Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_c.c
Location:line 436, column 5
Description:Value stored to 'sh_vdw_invrcut6' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 krf = fr->ic->k_rf;
104 krf2 = krf*2.0;
105 crf = fr->ic->c_rf;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 /* Setup water-specific parameters */
111 inr = nlist->iinr[0];
112 iq0 = facel*charge[inr+0];
113 iq1 = facel*charge[inr+1];
114 iq2 = facel*charge[inr+2];
115 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
116
117 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
118 rcutoff = fr->rcoulomb;
119 rcutoff2 = rcutoff*rcutoff;
120
121 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
122 rvdw = fr->rvdw;
123
124 outeriter = 0;
125 inneriter = 0;
126
127 /* Start outer loop over neighborlists */
128 for(iidx=0; iidx<nri; iidx++)
129 {
130 /* Load shift vector for this list */
131 i_shift_offset = DIM3*shiftidx[iidx];
132 shX = shiftvec[i_shift_offset+XX0];
133 shY = shiftvec[i_shift_offset+YY1];
134 shZ = shiftvec[i_shift_offset+ZZ2];
135
136 /* Load limits for loop over neighbors */
137 j_index_start = jindex[iidx];
138 j_index_end = jindex[iidx+1];
139
140 /* Get outer coordinate index */
141 inr = iinr[iidx];
142 i_coord_offset = DIM3*inr;
143
144 /* Load i particle coords and add shift vector */
145 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
146 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
147 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
148 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
149 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
150 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
151 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
152 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
153 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
154
155 fix0 = 0.0;
156 fiy0 = 0.0;
157 fiz0 = 0.0;
158 fix1 = 0.0;
159 fiy1 = 0.0;
160 fiz1 = 0.0;
161 fix2 = 0.0;
162 fiy2 = 0.0;
163 fiz2 = 0.0;
164
165 /* Reset potential sums */
166 velecsum = 0.0;
167 vvdwsum = 0.0;
168
169 /* Start inner kernel loop */
170 for(jidx=j_index_start; jidx<j_index_end; jidx++)
171 {
172 /* Get j neighbor index, and coordinate index */
173 jnr = jjnr[jidx];
174 j_coord_offset = DIM3*jnr;
175
176 /* load j atom coordinates */
177 jx0 = x[j_coord_offset+DIM3*0+XX0];
178 jy0 = x[j_coord_offset+DIM3*0+YY1];
179 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
180
181 /* Calculate displacement vector */
182 dx00 = ix0 - jx0;
183 dy00 = iy0 - jy0;
184 dz00 = iz0 - jz0;
185 dx10 = ix1 - jx0;
186 dy10 = iy1 - jy0;
187 dz10 = iz1 - jz0;
188 dx20 = ix2 - jx0;
189 dy20 = iy2 - jy0;
190 dz20 = iz2 - jz0;
191
192 /* Calculate squared distance and things based on it */
193 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
194 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
195 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
196
197 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
198 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
199 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
200
201 rinvsq00 = rinv00*rinv00;
202 rinvsq10 = rinv10*rinv10;
203 rinvsq20 = rinv20*rinv20;
204
205 /* Load parameters for j particles */
206 jq0 = charge[jnr+0];
207 vdwjidx0 = 2*vdwtype[jnr+0];
208
209 /**************************
210 * CALCULATE INTERACTIONS *
211 **************************/
212
213 if (rsq00<rcutoff2)
214 {
215
216 qq00 = iq0*jq0;
217 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
218 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
219
220 /* REACTION-FIELD ELECTROSTATICS */
221 velec = qq00*(rinv00+krf*rsq00-crf);
222 felec = qq00*(rinv00*rinvsq00-krf2);
223
224 /* LENNARD-JONES DISPERSION/REPULSION */
225
226 rinvsix = rinvsq00*rinvsq00*rinvsq00;
227 vvdw6 = c6_00*rinvsix;
228 vvdw12 = c12_00*rinvsix*rinvsix;
