Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_c.c
Location:line 122, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 real c6grid_00;
84 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
85 real *vdwgridparam;
86 int ewitab;
87 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
88 real *ewtab;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 nvdwtype = fr->ntype;
104 vdwparam = fr->nbfp;
105 vdwtype = mdatoms->typeA;
106 vdwgridparam = fr->ljpme_c6grid;
107 ewclj = fr->ewaldcoeff_lj;
108 sh_lj_ewald = fr->ic->sh_lj_ewald;
109 ewclj2 = ewclj*ewclj;
110 ewclj6 = ewclj2*ewclj2*ewclj2;
111
112 sh_ewald = fr->ic->sh_ewald;
113 ewtab = fr->ic->tabq_coul_FDV0;
114 ewtabscale = fr->ic->tabq_scale;
115 ewtabhalfspace = 0.5/ewtabscale;
116
117 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
118 rcutoff = fr->rcoulomb;
119 rcutoff2 = rcutoff*rcutoff;
120
121 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
122 rvdw = fr->rvdw;
Value stored to 'rvdw' is never read
123
124 outeriter = 0;
125 inneriter = 0;
126
127 /* Start outer loop over neighborlists */
128 for(iidx=0; iidx<nri; iidx++)
129 {
130 /* Load shift vector for this list */
131 i_shift_offset = DIM3*shiftidx[iidx];
132 shX = shiftvec[i_shift_offset+XX0];
133 shY = shiftvec[i_shift_offset+YY1];
134 shZ = shiftvec[i_shift_offset+ZZ2];
135
136 /* Load limits for loop over neighbors */
137 j_index_start = jindex[iidx];
138 j_index_end = jindex[iidx+1];
139
140 /* Get outer coordinate index */
141 inr = iinr[iidx];
142 i_coord_offset = DIM3*inr;
143
144 /* Load i particle coords and add shift vector */
145 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
146 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
147 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
148
149 fix0 = 0.0;
150 fiy0 = 0.0;
151 fiz0 = 0.0;
152
153 /* Load parameters for i particles */
154 iq0 = facel*charge[inr+0];
155 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
156
157 /* Reset potential sums */
158 velecsum = 0.0;
159 vvdwsum = 0.0;
160
161 /* Start inner kernel loop */
162 for(jidx=j_index_start; jidx<j_index_end; jidx++)
163 {
164 /* Get j neighbor index, and coordinate index */
165 jnr = jjnr[jidx];
166 j_coord_offset = DIM3*jnr;
167
168 /* load j atom coordinates */
169 jx0 = x[j_coord_offset+DIM3*0+XX0];
170 jy0 = x[j_coord_offset+DIM3*0+YY1];
171 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
172
173 /* Calculate displacement vector */
174 dx00 = ix0 - jx0;
175 dy00 = iy0 - jy0;
176 dz00 = iz0 - jz0;
177
178 /* Calculate squared distance and things based on it */
179 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
180
181 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
182
183 rinvsq00 = rinv00*rinv00;
184
185 /* Load parameters for j particles */
186 jq0 = charge[jnr+0];
187 vdwjidx0 = 2*vdwtype[jnr+0];
188
189 /**************************
190 * CALCULATE INTERACTIONS *
191 **************************/
192
193 if (rsq00<rcutoff2)
194 {
195
196 r00 = rsq00*rinv00;
197
198 qq00 = iq0*jq0;
199 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
200 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
201 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
202
203 /* EWALD ELECTROSTATICS */
204
205 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
206 ewrt = r00*ewtabscale;
207 ewitab = ewrt;
208 eweps = ewrt-ewitab;
209 ewitab = 4*ewitab;
210 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
211 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
212 felec = qq00*rinv00*(rinvsq00-felec);
213
214 rinvsix = rinvsq00*rinvsq00*rinvsq00;
215 ewcljrsq = ewclj2*rsq00;
216 exponent = exp(-ewcljrsq);
217 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
218 vvdw6 = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
219 vvdw12 = c12_00*rinvsix*rinvsix;
