Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_c.c
Location:line 440, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int vfitab;
90 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
91 real *vftab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 vftab = kernel_data->table_elec->data;
111 vftabscale = kernel_data->table_elec->scale;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq0 = facel*charge[inr+0];
116 iq1 = facel*charge[inr+1];
117 iq2 = facel*charge[inr+2];
118 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
119
120 outeriter = 0;
121 inneriter = 0;
122
123 /* Start outer loop over neighborlists */
124 for(iidx=0; iidx<nri; iidx++)
125 {
126 /* Load shift vector for this list */
127 i_shift_offset = DIM3*shiftidx[iidx];
128 shX = shiftvec[i_shift_offset+XX0];
129 shY = shiftvec[i_shift_offset+YY1];
130 shZ = shiftvec[i_shift_offset+ZZ2];
131
132 /* Load limits for loop over neighbors */
133 j_index_start = jindex[iidx];
134 j_index_end = jindex[iidx+1];
135
136 /* Get outer coordinate index */
137 inr = iinr[iidx];
138 i_coord_offset = DIM3*inr;
139
140 /* Load i particle coords and add shift vector */
141 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
142 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
143 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
144 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
145 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
146 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
147 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
148 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
149 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
150
151 fix0 = 0.0;
152 fiy0 = 0.0;
153 fiz0 = 0.0;
154 fix1 = 0.0;
155 fiy1 = 0.0;
156 fiz1 = 0.0;
157 fix2 = 0.0;
158 fiy2 = 0.0;
159 fiz2 = 0.0;
160
161 /* Reset potential sums */
162 velecsum = 0.0;
163 vvdwsum = 0.0;
164
165 /* Start inner kernel loop */
166 for(jidx=j_index_start; jidx<j_index_end; jidx++)
167 {
168 /* Get j neighbor index, and coordinate index */
169 jnr = jjnr[jidx];
170 j_coord_offset = DIM3*jnr;
171
172 /* load j atom coordinates */
173 jx0 = x[j_coord_offset+DIM3*0+XX0];
174 jy0 = x[j_coord_offset+DIM3*0+YY1];
175 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
176
177 /* Calculate displacement vector */
178 dx00 = ix0 - jx0;
179 dy00 = iy0 - jy0;
180 dz00 = iz0 - jz0;
181 dx10 = ix1 - jx0;
182 dy10 = iy1 - jy0;
183 dz10 = iz1 - jz0;
184 dx20 = ix2 - jx0;
185 dy20 = iy2 - jy0;
186 dz20 = iz2 - jz0;
187
188 /* Calculate squared distance and things based on it */
189 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
190 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
191 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
192
193 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
194 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
195 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
196
197 rinvsq00 = rinv00*rinv00;
198
199 /* Load parameters for j particles */
200 jq0 = charge[jnr+0];
201 vdwjidx0 = 2*vdwtype[jnr+0];
202
203 /**************************
204 * CALCULATE INTERACTIONS *
205 **************************/
206
207 r00 = rsq00*rinv00;
208
209 qq00 = iq0*jq0;
210 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
211 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
212
213 /* Calculate table index by multiplying r with table scale and truncate to integer */