229 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
230 fvdw = (vvdw12-vvdw6)*rinvsq00;
231
232 /* Update potential sums from outer loop */
233 velecsum += velec;
234 vvdwsum += vvdw;
235
236 fscal = felec+fvdw;
237
238 /* Calculate temporary vectorial force */
239 tx = fscal*dx00;
240 ty = fscal*dy00;
241 tz = fscal*dz00;
242
243 /* Update vectorial force */
244 fix0 += tx;
245 fiy0 += ty;
246 fiz0 += tz;
247 f[j_coord_offset+DIM3*0+XX0] -= tx;
248 f[j_coord_offset+DIM3*0+YY1] -= ty;
249 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
250
251 }
252
253 /**************************
254 * CALCULATE INTERACTIONS *
255 **************************/
256
257 if (rsq10<rcutoff2)
258 {
259
260 qq10 = iq1*jq0;
261
262 /* REACTION-FIELD ELECTROSTATICS */
263 velec = qq10*(rinv10+krf*rsq10-crf);
264 felec = qq10*(rinv10*rinvsq10-krf2);
265
266 /* Update potential sums from outer loop */
267 velecsum += velec;
268
269 fscal = felec;
270
271 /* Calculate temporary vectorial force */
272 tx = fscal*dx10;
273 ty = fscal*dy10;
274 tz = fscal*dz10;
275
276 /* Update vectorial force */
277 fix1 += tx;
278 fiy1 += ty;
279 fiz1 += tz;
280 f[j_coord_offset+DIM3*0+XX0] -= tx;
281 f[j_coord_offset+DIM3*0+YY1] -= ty;
282 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
283
284 }
285
286 /**************************
287 * CALCULATE INTERACTIONS *
288 **************************/
289
290 if (rsq20<rcutoff2)
291 {
292
293 qq20 = iq2*jq0;
294
295 /* REACTION-FIELD ELECTROSTATICS */
296 velec = qq20*(rinv20+krf*rsq20-crf);
297 felec = qq20*(rinv20*rinvsq20-krf2);
298
299 /* Update potential sums from outer loop */
300 velecsum += velec;
301
302 fscal = felec;
303
304 /* Calculate temporary vectorial force */
305 tx = fscal*dx20;
306 ty = fscal*dy20;
307 tz = fscal*dz20;
308
309 /* Update vectorial force */
310 fix2 += tx;
311 fiy2 += ty;
312 fiz2 += tz;
313 f[j_coord_offset+DIM3*0+XX0] -= tx;
314 f[j_coord_offset+DIM3*0+YY1] -= ty;
315 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
316
317 }
318
319 /* Inner loop uses 113 flops */
320 }
321 /* End of innermost loop */
322
323 tx = ty = tz = 0;
324 f[i_coord_offset+DIM3*0+XX0] += fix0;
325 f[i_coord_offset+DIM3*0+YY1] += fiy0;
326 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
327 tx += fix0;
328 ty += fiy0;
329 tz += fiz0;
330 f[i_coord_offset+DIM3*1+XX0] += fix1;
331 f[i_coord_offset+DIM3*1+YY1] += fiy1;
332 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
333 tx += fix1;
334 ty += fiy1;
335 tz += fiz1;
336 f[i_coord_offset+DIM3*2+XX0] += fix2;
337 f[i_coord_offset+DIM3*2+YY1] += fiy2;
338 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
339 tx += fix2;
340 ty += fiy2;
341 tz += fiz2;
342 fshift[i_shift_offset+XX0] += tx;
343 fshift[i_shift_offset+YY1] += ty;
344 fshift[i_shift_offset+ZZ2] += tz;
345
346 ggid = gid[iidx];
347 /* Update potential energies */
348 kernel_data->energygrp_elec[ggid] += velecsum;
349 kernel_data->energygrp_vdw[ggid] += vvdwsum;
350
351 /* Increment number of inner iterations */
352 inneriter += j_index_end - j_index_start;
353
354 /* Outer loop uses 32 flops */
355 }
356
357 /* Increment number of outer iterations */
358 outeriter += nri;
359
360 /* Update outer/inner flops */
361
362 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*113)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*113
;
363}
364/*
365 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_c
366 * Electrostatics interaction: ReactionField
367 * VdW interaction: LennardJones
368 * Geometry: Water3-Particle
369 * Calculate force/pot: Force
370 */
371void
372nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_c
373 (t_nblist * gmx_restrict__restrict nlist,
374 rvec * gmx_restrict__restrict xx,
375 rvec * gmx_restrict__restrict ff,
376 t_forcerec * gmx_restrict__restrict fr,
377 t_mdatoms * gmx_restrict__restrict mdatoms,
378 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