220 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6 - c6grid_00*sh_lj_ewald)*(1.0/6.0);
221 fvdw = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
222
223 /* Update potential sums from outer loop */
224 velecsum += velec;
225 vvdwsum += vvdw;
226
227 fscal = felec+fvdw;
228
229 /* Calculate temporary vectorial force */
230 tx = fscal*dx00;
231 ty = fscal*dy00;
232 tz = fscal*dz00;
233
234 /* Update vectorial force */
235 fix0 += tx;
236 fiy0 += ty;
237 fiz0 += tz;
238 f[j_coord_offset+DIM3*0+XX0] -= tx;
239 f[j_coord_offset+DIM3*0+YY1] -= ty;
240 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
241
242 }
243
244 /* Inner loop uses 74 flops */
245 }
246 /* End of innermost loop */
247
248 tx = ty = tz = 0;
249 f[i_coord_offset+DIM3*0+XX0] += fix0;
250 f[i_coord_offset+DIM3*0+YY1] += fiy0;
251 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
252 tx += fix0;
253 ty += fiy0;
254 tz += fiz0;
255 fshift[i_shift_offset+XX0] += tx;
256 fshift[i_shift_offset+YY1] += ty;
257 fshift[i_shift_offset+ZZ2] += tz;
258
259 ggid = gid[iidx];
260 /* Update potential energies */
261 kernel_data->energygrp_elec[ggid] += velecsum;
262 kernel_data->energygrp_vdw[ggid] += vvdwsum;
263
264 /* Increment number of inner iterations */
265 inneriter += j_index_end - j_index_start;
266
267 /* Outer loop uses 15 flops */
268 }
269
270 /* Increment number of outer iterations */
271 outeriter += nri;
272
273 /* Update outer/inner flops */
274
275 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*74)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*74
;
276}
277/*
278 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_c
279 * Electrostatics interaction: Ewald
280 * VdW interaction: LJEwald
281 * Geometry: Particle-Particle
282 * Calculate force/pot: Force
283 */
284void
285nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_c
286 (t_nblist * gmx_restrict__restrict nlist,
287 rvec * gmx_restrict__restrict xx,
288 rvec * gmx_restrict__restrict ff,
289 t_forcerec * gmx_restrict__restrict fr,
290 t_mdatoms * gmx_restrict__restrict mdatoms,
291 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
292 t_nrnb * gmx_restrict__restrict nrnb)
293{
294 int i_shift_offset,i_coord_offset,j_coord_offset;
295 int j_index_start,j_index_end;
296 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
297 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
298 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
299 real *shiftvec,*fshift,*x,*f;
300 int vdwioffset0;
301 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
302 int vdwjidx0;
303 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
304 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
305 real velec,felec,velecsum,facel,crf,krf,krf2;
306 real *charge;
307 int nvdwtype;
308 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
309 int *vdwtype;
310 real *vdwparam;
311 real c6grid_00;
312 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
313 real *vdwgridparam;
314 int ewitab;
315 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
316 real *ewtab;
317
318 x = xx[0];
319 f = ff[0];
320
321 nri = nlist->nri;
322 iinr = nlist->iinr;
323 jindex = nlist->jindex;
324 jjnr = nlist->jjnr;
325 shiftidx = nlist->shift;
326 gid = nlist->gid;
327 shiftvec = fr->shift_vec[0];
328 fshift = fr->fshift[0];
329 facel = fr->epsfac;
330 charge = mdatoms->chargeA;
331 nvdwtype = fr->ntype;
332 vdwparam = fr->nbfp;
333 vdwtype = mdatoms->typeA;
334 vdwgridparam = fr->ljpme_c6grid;
335 ewclj = fr->ewaldcoeff_lj;
336 sh_lj_ewald = fr->ic->sh_lj_ewald;
337 ewclj2 = ewclj*ewclj;
338 ewclj6 = ewclj2*ewclj2*ewclj2;
339
340 sh_ewald = fr->ic->sh_ewald;
341 ewtab = fr->ic->tabq_coul_F;
342 ewtabscale = fr->ic->tabq_scale;
343 ewtabhalfspace = 0.5/ewtabscale;
344
345 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
346 rcutoff = fr->rcoulomb;
347 rcutoff2 = rcutoff*rcutoff;
348
