DIM3;iidx++)
539 {
540 scratch[iidx] = 0.0;
541 }
542
543 /* Start outer loop over neighborlists */
544 for(iidx=0; iidx<nri; iidx++)
545 {
546 /* Load shift vector for this list */
547 i_shift_offset = DIM3*shiftidx[iidx];
548
549 /* Load limits for loop over neighbors */
550 j_index_start = jindex[iidx];
551 j_index_end = jindex[iidx+1];
552
553 /* Get outer coordinate index */
554 inr = iinr[iidx];
555 i_coord_offset = DIM3*inr;
556
557 /* Load i particle coords and add shift vector */
558 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
559
560 fix0 = _mm_setzero_ps();
561 fiy0 = _mm_setzero_ps();
562 fiz0 = _mm_setzero_ps();
563
564 /* Load parameters for i particles */
565 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
566 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
567
568 /* Start inner kernel loop */
569 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
570 {
571
572 /* Get j neighbor index, and coordinate index */
573 jnrA = jjnr[jidx];
574 jnrB = jjnr[jidx+1];
575 jnrC = jjnr[jidx+2];
576 jnrD = jjnr[jidx+3];
577 j_coord_offsetA = DIM3*jnrA;
578 j_coord_offsetB = DIM3*jnrB;
579 j_coord_offsetC = DIM3*jnrC;
580 j_coord_offsetD = DIM3*jnrD;
581
582 /* load j atom coordinates */
583 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
584 x+j_coord_offsetC,x+j_coord_offsetD,
585 &jx0,&jy0,&jz0);
586
587 /* Calculate displacement vector */
588 dx00 = _mm_sub_ps(ix0,jx0);
589 dy00 = _mm_sub_ps(iy0,jy0);
590 dz00 = _mm_sub_ps(iz0,jz0);
591
592 /* Calculate squared distance and things based on it */
593 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
594
595 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
596
597 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
598
599 /* Load parameters for j particles */
600 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
601 charge+jnrC+0,charge+jnrD+0);
602 vdwjidx0A = 2*vdwtype[jnrA+0];
603 vdwjidx0B = 2*vdwtype[jnrB+0];
604 vdwjidx0C = 2*vdwtype[jnrC+0];
605 vdwjidx0D = 2*vdwtype[jnrD+0];
606
607 /**************************
608 * CALCULATE INTERACTIONS *
609 **************************/
610
611 if (gmx_mm_any_lt(rsq00,rcutoff2))
612 {
613
614 r00 = _mm_mul_ps(rsq00,rinv00);
615
616 /* Compute parameters for interactions between i and j atoms */
617 qq00 = _mm_mul_ps(iq0,jq0);
618 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
619 vdwparam+vdwioffset0+vdwjidx0B,
620 vdwparam+vdwioffset0+vdwjidx0C,
621 vdwparam+vdwioffset0+vdwjidx0D,
622 &c6_00,&c12_00);
623
624 /* EWALD ELECTROSTATICS */
625
626 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627 ewrt = _mm_mul_ps(r00,ewtabscale);
628 ewitab = _mm_cvttps_epi32(ewrt);
629 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
630 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
631 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
632 &ewtabF,&ewtabFn);
633 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
634 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
635
636 /* LENNARD-JONES DISPERSION/REPULSION */
637
638 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
639 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
640
641 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
642
643 fscal = _mm_add_ps(felec,fvdw);
644
645 fscal = _mm_and_ps(fscal,cutoff_mask);
646
647 /* Calculate temporary vectorial force */
648 tx = _mm_mul_ps(fscal,dx00);
649 ty = _mm_mul_ps(fscal,dy00);
650 tz = _mm_mul_ps(fscal,dz00);
651
652 /* Update vectorial force */
653 fix0 = _mm_add_ps(fix0,tx);
654 fiy0 = _mm_add_ps(fiy0,ty);
655 fiz0 = _mm_add_ps(fiz0,tz);
656
657 fjptrA = f+j_coord_offsetA;
658 fjptrB = f+j_coord_offsetB;
659 fjptrC = f+j_coord_offsetC;
660 fjptrD = f+j_coord_offsetD;
661 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
662
663 }
664
665 /* Inner loop uses 46 flops */
666 }
667
668 if(jidx<j_index_end)
669 {
670
671 /* Get j neighbor index, and coordinate index */
672 jnrlistA = jjnr[jidx];
673 jnrlistB = jjnr[jidx+1];
674 jnrlistC = jjnr[jidx+2];
675 jnrlistD = jjnr[jidx+3];
676 /* Sign of each element will be negative for non-real atoms.