379 t_nrnb * gmx_restrict__restrict nrnb)
380{
381 int i_shift_offset,i_coord_offset,j_coord_offset;
382 int j_index_start,j_index_end;
383 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
384 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
385 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
386 real *shiftvec,*fshift,*x,*f;
387 int vdwioffset0;
388 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
389 int vdwioffset1;
390 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
391 int vdwioffset2;
392 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
393 int vdwjidx0;
394 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
395 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
396 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
397 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
398 real velec,felec,velecsum,facel,crf,krf,krf2;
399 real *charge;
400 int nvdwtype;
401 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
402 int *vdwtype;
403 real *vdwparam;
404
405 x = xx[0];
406 f = ff[0];
407
408 nri = nlist->nri;
409 iinr = nlist->iinr;
410 jindex = nlist->jindex;
411 jjnr = nlist->jjnr;
412 shiftidx = nlist->shift;
413 gid = nlist->gid;
414 shiftvec = fr->shift_vec[0];
415 fshift = fr->fshift[0];
416 facel = fr->epsfac;
417 charge = mdatoms->chargeA;
418 krf = fr->ic->k_rf;
419 krf2 = krf*2.0;
420 crf = fr->ic->c_rf;
421 nvdwtype = fr->ntype;
422 vdwparam = fr->nbfp;
423 vdwtype = mdatoms->typeA;
424
425 /* Setup water-specific parameters */
426 inr = nlist->iinr[0];
427 iq0 = facel*charge[inr+0];
428 iq1 = facel*charge[inr+1];
429 iq2 = facel*charge[inr+2];
430 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
431
432 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
433 rcutoff = fr->rcoulomb;
434 rcutoff2 = rcutoff*rcutoff;
435
436 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
Value stored to 'sh_vdw_invrcut6' is never read
437 rvdw = fr->rvdw;
438
439 outeriter = 0;
440 inneriter = 0;
441
442 /* Start outer loop over neighborlists */
443 for(iidx=0; iidx<nri; iidx++)
444 {
445 /* Load shift vector for this list */
446 i_shift_offset = DIM3*shiftidx[iidx];
447 shX = shiftvec[i_shift_offset+XX0];
448 shY = shiftvec[i_shift_offset+YY1];
449 shZ = shiftvec[i_shift_offset+ZZ2];
450
451 /* Load limits for loop over neighbors */
452 j_index_start = jindex[iidx];
453 j_index_end = jindex[iidx+1];
454
455 /* Get outer coordinate index */
456 inr = iinr[iidx];
457 i_coord_offset = DIM3*inr;
458
459 /* Load i particle coords and add shift vector */
460 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
461 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
462 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
463 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
464 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
465 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
466 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
467 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
468 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
469
470 fix0 = 0.0;
471 fiy0 = 0.0;
472 fiz0 = 0.0;
473 fix1 = 0.0;
474 fiy1 = 0.0;
475 fiz1 = 0.0;
476 fix2 = 0.0;
477 fiy2 = 0.0;
478 fiz2 = 0.0;
479
480 /* Start inner kernel loop */
481 for(jidx=j_index_start; jidx<j_index_end; jidx++)
482 {
483 /* Get j neighbor index, and coordinate index */
484 jnr = jjnr[jidx];
485 j_coord_offset = DIM3*jnr;
486
487 /* load j atom coordinates */
488 jx0 = x[j_coord_offset+DIM3*0+XX0];
489 jy0 = x[j_coord_offset+DIM3*0+YY1];
490 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
491
492 /* Calculate displacement vector */
493 dx00 = ix0 - jx0;
494 dy00 = iy0 - jy0;
495 dz00 = iz0 - jz0;
496 dx10 = ix1 - jx0;
497 dy10 = iy1 - jy0;
498 dz10 = iz1 - jz0;
499 dx20 = ix2 - jx0;
500 dy20 = iy2 - jy0;
501 dz20 = iz2 - jz0;
502
