Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse4_1_single.c
Location:line 138, column 5
Description:Value stored to 'j_coord_offsetA' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LJEwald
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
97 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
98 __m128 c6grid_00;
99 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
100 real *vdwgridparam;
101 __m128 one_half = _mm_set1_ps(0.5);
102 __m128 minus_one = _mm_set1_ps(-1.0);
103 __m128i ewitab;
104 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105 real *ewtab;
106 __m128 dummy_mask,cutoff_mask;
107 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108 __m128 one = _mm_set1_ps(1.0);
109 __m128 two = _mm_set1_ps(2.0);
110 x = xx[0];
111 f = ff[0];
112
113 nri = nlist->nri;
114 iinr = nlist->iinr;
115 jindex = nlist->jindex;
116 jjnr = nlist->jjnr;
117 shiftidx = nlist->shift;
118 gid = nlist->gid;
119 shiftvec = fr->shift_vec[0];
120 fshift = fr->fshift[0];
121 facel = _mm_set1_ps(fr->epsfac);
122 charge = mdatoms->chargeA;
123 nvdwtype = fr->ntype;
124 vdwparam = fr->nbfp;
125 vdwtype = mdatoms->typeA;
126 vdwgridparam = fr->ljpme_c6grid;
127 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
128 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
129 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
130
131 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
132 ewtab = fr->ic->tabq_coul_FDV0;
133 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
134 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136 /* Avoid stupid compiler warnings */
137 jnrA = jnrB = jnrC = jnrD = 0;
138 j_coord_offsetA = 0;
Value stored to 'j_coord_offsetA' is never read
139 j_coord_offsetB = 0;
140 j_coord_offsetC = 0;
141 j_coord_offsetD = 0;
142
143 outeriter = 0;
144 inneriter = 0;
145
146 for(iidx=0;iidx<4*DIM3;iidx++)
147 {
148 scratch[iidx] = 0.0;
149 }
150
151 /* Start outer loop over neighborlists */
152 for(iidx=0; iidx<nri; iidx++)
153 {
154 /* Load shift vector for this list */
155 i_shift_offset = DIM3*shiftidx[iidx];
156
157 /* Load limits for loop over neighbors */
158 j_index_start = jindex[iidx];
159 j_index_end = jindex[iidx+1];
160
161 /* Get outer coordinate index */
162 inr = iinr[iidx];
163 i_coord_offset = DIM3*inr;
164
165 /* Load i particle coords and add shift vector */
166 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168 fix0 = _mm_setzero_ps();
169 fiy0 = _mm_setzero_ps();
170 fiz0 = _mm_setzero_ps();
171
172 /* Load parameters for i particles */
173 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
174 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
175
176 /* Reset potential sums */
177 velecsum = _mm_setzero_ps();
178 vvdwsum = _mm_setzero_ps();
179
180 /* Start inner kernel loop */
181 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182 {
183
184 /* Get j neighbor index, and coordinate index */
185 jnrA = jjnr[jidx];
186 jnrB = jjnr[jidx+1];
187 jnrC = jjnr[jidx+2];
188 jnrD = jjnr[jidx+3];
189 j_coord_offsetA = DIM3*jnrA;
190 j_coord_offsetB = DIM3*jnrB;
191 j_coord_offsetC = DIM3*jnrC;
192 j_coord_offsetD = DIM3*jnrD;
193
194 /* load j atom coordinates */
195 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196 x+j_coord_offsetC,x+j_coord_offsetD,
197 &jx0,&jy0,&jz0);
198
199 /* Calculate displacement vector */
200 dx00 = _mm_sub_ps(ix0,jx0);
201 dy00 = _mm_sub_ps(iy0,jy0);
202 dz00 = _mm_sub_ps(iz0,jz0);
203
204 /* Calculate squared distance and things based on it */
205 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
208
209 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
210
211 /* Load parameters for j particles */
212 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213 charge+jnrC+0,charge+jnrD+0);
214 vdwjidx0A = 2*vdwtype[jnrA+0];
215 vdwjidx0B = 2*vdwtype[jnrB+0];
216 vdwjidx0C = 2*vdwtype[jnrC+0];
217 vdwjidx0D = 2*vdwtype[jnrD+0];
218
219 /**************************
220 * CALCULATE INTERACTIONS *
221 **************************/
222
223 r00 = _mm_mul_ps(rsq00,rinv00);
224
225 /* Compute parameters for interactions between i and j atoms */
226 qq00 = _mm_mul_ps(iq0,jq0);
227 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228 vdwparam+vdwioffset0+vdwjidx0B,
229 vdwparam+vdwioffset0+vdwjidx0C,
230 vdwparam+vdwioffset0+vdwjidx0D,
231 &c6_00,&c12_00);
232
233 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
234 vdwgridparam+vdwioffset0+vdwjidx0B,
235 vdwgridparam+vdwioffset0+vdwjidx0C,
236 vdwgridparam+vdwioffset0+vdwjidx0D);
237
238 /* EWALD ELECTROSTATICS */
239
240 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
241 ewrt = _mm_mul_ps(r00,ewtabscale);
242 ewitab = _mm_cvttps_epi32(ewrt);
243 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
244 ewitab = _mm_slli_epi32(ewitab,2);
245 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
246 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
247 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
248 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
249 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
