Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_sse4_1_single.c
Location:line 96, column 22
Description:Value stored to 'one_sixth' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Coulomb
55 * VdW interaction: CubicSplineTable
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
Value stored to 'one_sixth' during its initialization is never read
97 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
98 __m128i vfitab;
99 __m128i ifour = _mm_set1_epi32(4);
100 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101 real *vftab;
102 __m128 dummy_mask,cutoff_mask;
103 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104 __m128 one = _mm_set1_ps(1.0);
105 __m128 two = _mm_set1_ps(2.0);
106 x = xx[0];
107 f = ff[0];
108
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = _mm_set1_ps(fr->epsfac);
118 charge = mdatoms->chargeA;
119 nvdwtype = fr->ntype;
120 vdwparam = fr->nbfp;
121 vdwtype = mdatoms->typeA;
122
123 vftab = kernel_data->table_vdw->data;
124 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
125
126 /* Avoid stupid compiler warnings */
127 jnrA = jnrB = jnrC = jnrD = 0;
128 j_coord_offsetA = 0;
129 j_coord_offsetB = 0;
130 j_coord_offsetC = 0;
131 j_coord_offsetD = 0;
132
133 outeriter = 0;
134 inneriter = 0;
135
136 for(iidx=0;iidx<4*DIM3;iidx++)
137 {
138 scratch[iidx] = 0.0;
139 }
140
141 /* Start outer loop over neighborlists */
142 for(iidx=0; iidx<nri; iidx++)
143 {
144 /* Load shift vector for this list */
145 i_shift_offset = DIM3*shiftidx[iidx];
146
147 /* Load limits for loop over neighbors */
148 j_index_start = jindex[iidx];
149 j_index_end = jindex[iidx+1];
150
151 /* Get outer coordinate index */
152 inr = iinr[iidx];
153 i_coord_offset = DIM3*inr;
154
155 /* Load i particle coords and add shift vector */
156 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158 fix0 = _mm_setzero_ps();
159 fiy0 = _mm_setzero_ps();
160 fiz0 = _mm_setzero_ps();
161
162 /* Load parameters for i particles */
163 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
164 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
165
166 /* Reset potential sums */
167 velecsum = _mm_setzero_ps();
168 vvdwsum = _mm_setzero_ps();
169
170 /* Start inner kernel loop */
171 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172 {
173
174 /* Get j neighbor index, and coordinate index */
175 jnrA = jjnr[jidx];
176 jnrB = jjnr[jidx+1];
177 jnrC = jjnr[jidx+2];
178 jnrD = jjnr[jidx+3];
179 j_coord_offsetA = DIM3*jnrA;
180 j_coord_offsetB = DIM3*jnrB;
181 j_coord_offsetC = DIM3*jnrC;
182 j_coord_offsetD = DIM3*jnrD;
183
184 /* load j atom coordinates */
185 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186 x+j_coord_offsetC,x+j_coord_offsetD,
187 &jx0,&jy0,&jz0);
188
189 /* Calculate displacement vector */
190 dx00 = _mm_sub_ps(ix0,jx0);
191 dy00 = _mm_sub_ps(iy0,jy0);
192 dz00 = _mm_sub_ps(iz0,jz0);
193
194 /* Calculate squared distance and things based on it */
195 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
196
197 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
198
199 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
200
201 /* Load parameters for j particles */
202 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
203 charge+jnrC+0,charge+jnrD+0);
204 vdwjidx0A = 2*vdwtype[jnrA+0];