503 /* Calculate squared distance and things based on it */
504 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
505 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
506 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
507
508 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
509 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
510 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
511
512 rinvsq00 = rinv00*rinv00;
513 rinvsq10 = rinv10*rinv10;
514 rinvsq20 = rinv20*rinv20;
515
516 /* Load parameters for j particles */
517 jq0 = charge[jnr+0];
518 vdwjidx0 = 2*vdwtype[jnr+0];
519
520 /**************************
521 * CALCULATE INTERACTIONS *
522 **************************/
523
524 if (rsq00<rcutoff2)
525 {
526
527 qq00 = iq0*jq0;
528 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
529 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
530
531 /* REACTION-FIELD ELECTROSTATICS */
532 felec = qq00*(rinv00*rinvsq00-krf2);
533
534 /* LENNARD-JONES DISPERSION/REPULSION */
535
536 rinvsix = rinvsq00*rinvsq00*rinvsq00;
537 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
538
539 fscal = felec+fvdw;
540
541 /* Calculate temporary vectorial force */
542 tx = fscal*dx00;
543 ty = fscal*dy00;
544 tz = fscal*dz00;
545
546 /* Update vectorial force */
547 fix0 += tx;
548 fiy0 += ty;
549 fiz0 += tz;
550 f[j_coord_offset+DIM3*0+XX0] -= tx;
551 f[j_coord_offset+DIM3*0+YY1] -= ty;
552 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
553
554 }
555
556 /**************************
557 * CALCULATE INTERACTIONS *
558 **************************/
559
560 if (rsq10<rcutoff2)
561 {
562
563 qq10 = iq1*jq0;
564
565 /* REACTION-FIELD ELECTROSTATICS */
566 felec = qq10*(rinv10*rinvsq10-krf2);
567
568 fscal = felec;
569
570 /* Calculate temporary vectorial force */
571 tx = fscal*dx10;
572 ty = fscal*dy10;
573 tz = fscal*dz10;
574
575 /* Update vectorial force */
576 fix1 += tx;
577 fiy1 += ty;
578 fiz1 += tz;
579 f[j_coord_offset+DIM3*0+XX0] -= tx;
580 f[j_coord_offset+DIM3*0+YY1] -= ty;
581 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
582
583 }
584
585 /**************************
586 * CALCULATE INTERACTIONS *
587 **************************/
588
589 if (rsq20<rcutoff2)
590 {
591
592 qq20 = iq2*jq0;
593
594 /* REACTION-FIELD ELECTROSTATICS */
595 felec = qq20*(rinv20*rinvsq20-krf2);
596
597 fscal = felec;
598
599 /* Calculate temporary vectorial force */
600 tx = fscal*dx20;
601 ty = fscal*dy20;
602 tz = fscal*dz20;
603
604 /* Update vectorial force */
605 fix2 += tx;
606 fiy2 += ty;
607 fiz2 += tz;
608 f[j_coord_offset+DIM3*0+XX0] -= tx;
609 f[j_coord_offset+DIM3*0+YY1] -= ty;
610 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
611
612 }
613
614 /* Inner loop uses 88 flops */
615 }
616 /* End of innermost loop */
617
618 tx = ty = tz = 0;
619 f[i_coord_offset+DIM3*0+XX0] += fix0;
620 f[i_coord_offset+DIM3*0+YY1] += fiy0;
621 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
622 tx += fix0;
623 ty += fiy0;
624 tz += fiz0;
625 f[i_coord_offset+DIM3*1+XX0] += fix1;
626 f[i_coord_offset+DIM3*1+YY1] += fiy1;
627 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
628 tx += fix1;
629 ty += fiy1;
630 tz += fiz1;
631 f[i_coord_offset+DIM3*2+XX0] += fix2;
632 f[i_coord_offset+DIM3*2+YY1] += fiy2;
633 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
634 tx += fix2;
635 ty += fiy2;
636 tz += fiz2;
637 fshift[i_shift_offset+XX0] += tx;
638 fshift[i_shift_offset+YY1] += ty;
639 fshift[i_shift_offset+ZZ2] += tz;
640
641 /* Increment number of inner iterations */
642 inneriter += j_index_end - j_index_start;
643
644 /* Outer loop uses 30 flops */
645 }
646
647 /* Increment number of outer iterations */
648 outeriter += nri;
649
650 /* Update outer/inner flops */
651
652 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*88)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*88
;
653}