250 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
251 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
252 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
253 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
254
255 /* Analytical LJ-PME */
256 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
257 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
258 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
259 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
260 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
261 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
262 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
263 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
264 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
265 vvdw = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
266 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
267 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
268
269 /* Update potential sum for this i atom from the interaction with this j atom. */
270 velecsum = _mm_add_ps(velecsum,velec);
271 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
272
273 fscal = _mm_add_ps(felec,fvdw);
274
275 /* Calculate temporary vectorial force */
276 tx = _mm_mul_ps(fscal,dx00);
277 ty = _mm_mul_ps(fscal,dy00);
278 tz = _mm_mul_ps(fscal,dz00);
279
280 /* Update vectorial force */
281 fix0 = _mm_add_ps(fix0,tx);
282 fiy0 = _mm_add_ps(fiy0,ty);
283 fiz0 = _mm_add_ps(fiz0,tz);
284
285 fjptrA = f+j_coord_offsetA;
286 fjptrB = f+j_coord_offsetB;
287 fjptrC = f+j_coord_offsetC;
288 fjptrD = f+j_coord_offsetD;
289 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
290
291 /* Inner loop uses 69 flops */
292 }
293
294 if(jidx<j_index_end)
295 {
296
297 /* Get j neighbor index, and coordinate index */
298 jnrlistA = jjnr[jidx];
299 jnrlistB = jjnr[jidx+1];
300 jnrlistC = jjnr[jidx+2];
301 jnrlistD = jjnr[jidx+3];
302 /* Sign of each element will be negative for non-real atoms.
303 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
304 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
305 */
306 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
307 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
308 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
309 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
310 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
311 j_coord_offsetA = DIM3*jnrA;
312 j_coord_offsetB = DIM3*jnrB;
313 j_coord_offsetC = DIM3*jnrC;
314 j_coord_offsetD = DIM3*jnrD;
315
316 /* load j atom coordinates */
317 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
318 x+j_coord_offsetC,x+j_coord_offsetD,
319 &jx0,&jy0,&jz0);
320
321 /* Calculate displacement vector */
322 dx00 = _mm_sub_ps(ix0,jx0);
323 dy00 = _mm_sub_ps(iy0,jy0);
324 dz00 = _mm_sub_ps(iz0,jz0);
325
326 /* Calculate squared distance and things based on it */
327 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
328
329 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
330
331 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
332
333 /* Load parameters for j particles */
334 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
335 charge+jnrC+0,charge+jnrD+0);
336 vdwjidx0A = 2*vdwtype[jnrA+0];
337 vdwjidx0B = 2*vdwtype[jnrB+0];
338 vdwjidx0C = 2*vdwtype[jnrC+0];
339 vdwjidx0D = 2*vdwtype[jnrD+0];
340
341 /**************************
342 * CALCULATE INTERACTIONS *
343 **************************/
344
345 r00 = _mm_mul_ps(rsq00,rinv00);
346 r00 = _mm_andnot_ps(dummy_mask,r00);
347
348 /* Compute parameters for interactions between i and j atoms */
349 qq00 = _mm_mul_ps(iq0,jq0);
350 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
351 vdwparam+vdwioffset0+vdwjidx0B,
352 vdwparam+vdwioffset0+vdwjidx0C,
353 vdwparam+vdwioffset0+vdwjidx0D,
354 &c6_00,&c12_00);
355
356 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
357 vdwgridparam+vdwioffset0+vdwjidx0B,
358 vdwgridparam+vdwioffset0+vdwjidx0C,
359 vdwgridparam+vdwioffset0+vdwjidx0D);
360
361 /* EWALD ELECTROSTATICS */
362
363 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364 ewrt = _mm_mul_ps(r00,ewtabscale);
365 ewitab = _mm_cvttps_epi32(ewrt);
366 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
367 ewitab = _mm_slli_epi32(ewitab,2);
368 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
369 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
370 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
371 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
372 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
373 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
374 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
375 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
376 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
377
378 /* Analytical LJ-PME */
379 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
380 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
381 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
382 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