205 vdwjidx0B = 2*vdwtype[jnrB+0];
206 vdwjidx0C = 2*vdwtype[jnrC+0];
207 vdwjidx0D = 2*vdwtype[jnrD+0];
208
209 /**************************
210 * CALCULATE INTERACTIONS *
211 **************************/
212
213 r00 = _mm_mul_ps(rsq00,rinv00);
214
215 /* Compute parameters for interactions between i and j atoms */
216 qq00 = _mm_mul_ps(iq0,jq0);
217 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
218 vdwparam+vdwioffset0+vdwjidx0B,
219 vdwparam+vdwioffset0+vdwjidx0C,
220 vdwparam+vdwioffset0+vdwjidx0D,
221 &c6_00,&c12_00);
222
223 /* Calculate table index by multiplying r with table scale and truncate to integer */
224 rt = _mm_mul_ps(r00,vftabscale);
225 vfitab = _mm_cvttps_epi32(rt);
226 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
227 vfitab = _mm_slli_epi32(vfitab,3);
228
229 /* COULOMB ELECTROSTATICS */
230 velec = _mm_mul_ps(qq00,rinv00);
231 felec = _mm_mul_ps(velec,rinvsq00);
232
233 /* CUBIC SPLINE TABLE DISPERSION */
234 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
235 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
236 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
237 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
238 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
239 Heps = _mm_mul_ps(vfeps,H);
240 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
241 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
242 vvdw6 = _mm_mul_ps(c6_00,VV);
243 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
244 fvdw6 = _mm_mul_ps(c6_00,FF);
245
246 /* CUBIC SPLINE TABLE REPULSION */
247 vfitab = _mm_add_epi32(vfitab,ifour);
248 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
249 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
250 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
251 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
252 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
253 Heps = _mm_mul_ps(vfeps,H);
254 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
255 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
256 vvdw12 = _mm_mul_ps(c12_00,VV);
257 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
258 fvdw12 = _mm_mul_ps(c12_00,FF);
259 vvdw = _mm_add_ps(vvdw12,vvdw6);
260 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
261
262 /* Update potential sum for this i atom from the interaction with this j atom. */
263 velecsum = _mm_add_ps(velecsum,velec);
264 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
265
266 fscal = _mm_add_ps(felec,fvdw);
267
268 /* Calculate temporary vectorial force */
269 tx = _mm_mul_ps(fscal,dx00);
270 ty = _mm_mul_ps(fscal,dy00);
271 tz = _mm_mul_ps(fscal,dz00);
272
273 /* Update vectorial force */
274 fix0 = _mm_add_ps(fix0,tx);
275 fiy0 = _mm_add_ps(fiy0,ty);
276 fiz0 = _mm_add_ps(fiz0,tz);
277
278 fjptrA = f+j_coord_offsetA;
279 fjptrB = f+j_coord_offsetB;
280 fjptrC = f+j_coord_offsetC;
281 fjptrD = f+j_coord_offsetD;
282 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
283
284 /* Inner loop uses 63 flops */
285 }
286
287 if(jidx<j_index_end)
288 {
289
290 /* Get j neighbor index, and coordinate index */
291 jnrlistA = jjnr[jidx];
292 jnrlistB = jjnr[jidx+1];
293 jnrlistC = jjnr[jidx+2];
294 jnrlistD = jjnr[jidx+3];
295 /* Sign of each element will be negative for non-real atoms.
