Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_c.c
Location:line 455, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int vfitab;
90 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
91 real *vftab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 vftab = kernel_data->table_elec_vdw->data;
111 vftabscale = kernel_data->table_elec_vdw->scale;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq0 = facel*charge[inr+0];
116 iq1 = facel*charge[inr+1];
117 iq2 = facel*charge[inr+2];
118 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
119
120 outeriter = 0;
121 inneriter = 0;
122
123 /* Start outer loop over neighborlists */
124 for(iidx=0; iidx<nri; iidx++)
125 {
126 /* Load shift vector for this list */
127 i_shift_offset = DIM3*shiftidx[iidx];
128 shX = shiftvec[i_shift_offset+XX0];
129 shY = shiftvec[i_shift_offset+YY1];
130 shZ = shiftvec[i_shift_offset+ZZ2];
131
132 /* Load limits for loop over neighbors */
133 j_index_start = jindex[iidx];
134 j_index_end = jindex[iidx+1];
135
136 /* Get outer coordinate index */
137 inr = iinr[iidx];
138 i_coord_offset = DIM3*inr;
139
140 /* Load i particle coords and add shift vector */
141 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
142 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
143 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
144 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
145 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
146 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
147 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
148 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
149 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
150
151 fix0 = 0.0;
152 fiy0 = 0.0;
153 fiz0 = 0.0;
154 fix1 = 0.0;
155 fiy1 = 0.0;
156 fiz1 = 0.0;
157 fix2 = 0.0;
158 fiy2 = 0.0;
159 fiz2 = 0.0;
160
161 /* Reset potential sums */
162 velecsum = 0.0;
163 vvdwsum = 0.0;
164
165 /* Start inner kernel loop */
166 for(jidx=j_index_start; jidx<j_index_end; jidx++)
167 {
168 /* Get j neighbor index, and coordinate index */
169 jnr = jjnr[jidx];
170 j_coord_offset = DIM3*jnr;
171
172 /* load j atom coordinates */
173 jx0 = x[j_coord_offset+DIM3*0+XX0];
174 jy0 = x[j_coord_offset+DIM3*0+YY1];
175 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
176
177 /* Calculate displacement vector */
178 dx00 = ix0 - jx0;
179 dy00 = iy0 - jy0;
180 dz00 = iz0 - jz0;
181 dx10 = ix1 - jx0;
182 dy10 = iy1 - jy0;
183 dz10 = iz1 - jz0;
184 dx20 = ix2 - jx0;
185 dy20 = iy2 - jy0;
186 dz20 = iz2 - jz0;
187
188 /* Calculate squared distance and things based on it */
189 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
190 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
191 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
192
193 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
194 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
195 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
196
197 /* Load parameters for j particles */
198 jq0 = charge[jnr+0];
199 vdwjidx0 = 2*vdwtype[jnr+0];
200
201 /**************************
202 * CALCULATE INTERACTIONS *
203 **************************/
204
205 r00 = rsq00*rinv00;
206
207 qq00 = iq0*jq0;
208 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
209 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
210
211 /* Calculate table index by multiplying r with table scale and truncate to integer */
212 rt = r00*vftabscale;
213 vfitab = rt;
214 vfeps = rt-vfitab;
215 vfitab = 3*4*vfitab;
216
217 /* CUBIC SPLINE TABLE ELECTROSTATICS */
218 Y = vftab[vfitab];