214 rt = r00*vftabscale;
215 vfitab = rt;
216 vfeps = rt-vfitab;
217 vfitab = 1*4*vfitab;
218
219 /* CUBIC SPLINE TABLE ELECTROSTATICS */
220 Y = vftab[vfitab];
221 F = vftab[vfitab+1];
222 Geps = vfeps*vftab[vfitab+2];
223 Heps2 = vfeps*vfeps*vftab[vfitab+3];
224 Fp = F+Geps+Heps2;
225 VV = Y+vfeps*Fp;
226 velec = qq00*VV;
227 FF = Fp+Geps+2.0*Heps2;
228 felec = -qq00*FF*vftabscale*rinv00;
229
230 /* LENNARD-JONES DISPERSION/REPULSION */
231
232 rinvsix = rinvsq00*rinvsq00*rinvsq00;
233 vvdw6 = c6_00*rinvsix;
234 vvdw12 = c12_00*rinvsix*rinvsix;
235 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
236 fvdw = (vvdw12-vvdw6)*rinvsq00;
237
238 /* Update potential sums from outer loop */
239 velecsum += velec;
240 vvdwsum += vvdw;
241
242 fscal = felec+fvdw;
243
244 /* Calculate temporary vectorial force */
245 tx = fscal*dx00;
246 ty = fscal*dy00;
247 tz = fscal*dz00;
248
249 /* Update vectorial force */
250 fix0 += tx;
251 fiy0 += ty;
252 fiz0 += tz;
253 f[j_coord_offset+DIM3*0+XX0] -= tx;
254 f[j_coord_offset+DIM3*0+YY1] -= ty;
255 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
256
257 /**************************
258 * CALCULATE INTERACTIONS *
259 **************************/
260
261 r10 = rsq10*rinv10;
262
263 qq10 = iq1*jq0;
264
265 /* Calculate table index by multiplying r with table scale and truncate to integer */
266 rt = r10*vftabscale;
267 vfitab = rt;
268 vfeps = rt-vfitab;
269 vfitab = 1*4*vfitab;
270
271 /* CUBIC SPLINE TABLE ELECTROSTATICS */
272 Y = vftab[vfitab];
273 F = vftab[vfitab+1];
274 Geps = vfeps*vftab[vfitab+2];
275 Heps2 = vfeps*vfeps*vftab[vfitab+3];
276 Fp = F+Geps+Heps2;
277 VV = Y+vfeps*Fp;
278 velec = qq10*VV;
279 FF = Fp+Geps+2.0*Heps2;
280 felec = -qq10*FF*vftabscale*rinv10;
281
282 /* Update potential sums from outer loop */
283 velecsum += velec;
284
285 fscal = felec;
286
287 /* Calculate temporary vectorial force */
288 tx = fscal*dx10;
289 ty = fscal*dy10;
290 tz = fscal*dz10;
291
292 /* Update vectorial force */
293 fix1 += tx;
294 fiy1 += ty;
295 fiz1 += tz;
296 f[j_coord_offset+DIM3*0+XX0] -= tx;
297 f[j_coord_offset+DIM3*0+YY1] -= ty;
298 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
299
300 /**************************
301 * CALCULATE INTERACTIONS *
302 **************************/
303
304 r20 = rsq20*rinv20;
305
306 qq20 = iq2*jq0;
307
308 /* Calculate table index by multiplying r with table scale and truncate to integer */
309 rt = r20*vftabscale;
310 vfitab = rt;
311 vfeps = rt-vfitab;
312 vfitab = 1*4*vfitab;
313
314 /* CUBIC SPLINE TABLE ELECTROSTATICS */
315 Y = vftab[vfitab];
316 F = vftab[vfitab+1];
317 Geps = vfeps*vftab[vfitab+2];
318 Heps2 = vfeps*vfeps*vftab[vfitab+3];
319 Fp = F+Geps+Heps2;
320 VV = Y+vfeps*Fp;
321 velec = qq20*VV;
322 FF = Fp+Geps+2.0*Heps2;
323 felec = -qq20*FF*vftabscale*rinv20;
324
325 /* Update potential sums from outer loop */
326 velecsum += velec;
327
328 fscal = felec;
329
330 /* Calculate temporary vectorial force */
331 tx = fscal*dx20;
332 ty = fscal*dy20;
333 tz = fscal*dz20;
334
335 /* Update vectorial force */
336 fix2 += tx;
337 fiy2 += ty;
338 fiz2 += tz;
339 f[j_coord_offset+DIM3*0+XX0] -= tx;
340 f[j_coord_offset+DIM3*0+YY1] -= ty;
341 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
342
343 /* Inner loop uses 139 flops */
344 }
345 /* End of innermost loop */
346
347 tx = ty = tz = 0;
348 f[i_coord_offset+DIM3*0+XX0] += fix0;