383 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
384 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
385 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
386 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
387 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
388 vvdw = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
389 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
390 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
391
392 /* Update potential sum for this i atom from the interaction with this j atom. */
393 velec = _mm_andnot_ps(dummy_mask,velec);
394 velecsum = _mm_add_ps(velecsum,velec);
395 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
396 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
397
398 fscal = _mm_add_ps(felec,fvdw);
399
400 fscal = _mm_andnot_ps(dummy_mask,fscal);
401
402 /* Calculate temporary vectorial force */
403 tx = _mm_mul_ps(fscal,dx00);
404 ty = _mm_mul_ps(fscal,dy00);
405 tz = _mm_mul_ps(fscal,dz00);
406
407 /* Update vectorial force */
408 fix0 = _mm_add_ps(fix0,tx);
409 fiy0 = _mm_add_ps(fiy0,ty);
410 fiz0 = _mm_add_ps(fiz0,tz);
411
412 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
413 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
414 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
415 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
416 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
417
418 /* Inner loop uses 70 flops */
419 }
420
421 /* End of innermost loop */
422
423 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
424 f+i_coord_offset,fshift+i_shift_offset);
425
426 ggid = gid[iidx];
427 /* Update potential energies */
428 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
429 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
430
431 /* Increment number of inner iterations */
432 inneriter += j_index_end - j_index_start;
433
434 /* Outer loop uses 9 flops */
435 }
436
437 /* Increment number of outer iterations */
438 outeriter += nri;
439
440 /* Update outer/inner flops */
441
442 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*9 + inneriter
*70
;
443}
444/*
445 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_single
446 * Electrostatics interaction: Ewald
447 * VdW interaction: LJEwald
448 * Geometry: Particle-Particle
449 * Calculate force/pot: Force
450 */
451void
452nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_single
453 (t_nblist * gmx_restrict nlist,
454 rvec * gmx_restrict xx,
455 rvec * gmx_restrict ff,
456 t_forcerec * gmx_restrict fr,
457 t_mdatoms * gmx_restrict mdatoms,
458 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
459 t_nrnb * gmx_restrict nrnb)
460{
461 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
462 * just 0 for non-waters.
463 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
464 * jnr indices corresponding to data put in the four positions in the SIMD register.
465 */
466 int i_shift_offset,i_coord_offset,outeriter,inneriter;
467 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
468 int jnrA,jnrB,jnrC,jnrD;
469 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
470 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
471 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
472 real rcutoff_scalar;
473 real *shiftvec,*fshift,*x,*f;
474 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
475 real scratch[4*DIM3];
476 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
477 int vdwioffset0;
478 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
479 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
480 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
481 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
482 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
483 real *charge;
484 int nvdwtype;
485 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
486 int *vdwtype;
487 real *vdwparam;
488 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
489 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
490 __m128 c6grid_00;
491 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
492 real *vdwgridparam;
493 __m128 one_half = _mm_set1_ps(0.5);
494 __m128 minus_one = _mm_set1_ps(-1.0);
495 __m128i ewitab;
496 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
497 real *ewtab;
498 __m128 dummy_mask,cutoff_mask;
499 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
500 __m128 one = _mm_set1_ps(1.0);
501 __m128 two = _mm_set1_ps(2.0);
502 x = xx[0];
503 f = ff[0];
504
505 nri = nlist->nri;
506 iinr = nlist->iinr;
507 jindex = nlist->jindex;
508 jjnr = nlist->jjnr;
509 shiftidx = nlist->shift;
510 gid = nlist->gid;
511 shiftvec = fr->shift_vec[0];
512 fshift = fr->fshift[0];
513 facel = _mm_set1_ps(fr->epsfac);
514 charge = mdatoms->chargeA;
515 nvdwtype = fr->ntype;
516 vdwparam = fr->nbfp;
517 vdwtype = mdatoms->typeA;
518 vdwgridparam = fr->ljpme_c6grid;
519 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
520 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
521 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
522