349 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
350 rvdw = fr->rvdw;
351
352 outeriter = 0;
353 inneriter = 0;
354
355 /* Start outer loop over neighborlists */
356 for(iidx=0; iidx<nri; iidx++)
357 {
358 /* Load shift vector for this list */
359 i_shift_offset = DIM3*shiftidx[iidx];
360 shX = shiftvec[i_shift_offset+XX0];
361 shY = shiftvec[i_shift_offset+YY1];
362 shZ = shiftvec[i_shift_offset+ZZ2];
363
364 /* Load limits for loop over neighbors */
365 j_index_start = jindex[iidx];
366 j_index_end = jindex[iidx+1];
367
368 /* Get outer coordinate index */
369 inr = iinr[iidx];
370 i_coord_offset = DIM3*inr;
371
372 /* Load i particle coords and add shift vector */
373 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
374 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
375 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
376
377 fix0 = 0.0;
378 fiy0 = 0.0;
379 fiz0 = 0.0;
380
381 /* Load parameters for i particles */
382 iq0 = facel*charge[inr+0];
383 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
384
385 /* Start inner kernel loop */
386 for(jidx=j_index_start; jidx<j_index_end; jidx++)
387 {
388 /* Get j neighbor index, and coordinate index */
389 jnr = jjnr[jidx];
390 j_coord_offset = DIM3*jnr;
391
392 /* load j atom coordinates */
393 jx0 = x[j_coord_offset+DIM3*0+XX0];
394 jy0 = x[j_coord_offset+DIM3*0+YY1];
395 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
396
397 /* Calculate displacement vector */
398 dx00 = ix0 - jx0;
399 dy00 = iy0 - jy0;
400 dz00 = iz0 - jz0;
401
402 /* Calculate squared distance and things based on it */
403 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
404
405 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
406
407 rinvsq00 = rinv00*rinv00;
408
409 /* Load parameters for j particles */
410 jq0 = charge[jnr+0];
411 vdwjidx0 = 2*vdwtype[jnr+0];
412
413 /**************************
414 * CALCULATE INTERACTIONS *
415 **************************/
416
417 if (rsq00<rcutoff2)
418 {
419
420 r00 = rsq00*rinv00;
421
422 qq00 = iq0*jq0;
423 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
424 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
425 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
426
427 /* EWALD ELECTROSTATICS */
428
429 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
430 ewrt = r00*ewtabscale;
431 ewitab = ewrt;
432 eweps = ewrt-ewitab;
433 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
434 felec = qq00*rinv00*(rinvsq00-felec);
435
436 rinvsix = rinvsq00*rinvsq00*rinvsq00;
437 ewcljrsq = ewclj2*rsq00;
438 exponent = exp(-ewcljrsq);
439 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
440 fvdw = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
441
442 fscal = felec+fvdw;
443
444 /* Calculate temporary vectorial force */
445 tx = fscal*dx00;
446 ty = fscal*dy00;
447 tz = fscal*dz00;
448
449 /* Update vectorial force */
450 fix0 += tx;
451 fiy0 += ty;
452 fiz0 += tz;
453 f[j_coord_offset+DIM3*0+XX0] -= tx;
454 f[j_coord_offset+DIM3*0+YY1] -= ty;
455 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
456
457 }
458
459 /* Inner loop uses 55 flops */
460 }
461 /* End of innermost loop */
462
463 tx = ty = tz = 0;
464 f[i_coord_offset+DIM3*0+XX0] += fix0;
465 f[i_coord_offset+DIM3*0+YY1] += fiy0;
466 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
467 tx += fix0;
468 ty += fiy0;
469 tz += fiz0;
470 fshift[i_shift_offset+XX0] += tx;
471 fshift[i_shift_offset+YY1] += ty;
472 fshift[i_shift_offset+ZZ2] += tz;
473
474 /* Increment number of inner iterations */
475 inneriter += j_index_end - j_index_start;
476
477 /* Outer loop uses 13 flops */
478 }
479
480 /* Increment number of outer iterations */
481 outeriter += nri;
482
483 /* Update outer/inner flops */
484
485 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*55)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*55
;
486}