677 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
678 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
679 */
680 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
681 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
682 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
683 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
684 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
685 j_coord_offsetA = DIM3*jnrA;
686 j_coord_offsetB = DIM3*jnrB;
687 j_coord_offsetC = DIM3*jnrC;
688 j_coord_offsetD = DIM3*jnrD;
689
690 /* load j atom coordinates */
691 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
692 x+j_coord_offsetC,x+j_coord_offsetD,
693 &jx0,&jy0,&jz0);
694
695 /* Calculate displacement vector */
696 dx00 = _mm_sub_ps(ix0,jx0);
697 dy00 = _mm_sub_ps(iy0,jy0);
698 dz00 = _mm_sub_ps(iz0,jz0);
699
700 /* Calculate squared distance and things based on it */
701 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
702
703 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
704
705 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
706
707 /* Load parameters for j particles */
708 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
709 charge+jnrC+0,charge+jnrD+0);
710 vdwjidx0A = 2*vdwtype[jnrA+0];
711 vdwjidx0B = 2*vdwtype[jnrB+0];
712 vdwjidx0C = 2*vdwtype[jnrC+0];
713 vdwjidx0D = 2*vdwtype[jnrD+0];
714
715 /**************************
716 * CALCULATE INTERACTIONS *
717 **************************/
718
719 if (gmx_mm_any_lt(rsq00,rcutoff2))
720 {
721
722 r00 = _mm_mul_ps(rsq00,rinv00);
723 r00 = _mm_andnot_ps(dummy_mask,r00);
724
725 /* Compute parameters for interactions between i and j atoms */
726 qq00 = _mm_mul_ps(iq0,jq0);
727 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
728 vdwparam+vdwioffset0+vdwjidx0B,
729 vdwparam+vdwioffset0+vdwjidx0C,
730 vdwparam+vdwioffset0+vdwjidx0D,
731 &c6_00,&c12_00);
732
733 /* EWALD ELECTROSTATICS */
734
735 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
736 ewrt = _mm_mul_ps(r00,ewtabscale);
737 ewitab = _mm_cvttps_epi32(ewrt);
738 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
739 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
740 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
741 &ewtabF,&ewtabFn);
742 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
743 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
744
745 /* LENNARD-JONES DISPERSION/REPULSION */
746
747 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
748 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
749
750 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
751
752 fscal = _mm_add_ps(felec,fvdw);
753
754 fscal = _mm_and_ps(fscal,cutoff_mask);
755
756 fscal = _mm_andnot_ps(dummy_mask,fscal);
757
758 /* Calculate temporary vectorial force */
759 tx = _mm_mul_ps(fscal,dx00);
760 ty = _mm_mul_ps(fscal,dy00);
761 tz = _mm_mul_ps(fscal,dz00);
762
763 /* Update vectorial force */
764 fix0 = _mm_add_ps(fix0,tx);
765 fiy0 = _mm_add_ps(fiy0,ty);
766 fiz0 = _mm_add_ps(fiz0,tz);
767
768 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
769 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
770 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
771 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
772 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
773
774 }
775
776 /* Inner loop uses 47 flops */
777 }
778
779 /* End of innermost loop */
780
781 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
782 f+i_coord_offset,fshift+i_shift_offset);
783
784 /* Increment number of inner iterations */
785 inneriter += j_index_end - j_index_start;
786
787 /* Outer loop uses 7 flops */
788 }
789
790 /* Increment number of outer iterations */
791 outeriter += nri;
792
793 /* Update outer/inner flops */
794
795 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*47
;
796}