523 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
524 ewtab = fr->ic->tabq_coul_F;
525 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
526 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
527
528 /* Avoid stupid compiler warnings */
529 jnrA = jnrB = jnrC = jnrD = 0;
530 j_coord_offsetA = 0;
531 j_coord_offsetB = 0;
532 j_coord_offsetC = 0;
533 j_coord_offsetD = 0;
534
535 outeriter = 0;
536 inneriter = 0;
537
538 for(iidx=0;iidx<4*DIM3;iidx++)
539 {
540 scratch[iidx] = 0.0;
541 }
542
543 /* Start outer loop over neighborlists */
544 for(iidx=0; iidx<nri; iidx++)
545 {
546 /* Load shift vector for this list */
547 i_shift_offset = DIM3*shiftidx[iidx];
548
549 /* Load limits for loop over neighbors */
550 j_index_start = jindex[iidx];
551 j_index_end = jindex[iidx+1];
552
553 /* Get outer coordinate index */
554 inr = iinr[iidx];
555 i_coord_offset = DIM3*inr;
556
557 /* Load i particle coords and add shift vector */
558 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
559
560 fix0 = _mm_setzero_ps();
561 fiy0 = _mm_setzero_ps();
562 fiz0 = _mm_setzero_ps();
563
564 /* Load parameters for i particles */
565 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
566 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
567
568 /* Start inner kernel loop */
569 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
570 {
571
572 /* Get j neighbor index, and coordinate index */
573 jnrA = jjnr[jidx];
574 jnrB = jjnr[jidx+1];
575 jnrC = jjnr[jidx+2];
576 jnrD = jjnr[jidx+3];
577 j_coord_offsetA = DIM3*jnrA;
578 j_coord_offsetB = DIM3*jnrB;
579 j_coord_offsetC = DIM3*jnrC;
580 j_coord_offsetD = DIM3*jnrD;
581
582 /* load j atom coordinates */
583 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
584 x+j_coord_offsetC,x+j_coord_offsetD,
585 &jx0,&jy0,&jz0);
586
587 /* Calculate displacement vector */
588 dx00 = _mm_sub_ps(ix0,jx0);
589 dy00 = _mm_sub_ps(iy0,jy0);
590 dz00 = _mm_sub_ps(iz0,jz0);
591
592 /* Calculate squared distance and things based on it */
593 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
594
595 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
596
597 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
598
599 /* Load parameters for j particles */
600 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
601 charge+jnrC+0,charge+jnrD+0);
602 vdwjidx0A = 2*vdwtype[jnrA+0];
603 vdwjidx0B = 2*vdwtype[jnrB+0];
604 vdwjidx0C = 2*vdwtype[jnrC+0];
605 vdwjidx0D = 2*vdwtype[jnrD+0];
606
607 /**************************
608 * CALCULATE INTERACTIONS *
609 **************************/
610
611 r00 = _mm_mul_ps(rsq00,rinv00);
612
613 /* Compute parameters for interactions between i and j atoms */
614 qq00 = _mm_mul_ps(iq0,jq0);
615 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
616 vdwparam+vdwioffset0+vdwjidx0B,
617 vdwparam+vdwioffset0+vdwjidx0C,
618 vdwparam+vdwioffset0+vdwjidx0D,
619 &c6_00,&c12_00);
620
621 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
622 vdwgridparam+vdwioffset0+vdwjidx0B,
623 vdwgridparam+vdwioffset0+vdwjidx0C,
624 vdwgridparam+vdwioffset0+vdwjidx0D);
625
626 /* EWALD ELECTROSTATICS */
627
628 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629 ewrt = _mm_mul_ps(r00,ewtabscale);
630 ewitab = _mm_cvttps_epi32(ewrt);
631 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
632 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
633 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
634 &ewtabF,&ewtabFn);
635 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
636 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
637
638 /* Analytical LJ-PME */
639 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
640 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
641 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
642 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
643 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
644 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
645 /* f6A = 6 * C6grid * (1 - poly) */
646 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
647 /* f6B = C6grid * exponent * beta^6 */
648 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
649 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
650 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
651
652 fscal = _mm_add_ps(felec,fvdw);
653
654 /* Calculate temporary vectorial force */
655 tx = _mm_mul_ps(fscal,dx00);
656 ty = _mm_mul_ps(fscal,dy00);
657 tz = _mm_mul_ps(fscal,dz00);
658
659 /* Update vectorial force */
660 fix0 = _mm_add_ps(fix0,tx);
661 fiy0 = _mm_add_ps(fiy0,ty);
662 fiz0 = _mm_add_ps(fiz0,tz);
663
664 fjptrA = f+j_coord_offsetA;
665 fjptrB = f+j_coord_offsetB;
666 fjptrC = f+j_coord_offsetC;
667 fjptrD = f+j_coord_offsetD;
668 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
669
670 /* Inner loop uses 59 flops */
671 }
672
673 if(jidx<j_index_end)
674 {
675
676 /* Get j neighbor index, and coordinate index */
677 jnrlistA = jjnr[jidx];
678 jnrlistB = jjnr[jidx+1];
679 jnrlistC = jjnr[jidx+2];
680 jnrlistD = jjnr[jidx+3];
681 /* Sign of each element will be negative for non-real atoms.