349 f[i_coord_offset+DIM3*0+YY1] += fiy0;
350 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
351 tx += fix0;
352 ty += fiy0;
353 tz += fiz0;
354 f[i_coord_offset+DIM3*1+XX0] += fix1;
355 f[i_coord_offset+DIM3*1+YY1] += fiy1;
356 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
357 tx += fix1;
358 ty += fiy1;
359 tz += fiz1;
360 f[i_coord_offset+DIM3*2+XX0] += fix2;
361 f[i_coord_offset+DIM3*2+YY1] += fiy2;
362 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
363 tx += fix2;
364 ty += fiy2;
365 tz += fiz2;
366 fshift[i_shift_offset+XX0] += tx;
367 fshift[i_shift_offset+YY1] += ty;
368 fshift[i_shift_offset+ZZ2] += tz;
369
370 ggid = gid[iidx];
371 /* Update potential energies */
372 kernel_data->energygrp_elec[ggid] += velecsum;
373 kernel_data->energygrp_vdw[ggid] += vvdwsum;
374
375 /* Increment number of inner iterations */
376 inneriter += j_index_end - j_index_start;
377
378 /* Outer loop uses 32 flops */
379 }
380
381 /* Increment number of outer iterations */
382 outeriter += nri;
383
384 /* Update outer/inner flops */
385
386 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*139)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*139
;
387}
388/*
389 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_c
390 * Electrostatics interaction: CubicSplineTable
391 * VdW interaction: LennardJones
392 * Geometry: Water3-Particle
393 * Calculate force/pot: Force
394 */
395void
396nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_c
397 (t_nblist * gmx_restrict__restrict nlist,
398 rvec * gmx_restrict__restrict xx,
399 rvec * gmx_restrict__restrict ff,
400 t_forcerec * gmx_restrict__restrict fr,
401 t_mdatoms * gmx_restrict__restrict mdatoms,
402 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
403 t_nrnb * gmx_restrict__restrict nrnb)
404{
405 int i_shift_offset,i_coord_offset,j_coord_offset;
406 int j_index_start,j_index_end;
407 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
408 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
409 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
410 real *shiftvec,*fshift,*x,*f;
411 int vdwioffset0;
412 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
413 int vdwioffset1;
414 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
415 int vdwioffset2;
416 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
417 int vdwjidx0;
418 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
419 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
420 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
421 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
422 real velec,felec,velecsum,facel,crf,krf,krf2;
423 real *charge;
424 int nvdwtype;
425 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
426 int *vdwtype;
427 real *vdwparam;
428 int vfitab;
429 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
430 real *vftab;
431
432 x = xx[0];
433 f = ff[0];
434
435 nri = nlist->nri;
436 iinr = nlist->iinr;
437 jindex = nlist->jindex;
438 jjnr = nlist->jjnr;
439 shiftidx = nlist->shift;
440 gid = nlist->gid;
Value stored to 'gid' is never read
441 shiftvec = fr->shift_vec[0];
442 fshift = fr->fshift[0];
443 facel = fr->epsfac;
444 charge = mdatoms->chargeA;
445 nvdwtype = fr->ntype;
446 vdwparam = fr->nbfp;
447 vdwtype = mdatoms->typeA;
448
449 vftab = kernel_data->table_elec->data;
450 vftabscale = kernel_data->table_elec->scale;
451
452 /* Setup water-specific parameters */
453 inr = nlist->iinr[0];