296 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
297 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
298 */
299 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
300 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
301 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
302 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
303 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
304 j_coord_offsetA = DIM3*jnrA;
305 j_coord_offsetB = DIM3*jnrB;
306 j_coord_offsetC = DIM3*jnrC;
307 j_coord_offsetD = DIM3*jnrD;
308
309 /* load j atom coordinates */
310 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
311 x+j_coord_offsetC,x+j_coord_offsetD,
312 &jx0,&jy0,&jz0);
313
314 /* Calculate displacement vector */
315 dx00 = _mm_sub_ps(ix0,jx0);
316 dy00 = _mm_sub_ps(iy0,jy0);
317 dz00 = _mm_sub_ps(iz0,jz0);
318
319 /* Calculate squared distance and things based on it */
320 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
321
322 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
323
324 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
325
326 /* Load parameters for j particles */
327 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
328 charge+jnrC+0,charge+jnrD+0);
329 vdwjidx0A = 2*vdwtype[jnrA+0];
330 vdwjidx0B = 2*vdwtype[jnrB+0];
331 vdwjidx0C = 2*vdwtype[jnrC+0];
332 vdwjidx0D = 2*vdwtype[jnrD+0];
333
334 /**************************
335 * CALCULATE INTERACTIONS *
336 **************************/
337
338 r00 = _mm_mul_ps(rsq00,rinv00);
339 r00 = _mm_andnot_ps(dummy_mask,r00);
340
341 /* Compute parameters for interactions between i and j atoms */
342 qq00 = _mm_mul_ps(iq0,jq0);
343 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
344 vdwparam+vdwioffset0+vdwjidx0B,
345 vdwparam+vdwioffset0+vdwjidx0C,
346 vdwparam+vdwioffset0+vdwjidx0D,
347 &c6_00,&c12_00);
348
349 /* Calculate table index by multiplying r with table scale and truncate to integer */
350 rt = _mm_mul_ps(r00,vftabscale);
351 vfitab = _mm_cvttps_epi32(rt);
352 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
353 vfitab = _mm_slli_epi32(vfitab,3);
354
355 /* COULOMB ELECTROSTATICS */
356 velec = _mm_mul_ps(qq00,rinv00);
357 felec = _mm_mul_ps(velec,rinvsq00);
358
359 /* CUBIC SPLINE TABLE DISPERSION */
360 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
361 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
362 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
363 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
364 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
365 Heps = _mm_mul_ps(vfeps,H);
366 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
367 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
368 vvdw6 = _mm_mul_ps(c6_00,VV);
369 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
370 fvdw6 = _mm_mul_ps(c6_00,FF);
371
372 /* CUBIC SPLINE TABLE REPULSION */
373 vfitab = _mm_add_epi32(vfitab,ifour);
374 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
375 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
376 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
377 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
378 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
379 Heps = _mm_mul_ps(vfeps,H);
380 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
381 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
382 vvdw12 = _mm_mul_ps(c12_00,VV);
383 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
384 fvdw12 = _mm_mul_ps(c12_00,FF);
385 vvdw = _mm_add_ps(vvdw12,vvdw6);
386 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
387
388 /* Update potential sum for this i atom from the interaction with this j atom. */
389 velec = _mm_andnot_ps(dummy_mask,velec);
390 velecsum = _mm_add_ps(velecsum,velec);
391 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
392 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
393
394 fscal = _mm_add_ps(felec,fvdw);
395
396 fscal = _mm_andnot_ps(dummy_mask,fscal);
397
398 /* Calculate temporary vectorial force */
399 tx = _mm_mul_ps(fscal,dx00);
400 ty = _mm_mul_ps(fscal,dy00);
401 tz = _mm_mul_ps(fscal,dz00);
402
403 /* Update vectorial force */
404 fix0 = _mm_add_ps(fix0,tx);
405 fiy0 = _mm_add_ps(fiy0,ty);
406 fiz0 = _mm_add_ps(fiz0,tz);
407
408 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
409 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
410 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
411 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
412 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
413
414 /* Inner loop uses 64 flops */
415 }
416
417 /* End of innermost loop */
418
419 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
420 f+i_coord_offset,fshift+i_shift_offset);
421
422 ggid = gid[iidx];
423 /* Update potential energies */
424 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
425 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
426
427 /* Increment number of inner iterations */
428 inneriter += j_index_end - j_index_start;
429
430 /* Outer loop uses 9 flops */
431 }
432
433 /* Increment number of outer iterations */
434 outeriter += nri;
435
436 /* Update outer/inner flops */
437
438 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*9 + inneriter
*64
;
439}
440/*
441 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse4_1_single
442 * Electrostatics interaction: Coulomb
443 * VdW interaction: CubicSplineTable
444 * Geometry: Particle-Particle
445 * Calculate force/pot: Force
446 */
447void
448nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse4_1_single
449 (t_nblist * gmx_restrict nlist,
450 rvec * gmx_restrict xx,
451 rvec * gmx_restrict ff,
452 t_forcerec * gmx_restrict fr,
453 t_mdatoms * gmx_restrict mdatoms,
454 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
455 t_nrnb * gmx_restrict nrnb)
456{
457 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
458 * just 0 for non-waters.