219 F = vftab[vfitab+1];
220 Geps = vfeps*vftab[vfitab+2];
221 Heps2 = vfeps*vfeps*vftab[vfitab+3];
222 Fp = F+Geps+Heps2;
223 VV = Y+vfeps*Fp;
224 velec = qq00*VV;
225 FF = Fp+Geps+2.0*Heps2;
226 felec = -qq00*FF*vftabscale*rinv00;
227
228 /* CUBIC SPLINE TABLE DISPERSION */
229 vfitab += 4;
230 Y = vftab[vfitab];
231 F = vftab[vfitab+1];
232 Geps = vfeps*vftab[vfitab+2];
233 Heps2 = vfeps*vfeps*vftab[vfitab+3];
234 Fp = F+Geps+Heps2;
235 VV = Y+vfeps*Fp;
236 vvdw6 = c6_00*VV;
237 FF = Fp+Geps+2.0*Heps2;
238 fvdw6 = c6_00*FF;
239
240 /* CUBIC SPLINE TABLE REPULSION */
241 Y = vftab[vfitab+4];
242 F = vftab[vfitab+5];
243 Geps = vfeps*vftab[vfitab+6];
244 Heps2 = vfeps*vfeps*vftab[vfitab+7];
245 Fp = F+Geps+Heps2;
246 VV = Y+vfeps*Fp;
247 vvdw12 = c12_00*VV;
248 FF = Fp+Geps+2.0*Heps2;
249 fvdw12 = c12_00*FF;
250 vvdw = vvdw12+vvdw6;
251 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
252
253 /* Update potential sums from outer loop */
254 velecsum += velec;
255 vvdwsum += vvdw;
256
257 fscal = felec+fvdw;
258
259 /* Calculate temporary vectorial force */
260 tx = fscal*dx00;
261 ty = fscal*dy00;
262 tz = fscal*dz00;
263
264 /* Update vectorial force */
265 fix0 += tx;
266 fiy0 += ty;
267 fiz0 += tz;
268 f[j_coord_offset+DIM3*0+XX0] -= tx;
269 f[j_coord_offset+DIM3*0+YY1] -= ty;
270 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
271
272 /**************************
273 * CALCULATE INTERACTIONS *
274 **************************/
275
276 r10 = rsq10*rinv10;
277
278 qq10 = iq1*jq0;
279
280 /* Calculate table index by multiplying r with table scale and truncate to integer */
281 rt = r10*vftabscale;
282 vfitab = rt;
283 vfeps = rt-vfitab;
284 vfitab = 3*4*vfitab;
285
286 /* CUBIC SPLINE TABLE ELECTROSTATICS */
287 Y = vftab[vfitab];
288 F = vftab[vfitab+1];
289 Geps = vfeps*vftab[vfitab+2];
290 Heps2 = vfeps*vfeps*vftab[vfitab+3];
291 Fp = F+Geps+Heps2;
292 VV = Y+vfeps*Fp;
293 velec = qq10*VV;
294 FF = Fp+Geps+2.0*Heps2;
295 felec = -qq10*FF*vftabscale*rinv10;
296
297 /* Update potential sums from outer loop */
298 velecsum += velec;
299
300 fscal = felec;
301
302 /* Calculate temporary vectorial force */
303 tx = fscal*dx10;
304 ty = fscal*dy10;
305 tz = fscal*dz10;
306
307 /* Update vectorial force */
308 fix1 += tx;
309 fiy1 += ty;
310 fiz1 += tz;
311 f[j_coord_offset+DIM3*0+XX0] -= tx;
312 f[j_coord_offset+DIM3*0+YY1] -= ty;
313 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
314
315 /**************************
316 * CALCULATE INTERACTIONS *
317 **************************/
318
319 r20 = rsq20*rinv20;
320
321 qq20 = iq2*jq0;
322
323 /* Calculate table index by multiplying r with table scale and truncate to integer */
324 rt = r20*vftabscale;
325 vfitab = rt;
326 vfeps = rt-vfitab;
327 vfitab = 3*4*vfitab;
328
329 /* CUBIC SPLINE TABLE ELECTROSTATICS */
330 Y = vftab[vfitab];
331 F = vftab[vfitab+1];
332 Geps = vfeps*vftab[vfitab+2];
333 Heps2 = vfeps*vfeps*vftab[vfitab+3];
334 Fp = F+Geps+Heps2;
335 VV = Y+vfeps*Fp;
336 velec = qq20*VV;
337 FF = Fp+Geps+2.0*Heps2;
338 felec = -qq20*FF*vftabscale*rinv20;
339
340 /* Update potential sums from outer loop */
341 velecsum += velec;
342
343 fscal = felec;
344
345 /* Calculate temporary vectorial force */
346 tx = fscal*dx20;
347 ty = fscal*dy20;
348 tz = fscal*dz20;
349
350 /* Update vectorial force */
351 fix2 += tx;
352 fiy2 += ty;
353 fiz2 += tz;
354 f[j_coord_offset+DIM3*0+XX0] -= tx;
355 f[j_coord_offset+DIM3*0+YY1] -= ty;
356 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
357
358 /* Inner loop uses 157 flops */
359 }