454 iq0 = facel*charge[inr+0];
455 iq1 = facel*charge[inr+1];
456 iq2 = facel*charge[inr+2];
457 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
458
459 outeriter = 0;
460 inneriter = 0;
461
462 /* Start outer loop over neighborlists */
463 for(iidx=0; iidx<nri; iidx++)
464 {
465 /* Load shift vector for this list */
466 i_shift_offset = DIM3*shiftidx[iidx];
467 shX = shiftvec[i_shift_offset+XX0];
468 shY = shiftvec[i_shift_offset+YY1];
469 shZ = shiftvec[i_shift_offset+ZZ2];
470
471 /* Load limits for loop over neighbors */
472 j_index_start = jindex[iidx];
473 j_index_end = jindex[iidx+1];
474
475 /* Get outer coordinate index */
476 inr = iinr[iidx];
477 i_coord_offset = DIM3*inr;
478
479 /* Load i particle coords and add shift vector */
480 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
481 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
482 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
483 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
484 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
485 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
486 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
487 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
488 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
489
490 fix0 = 0.0;
491 fiy0 = 0.0;
492 fiz0 = 0.0;
493 fix1 = 0.0;
494 fiy1 = 0.0;
495 fiz1 = 0.0;
496 fix2 = 0.0;
497 fiy2 = 0.0;
498 fiz2 = 0.0;
499
500 /* Start inner kernel loop */
501 for(jidx=j_index_start; jidx<j_index_end; jidx++)
502 {
503 /* Get j neighbor index, and coordinate index */
504 jnr = jjnr[jidx];
505 j_coord_offset = DIM3*jnr;
506
507 /* load j atom coordinates */
508 jx0 = x[j_coord_offset+DIM3*0+XX0];
509 jy0 = x[j_coord_offset+DIM3*0+YY1];
510 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
511
512 /* Calculate displacement vector */
513 dx00 = ix0 - jx0;
514 dy00 = iy0 - jy0;
515 dz00 = iz0 - jz0;
516 dx10 = ix1 - jx0;
517 dy10 = iy1 - jy0;
518 dz10 = iz1 - jz0;
519 dx20 = ix2 - jx0;
520 dy20 = iy2 - jy0;
521 dz20 = iz2 - jz0;
522
523 /* Calculate squared distance and things based on it */
524 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
525 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
526 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
527
528 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
529 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
530 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
531
532 rinvsq00 = rinv00*rinv00;
533
534 /* Load parameters for j particles */
535 jq0 = charge[jnr+0];
536 vdwjidx0 = 2*vdwtype[jnr+0];
537
538 /**************************
539 * CALCULATE INTERACTIONS *
540 **************************/
541
542 r00 = rsq00*rinv00;
543
544 qq00 = iq0*jq0;
545 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
546 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
547
548 /* Calculate table index by multiplying r with table scale and truncate to integer */
549 rt = r00*vftabscale;
550 vfitab = rt;
551 vfeps = rt-vfitab;
552 vfitab = 1*4*vfitab;
553
554 /* CUBIC SPLINE TABLE ELECTROSTATICS */
555 F = vftab[vfitab+1];
556 Geps = vfeps*vftab[vfitab+2];
557 Heps2 = vfeps*vfeps*vftab[vfitab+3];
558 Fp = F+Geps+Heps2;
559 FF = Fp+Geps+2.0*Heps2;
560 felec = -qq00*FF*vftabscale*rinv00;
561
562 /* LENNARD-JONES DISPERSION/REPULSION */
563
564 rinvsix = rinvsq00*rinvsq00*rinvsq00;
565 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