459 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
460 * jnr indices corresponding to data put in the four positions in the SIMD register.
461 */
462 int i_shift_offset,i_coord_offset,outeriter,inneriter;
463 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
464 int jnrA,jnrB,jnrC,jnrD;
465 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
466 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
467 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
468 real rcutoff_scalar;
469 real *shiftvec,*fshift,*x,*f;
470 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
471 real scratch[4*DIM3];
472 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
473 int vdwioffset0;
474 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
475 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
476 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
477 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
478 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
479 real *charge;
480 int nvdwtype;
481 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
482 int *vdwtype;
483 real *vdwparam;
484 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
485 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
486 __m128i vfitab;
487 __m128i ifour = _mm_set1_epi32(4);
488 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
489 real *vftab;
490 __m128 dummy_mask,cutoff_mask;
491 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
492 __m128 one = _mm_set1_ps(1.0);
493 __m128 two = _mm_set1_ps(2.0);
494 x = xx[0];
495 f = ff[0];
496
497 nri = nlist->nri;
498 iinr = nlist->iinr;
499 jindex = nlist->jindex;
500 jjnr = nlist->jjnr;
501 shiftidx = nlist->shift;
502 gid = nlist->gid;
503 shiftvec = fr->shift_vec[0];
504 fshift = fr->fshift[0];
505 facel = _mm_set1_ps(fr->epsfac);
506 charge = mdatoms->chargeA;
507 nvdwtype = fr->ntype;
508 vdwparam = fr->nbfp;
509 vdwtype = mdatoms->typeA;
510
511 vftab = kernel_data->table_vdw->data;
512 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
513
514 /* Avoid stupid compiler warnings */
515 jnrA = jnrB = jnrC = jnrD = 0;
516 j_coord_offsetA = 0;
517 j_coord_offsetB = 0;
518 j_coord_offsetC = 0;
519 j_coord_offsetD = 0;
520
521 outeriter = 0;
522 inneriter = 0;
523
524 for(iidx=0;iidx<4*DIM3;iidx++)
525 {
526 scratch[iidx] = 0.0;
527 }
528
529 /* Start outer loop over neighborlists */
530 for(iidx=0; iidx<nri; iidx++)
531 {
532 /* Load shift vector for this list */
533 i_shift_offset = DIM3*shiftidx[iidx];
534
535 /* Load limits for loop over neighbors */
536 j_index_start = jindex[iidx];
537 j_index_end = jindex[iidx+1];
538
539 /* Get outer coordinate index */
540 inr = iinr[iidx];
541 i_coord_offset = DIM3*inr;
542
543 /* Load i particle coords and add shift vector */
544 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
545
546 fix0 = _mm_setzero_ps();
547 fiy0 = _mm_setzero_ps();
548 fiz0 = _mm_setzero_ps();
549
550 /* Load parameters for i particles */
551 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
552 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
553
554 /* Start inner kernel loop */
555 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
556 {
557
558 /* Get j neighbor index, and coordinate index */
559 jnrA = jjnr[jidx];
560 jnrB = jjnr[jidx+1];
561 jnrC = jjnr[jidx+2];
562 jnrD = jjnr[jidx+3];
563 j_coord_offsetA = DIM3*jnrA;
564 j_coord_offsetB = DIM3*jnrB;
565 j_coord_offsetC = DIM3*jnrC;
566 j_coord_offsetD = DIM3*jnrD;
567
568 /* load j atom coordinates */