360 /* End of innermost loop */
361
362 tx = ty = tz = 0;
363 f[i_coord_offset+DIM3*0+XX0] += fix0;
364 f[i_coord_offset+DIM3*0+YY1] += fiy0;
365 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
366 tx += fix0;
367 ty += fiy0;
368 tz += fiz0;
369 f[i_coord_offset+DIM3*1+XX0] += fix1;
370 f[i_coord_offset+DIM3*1+YY1] += fiy1;
371 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
372 tx += fix1;
373 ty += fiy1;
374 tz += fiz1;
375 f[i_coord_offset+DIM3*2+XX0] += fix2;
376 f[i_coord_offset+DIM3*2+YY1] += fiy2;
377 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
378 tx += fix2;
379 ty += fiy2;
380 tz += fiz2;
381 fshift[i_shift_offset+XX0] += tx;
382 fshift[i_shift_offset+YY1] += ty;
383 fshift[i_shift_offset+ZZ2] += tz;
384
385 ggid = gid[iidx];
386 /* Update potential energies */
387 kernel_data->energygrp_elec[ggid] += velecsum;
388 kernel_data->energygrp_vdw[ggid] += vvdwsum;
389
390 /* Increment number of inner iterations */
391 inneriter += j_index_end - j_index_start;
392
393 /* Outer loop uses 32 flops */
394 }
395
396 /* Increment number of outer iterations */
397 outeriter += nri;
398
399 /* Update outer/inner flops */
400
401 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*157)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*157
;
402}
403/*
404 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_c
405 * Electrostatics interaction: CubicSplineTable
406 * VdW interaction: CubicSplineTable
407 * Geometry: Water3-Particle
408 * Calculate force/pot: Force
409 */
410void
411nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_c
412 (t_nblist * gmx_restrict__restrict nlist,
413 rvec * gmx_restrict__restrict xx,
414 rvec * gmx_restrict__restrict ff,
415 t_forcerec * gmx_restrict__restrict fr,
416 t_mdatoms * gmx_restrict__restrict mdatoms,
417 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
418 t_nrnb * gmx_restrict__restrict nrnb)
419{
420 int i_shift_offset,i_coord_offset,j_coord_offset;
421 int j_index_start,j_index_end;
422 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
423 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
424 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
425 real *shiftvec,*fshift,*x,*f;
426 int vdwioffset0;
427 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
428 int vdwioffset1;
429 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
430 int vdwioffset2;
431 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
432 int vdwjidx0;
433 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
434 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
435 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
436 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
437 real velec,felec,velecsum,facel,crf,krf,krf2;
438 real *charge;
439 int nvdwtype;
440 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
441 int *vdwtype;
442 real *vdwparam;
443 int vfitab;
444 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
445 real *vftab;
446
447 x = xx[0];
448 f = ff[0];
449
450 nri = nlist->nri;
451 iinr = nlist->iinr;
452 jindex = nlist->jindex;
453 jjnr = nlist->jjnr;
454 shiftidx = nlist->shift;
455 gid = nlist->gid;
Value stored to 'gid' is never read
456 shiftvec = fr->shift_vec[0];
457 fshift = fr->fshift[0];
458 facel = fr->epsfac;
459 charge = mdatoms->chargeA;
460 nvdwtype = fr->ntype;
461 vdwparam = fr->nbfp;
462 vdwtype = mdatoms->typeA;
463
464 vftab = kernel_data->table_elec_vdw->data;
465 vftabscale = kernel_data->table_elec_vdw->scale;
466
467 /* Setup water-specific parameters */
468 inr = nlist->iinr[0];
469 iq0 = facel*charge[inr+0];