682 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
683 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
684 */
685 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
686 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
687 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
688 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
689 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
690 j_coord_offsetA = DIM3*jnrA;
691 j_coord_offsetB = DIM3*jnrB;
692 j_coord_offsetC = DIM3*jnrC;
693 j_coord_offsetD = DIM3*jnrD;
694
695 /* load j atom coordinates */
696 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
697 x+j_coord_offsetC,x+j_coord_offsetD,
698 &jx0,&jy0,&jz0);
699
700 /* Calculate displacement vector */
701 dx00 = _mm_sub_ps(ix0,jx0);
702 dy00 = _mm_sub_ps(iy0,jy0);
703 dz00 = _mm_sub_ps(iz0,jz0);
704
705 /* Calculate squared distance and things based on it */
706 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
707
708 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
709
710 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
711
712 /* Load parameters for j particles */
713 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
714 charge+jnrC+0,charge+jnrD+0);
715 vdwjidx0A = 2*vdwtype[jnrA+0];
716 vdwjidx0B = 2*vdwtype[jnrB+0];
717 vdwjidx0C = 2*vdwtype[jnrC+0];
718 vdwjidx0D = 2*vdwtype[jnrD+0];
719
720 /**************************
721 * CALCULATE INTERACTIONS *
722 **************************/
723
724 r00 = _mm_mul_ps(rsq00,rinv00);
725 r00 = _mm_andnot_ps(dummy_mask,r00);
726
727 /* Compute parameters for interactions between i and j atoms */
728 qq00 = _mm_mul_ps(iq0,jq0);
729 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
730 vdwparam+vdwioffset0+vdwjidx0B,
731 vdwparam+vdwioffset0+vdwjidx0C,
732 vdwparam+vdwioffset0+vdwjidx0D,
733 &c6_00,&c12_00);
734
735 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
736 vdwgridparam+vdwioffset0+vdwjidx0B,
737 vdwgridparam+vdwioffset0+vdwjidx0C,
738 vdwgridparam+vdwioffset0+vdwjidx0D);
739
740 /* EWALD ELECTROSTATICS */
741
742 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
743 ewrt = _mm_mul_ps(r00,ewtabscale);
744 ewitab = _mm_cvttps_epi32(ewrt);
745 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
746 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
747 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
748 &ewtabF,&ewtabFn);
749 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
750 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
751
752 /* Analytical LJ-PME */
753 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
754 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
755 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
756 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
757 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
758 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
759 /* f6A = 6 * C6grid * (1 - poly) */
760 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
761 /* f6B = C6grid * exponent * beta^6 */
762 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
763 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
764 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
765
766 fscal = _mm_add_ps(felec,fvdw);
767
768 fscal = _mm_andnot_ps(dummy_mask,fscal);
769
770 /* Calculate temporary vectorial force */
771 tx = _mm_mul_ps(fscal,dx00);
772 ty = _mm_mul_ps(fscal,dy00);
773 tz = _mm_mul_ps(fscal,dz00);
774
775 /* Update vectorial force */
776 fix0 = _mm_add_ps(fix0,tx);
777 fiy0 = _mm_add_ps(fiy0,ty);
778 fiz0 = _mm_add_ps(fiz0,tz);
779
780 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
781 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
782 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
783 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
784 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
785
786 /* Inner loop uses 60 flops */
787 }
788
789 /* End of innermost loop */
790
791 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
792 f+i_coord_offset,fshift+i_shift_offset);
793
794 /* Increment number of inner iterations */
795 inneriter += j_index_end - j_index_start;
796
797 /* Outer loop uses 7 flops */
798 }
799
800 /* Increment number of outer iterations */
801 outeriter += nri;
802
803 /* Update outer/inner flops */
804
805 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*60
;
806}