569 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
570 x+j_coord_offsetC,x+j_coord_offsetD,
571 &jx0,&jy0,&jz0);
572
573 /* Calculate displacement vector */
574 dx00 = _mm_sub_ps(ix0,jx0);
575 dy00 = _mm_sub_ps(iy0,jy0);
576 dz00 = _mm_sub_ps(iz0,jz0);
577
578 /* Calculate squared distance and things based on it */
579 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
580
581 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
582
583 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
584
585 /* Load parameters for j particles */
586 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
587 charge+jnrC+0,charge+jnrD+0);
588 vdwjidx0A = 2*vdwtype[jnrA+0];
589 vdwjidx0B = 2*vdwtype[jnrB+0];
590 vdwjidx0C = 2*vdwtype[jnrC+0];
591 vdwjidx0D = 2*vdwtype[jnrD+0];
592
593 /**************************
594 * CALCULATE INTERACTIONS *
595 **************************/
596
597 r00 = _mm_mul_ps(rsq00,rinv00);
598
599 /* Compute parameters for interactions between i and j atoms */
600 qq00 = _mm_mul_ps(iq0,jq0);
601 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
602 vdwparam+vdwioffset0+vdwjidx0B,
603 vdwparam+vdwioffset0+vdwjidx0C,
604 vdwparam+vdwioffset0+vdwjidx0D,
605 &c6_00,&c12_00);
606
607 /* Calculate table index by multiplying r with table scale and truncate to integer */
608 rt = _mm_mul_ps(r00,vftabscale);
609 vfitab = _mm_cvttps_epi32(rt);
610 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
611 vfitab = _mm_slli_epi32(vfitab,3);
612
613 /* COULOMB ELECTROSTATICS */
614 velec = _mm_mul_ps(qq00,rinv00);
615 felec = _mm_mul_ps(velec,rinvsq00);
616
617 /* CUBIC SPLINE TABLE DISPERSION */
618 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
619 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
620 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
621 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
622 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
623 Heps = _mm_mul_ps(vfeps,H);
624 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
625 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
626 fvdw6 = _mm_mul_ps(c6_00,FF);
627
628 /* CUBIC SPLINE TABLE REPULSION */
629 vfitab = _mm_add_epi32(vfitab,ifour);
630 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
631 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
632 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
633 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
634 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
635 Heps = _mm_mul_ps(vfeps,H);
636 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
637 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
638 fvdw12 = _mm_mul_ps(c12_00,FF);
639 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
640
641 fscal = _mm_add_ps(felec,fvdw);
642
643 /* Calculate temporary vectorial force */
644 tx = _mm_mul_ps(fscal,dx00);
645 ty = _mm_mul_ps(fscal,dy00);
646 tz = _mm_mul_ps(fscal,dz00);
647
648 /* Update vectorial force */
649 fix0 = _mm_add_ps(fix0,tx);
650 fiy0 = _mm_add_ps(fiy0,ty);
651 fiz0 = _mm_add_ps(fiz0,tz);
652
653 fjptrA = f+j_coord_offsetA;
654 fjptrB = f+j_coord_offsetB;
655 fjptrC = f+j_coord_offsetC;
656 fjptrD = f+j_coord_offsetD;
657 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
658
659 /* Inner loop uses 54 flops */
660 }
661
662 if(jidx<j_index_end)
663 {
664
665 /* Get j neighbor index, and coordinate index */
666 jnrlistA = jjnr[jidx];
667 jnrlistB = jjnr[jidx+1];
668 jnrlistC = jjnr[jidx+2];
669 jnrlistD = jjnr[jidx+3];
670 /* Sign of each element will be negative for non-real atoms.