470 iq1 = facel*charge[inr+1];
471 iq2 = facel*charge[inr+2];
472 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
473
474 outeriter = 0;
475 inneriter = 0;
476
477 /* Start outer loop over neighborlists */
478 for(iidx=0; iidx<nri; iidx++)
479 {
480 /* Load shift vector for this list */
481 i_shift_offset = DIM3*shiftidx[iidx];
482 shX = shiftvec[i_shift_offset+XX0];
483 shY = shiftvec[i_shift_offset+YY1];
484 shZ = shiftvec[i_shift_offset+ZZ2];
485
486 /* Load limits for loop over neighbors */
487 j_index_start = jindex[iidx];
488 j_index_end = jindex[iidx+1];
489
490 /* Get outer coordinate index */
491 inr = iinr[iidx];
492 i_coord_offset = DIM3*inr;
493
494 /* Load i particle coords and add shift vector */
495 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
496 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
497 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
498 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
499 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
500 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
501 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
502 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
503 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
504
505 fix0 = 0.0;
506 fiy0 = 0.0;
507 fiz0 = 0.0;
508 fix1 = 0.0;
509 fiy1 = 0.0;
510 fiz1 = 0.0;
511 fix2 = 0.0;
512 fiy2 = 0.0;
513 fiz2 = 0.0;
514
515 /* Start inner kernel loop */
516 for(jidx=j_index_start; jidx<j_index_end; jidx++)
517 {
518 /* Get j neighbor index, and coordinate index */
519 jnr = jjnr[jidx];
520 j_coord_offset = DIM3*jnr;
521
522 /* load j atom coordinates */
523 jx0 = x[j_coord_offset+DIM3*0+XX0];
524 jy0 = x[j_coord_offset+DIM3*0+YY1];
525 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
526
527 /* Calculate displacement vector */
528 dx00 = ix0 - jx0;
529 dy00 = iy0 - jy0;
530 dz00 = iz0 - jz0;
531 dx10 = ix1 - jx0;
532 dy10 = iy1 - jy0;
533 dz10 = iz1 - jz0;
534 dx20 = ix2 - jx0;
535 dy20 = iy2 - jy0;
536 dz20 = iz2 - jz0;
537
538 /* Calculate squared distance and things based on it */
539 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
540 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
541 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
542
543 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
544 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
545 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
546
547 /* Load parameters for j particles */
548 jq0 = charge[jnr+0];
549 vdwjidx0 = 2*vdwtype[jnr+0];
550
551 /**************************
552 * CALCULATE INTERACTIONS *
553 **************************/
554
555 r00 = rsq00*rinv00;
556
557 qq00 = iq0*jq0;
558 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
559 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
560
561 /* Calculate table index by multiplying r with table scale and truncate to integer */
562 rt = r00*vftabscale;
563 vfitab = rt;
564 vfeps = rt-vfitab;
565 vfitab = 3*4*vfitab;
566
567 /* CUBIC SPLINE TABLE ELECTROSTATICS */
568 F = vftab[vfitab+1];
569 Geps = vfeps*vftab[vfitab+2];
570 Heps2 = vfeps*vfeps*vftab[vfitab+3];
571 Fp = F+Geps+Heps2;
572 FF = Fp+Geps+2.0*Heps2;
573 felec = -qq00*FF*vftabscale*rinv00;
574
575 /* CUBIC SPLINE TABLE DISPERSION */
576 vfitab += 4;
577 F = vftab[vfitab+1];
578 Geps = vfeps*vftab[vfitab+2];
579 Heps2 = vfeps*vfeps*vftab[vfitab+3];
580 Fp = F+Geps+Heps2;
581 FF = Fp+Geps+2.0*Heps2;
582 fvdw6 = c6_00*FF;
583
584 /* CUBIC SPLINE TABLE REPULSION */
585 F = vftab[vfitab+5];
586 Geps = vfeps*vftab[vfitab+6];