566
567 fscal = felec+fvdw;
568
569 /* Calculate temporary vectorial force */
570 tx = fscal*dx00;
571 ty = fscal*dy00;
572 tz = fscal*dz00;
573
574 /* Update vectorial force */
575 fix0 += tx;
576 fiy0 += ty;
577 fiz0 += tz;
578 f[j_coord_offset+DIM3*0+XX0] -= tx;
579 f[j_coord_offset+DIM3*0+YY1] -= ty;
580 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
581
582 /**************************
583 * CALCULATE INTERACTIONS *
584 **************************/
585
586 r10 = rsq10*rinv10;
587
588 qq10 = iq1*jq0;
589
590 /* Calculate table index by multiplying r with table scale and truncate to integer */
591 rt = r10*vftabscale;
592 vfitab = rt;
593 vfeps = rt-vfitab;
594 vfitab = 1*4*vfitab;
595
596 /* CUBIC SPLINE TABLE ELECTROSTATICS */
597 F = vftab[vfitab+1];
598 Geps = vfeps*vftab[vfitab+2];
599 Heps2 = vfeps*vfeps*vftab[vfitab+3];
600 Fp = F+Geps+Heps2;
601 FF = Fp+Geps+2.0*Heps2;
602 felec = -qq10*FF*vftabscale*rinv10;
603
604 fscal = felec;
605
606 /* Calculate temporary vectorial force */
607 tx = fscal*dx10;
608 ty = fscal*dy10;
609 tz = fscal*dz10;
610
611 /* Update vectorial force */
612 fix1 += tx;
613 fiy1 += ty;
614 fiz1 += tz;
615 f[j_coord_offset+DIM3*0+XX0] -= tx;
616 f[j_coord_offset+DIM3*0+YY1] -= ty;
617 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
618
619 /**************************
620 * CALCULATE INTERACTIONS *
621 **************************/
622
623 r20 = rsq20*rinv20;
624
625 qq20 = iq2*jq0;
626
627 /* Calculate table index by multiplying r with table scale and truncate to integer */
628 rt = r20*vftabscale;
629 vfitab = rt;
630 vfeps = rt-vfitab;
631 vfitab = 1*4*vfitab;
632
633 /* CUBIC SPLINE TABLE ELECTROSTATICS */
634 F = vftab[vfitab+1];
635 Geps = vfeps*vftab[vfitab+2];
636 Heps2 = vfeps*vfeps*vftab[vfitab+3];
637 Fp = F+Geps+Heps2;
638 FF = Fp+Geps+2.0*Heps2;
639 felec = -qq20*FF*vftabscale*rinv20;
640
641 fscal = felec;
642
643 /* Calculate temporary vectorial force */
644 tx = fscal*dx20;
645 ty = fscal*dy20;
646 tz = fscal*dz20;
647
648 /* Update vectorial force */
649 fix2 += tx;
650 fiy2 += ty;
651 fiz2 += tz;
652 f[j_coord_offset+DIM3*0+XX0] -= tx;
653 f[j_coord_offset+DIM3*0+YY1] -= ty;
654 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
655
656 /* Inner loop uses 122 flops */
657 }
658 /* End of innermost loop */
659
660 tx = ty = tz = 0;
661 f[i_coord_offset+DIM3*0+XX0] += fix0;
662 f[i_coord_offset+DIM3*0+YY1] += fiy0;
663 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
664 tx += fix0;
665 ty += fiy0;
666 tz += fiz0;
667 f[i_coord_offset+DIM3*1+XX0] += fix1;
668 f[i_coord_offset+DIM3*1+YY1] += fiy1;
669 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
670 tx += fix1;
671 ty += fiy1;
672 tz += fiz1;
673 f[i_coord_offset+DIM3*2+XX0] += fix2;
674 f[i_coord_offset+DIM3*2+YY1] += fiy2;
675 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
676 tx += fix2;
677 ty += fiy2;
678 tz += fiz2;
679 fshift[i_shift_offset+XX0] += tx;
680 fshift[i_shift_offset+YY1] += ty;
681 fshift[i_shift_offset+ZZ2] += tz;
682
683 /* Increment number of inner iterations */
684 inneriter += j_index_end - j_index_start;
685
686 /* Outer loop uses 30 flops */
687 }
688
689 /* Increment number of outer iterations */
690 outeriter += nri;
691
692 /* Update outer/inner flops */
693
694 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*122)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*122
;
695}