671 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
672 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
673 */
674 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
675 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
676 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
677 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
678 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
679 j_coord_offsetA = DIM3*jnrA;
680 j_coord_offsetB = DIM3*jnrB;
681 j_coord_offsetC = DIM3*jnrC;
682 j_coord_offsetD = DIM3*jnrD;
683
684 /* load j atom coordinates */
685 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
686 x+j_coord_offsetC,x+j_coord_offsetD,
687 &jx0,&jy0,&jz0);
688
689 /* Calculate displacement vector */
690 dx00 = _mm_sub_ps(ix0,jx0);
691 dy00 = _mm_sub_ps(iy0,jy0);
692 dz00 = _mm_sub_ps(iz0,jz0);
693
694 /* Calculate squared distance and things based on it */
695 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
696
697 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
698
699 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
700
701 /* Load parameters for j particles */
702 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
703 charge+jnrC+0,charge+jnrD+0);
704 vdwjidx0A = 2*vdwtype[jnrA+0];
705 vdwjidx0B = 2*vdwtype[jnrB+0];
706 vdwjidx0C = 2*vdwtype[jnrC+0];
707 vdwjidx0D = 2*vdwtype[jnrD+0];
708
709 /**************************
710 * CALCULATE INTERACTIONS *
711 **************************/
712
713 r00 = _mm_mul_ps(rsq00,rinv00);
714 r00 = _mm_andnot_ps(dummy_mask,r00);
715
716 /* Compute parameters for interactions between i and j atoms */
717 qq00 = _mm_mul_ps(iq0,jq0);
718 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
719 vdwparam+vdwioffset0+vdwjidx0B,
720 vdwparam+vdwioffset0+vdwjidx0C,
721 vdwparam+vdwioffset0+vdwjidx0D,
722 &c6_00,&c12_00);
723
724 /* Calculate table index by multiplying r with table scale and truncate to integer */
725 rt = _mm_mul_ps(r00,vftabscale);
726 vfitab = _mm_cvttps_epi32(rt);
727 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
728 vfitab = _mm_slli_epi32(vfitab,3);
729
730 /* COULOMB ELECTROSTATICS */
731 velec = _mm_mul_ps(qq00,rinv00);
732 felec = _mm_mul_ps(velec,rinvsq00);
733
734 /* CUBIC SPLINE TABLE DISPERSION */
735 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
736 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
737 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
738 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
739 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
740 Heps = _mm_mul_ps(vfeps,H);
741 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
742 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
743 fvdw6 = _mm_mul_ps(c6_00,FF);
744
745 /* CUBIC SPLINE TABLE REPULSION */
746 vfitab = _mm_add_epi32(vfitab,ifour);
747 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
748 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
749 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
750 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
751 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
752 Heps = _mm_mul_ps(vfeps,H);
753 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
754 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
755 fvdw12 = _mm_mul_ps(c12_00,FF);
756 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
757
758 fscal = _mm_add_ps(felec,fvdw);
759
760 fscal = _mm_andnot_ps(dummy_mask,fscal);
761
762 /* Calculate temporary vectorial force */
763 tx = _mm_mul_ps(fscal,dx00);
764 ty = _mm_mul_ps(fscal,dy00);
765 tz = _mm_mul_ps(fscal,dz00);
766
767 /* Update vectorial force */
768 fix0 = _mm_add_ps(fix0,tx);
769 fiy0 = _mm_add_ps(fiy0,ty);
770 fiz0 = _mm_add_ps(fiz0,tz);
771
772 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
773 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
774 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
775 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
776 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
777
778 /* Inner loop uses 55 flops */
779 }
780
781 /* End of innermost loop */
782
783 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
784 f+i_coord_offset,fshift+i_shift_offset);
785
786 /* Increment number of inner iterations */
787 inneriter += j_index_end - j_index_start;
788
789 /* Outer loop uses 7 flops */
790 }
791
792 /* Increment number of outer iterations */
793 outeriter += nri;
794
795 /* Update outer/inner flops */
796
797 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*55
;
798}