587 Heps2 = vfeps*vfeps*vftab[vfitab+7];
588 Fp = F+Geps+Heps2;
589 FF = Fp+Geps+2.0*Heps2;
590 fvdw12 = c12_00*FF;
591 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
592
593 fscal = felec+fvdw;
594
595 /* Calculate temporary vectorial force */
596 tx = fscal*dx00;
597 ty = fscal*dy00;
598 tz = fscal*dz00;
599
600 /* Update vectorial force */
601 fix0 += tx;
602 fiy0 += ty;
603 fiz0 += tz;
604 f[j_coord_offset+DIM3*0+XX0] -= tx;
605 f[j_coord_offset+DIM3*0+YY1] -= ty;
606 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
607
608 /**************************
609 * CALCULATE INTERACTIONS *
610 **************************/
611
612 r10 = rsq10*rinv10;
613
614 qq10 = iq1*jq0;
615
616 /* Calculate table index by multiplying r with table scale and truncate to integer */
617 rt = r10*vftabscale;
618 vfitab = rt;
619 vfeps = rt-vfitab;
620 vfitab = 3*4*vfitab;
621
622 /* CUBIC SPLINE TABLE ELECTROSTATICS */
623 F = vftab[vfitab+1];
624 Geps = vfeps*vftab[vfitab+2];
625 Heps2 = vfeps*vfeps*vftab[vfitab+3];
626 Fp = F+Geps+Heps2;
627 FF = Fp+Geps+2.0*Heps2;
628 felec = -qq10*FF*vftabscale*rinv10;
629
630 fscal = felec;
631
632 /* Calculate temporary vectorial force */
633 tx = fscal*dx10;
634 ty = fscal*dy10;
635 tz = fscal*dz10;
636
637 /* Update vectorial force */
638 fix1 += tx;
639 fiy1 += ty;
640 fiz1 += tz;
641 f[j_coord_offset+DIM3*0+XX0] -= tx;
642 f[j_coord_offset+DIM3*0+YY1] -= ty;
643 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
644
645 /**************************
646 * CALCULATE INTERACTIONS *
647 **************************/
648
649 r20 = rsq20*rinv20;
650
651 qq20 = iq2*jq0;
652
653 /* Calculate table index by multiplying r with table scale and truncate to integer */
654 rt = r20*vftabscale;
655 vfitab = rt;
656 vfeps = rt-vfitab;
657 vfitab = 3*4*vfitab;
658
659 /* CUBIC SPLINE TABLE ELECTROSTATICS */
660 F = vftab[vfitab+1];
661 Geps = vfeps*vftab[vfitab+2];
662 Heps2 = vfeps*vfeps*vftab[vfitab+3];
663 Fp = F+Geps+Heps2;
664 FF = Fp+Geps+2.0*Heps2;
665 felec = -qq20*FF*vftabscale*rinv20;
666
667 fscal = felec;
668
669 /* Calculate temporary vectorial force */
670 tx = fscal*dx20;
671 ty = fscal*dy20;
672 tz = fscal*dz20;
673
674 /* Update vectorial force */
675 fix2 += tx;
676 fiy2 += ty;
677 fiz2 += tz;
678 f[j_coord_offset+DIM3*0+XX0] -= tx;
679 f[j_coord_offset+DIM3*0+YY1] -= ty;
680 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
681
682 /* Inner loop uses 137 flops */
683 }
684 /* End of innermost loop */
685
686 tx = ty = tz = 0;
687 f[i_coord_offset+DIM3*0+XX0] += fix0;
688 f[i_coord_offset+DIM3*0+YY1] += fiy0;
689 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
690 tx += fix0;
691 ty += fiy0;
692 tz += fiz0;
693 f[i_coord_offset+DIM3*1+XX0] += fix1;
694 f[i_coord_offset+DIM3*1+YY1] += fiy1;
695 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
696 tx += fix1;
697 ty += fiy1;
698 tz += fiz1;
699 f[i_coord_offset+DIM3*2+XX0] += fix2;
700 f[i_coord_offset+DIM3*2+YY1] += fiy2;
701 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
702 tx += fix2;
703 ty += fiy2;
704 tz += fiz2;
705 fshift[i_shift_offset+XX0] += tx;
706 fshift[i_shift_offset+YY1] += ty;
707 fshift[i_shift_offset+ZZ2] += tz;
708
709 /* Increment number of inner iterations */
710 inneriter += j_index_end - j_index_start;
711
712 /* Outer loop uses 30 flops */
713 }
714
715 /* Increment number of outer iterations */
716 outeriter += nri;
717
718 /* Update outer/inner flops */
719
720 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*137)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*137
;
721}