Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse4_1_single.c
Location:line 833, column 22
Description:Value stored to 'signbit' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LJEwald
56 * Geometry: Water4-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwioffset3;
92 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
100 real *charge;
101 int nvdwtype;
102 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103 int *vdwtype;
104 real *vdwparam;
105 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
106 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
107 __m128 c6grid_00;
108 __m128 c6grid_10;
109 __m128 c6grid_20;
110 __m128 c6grid_30;
111 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
112 real *vdwgridparam;
113 __m128 one_half = _mm_set1_ps(0.5);
114 __m128 minus_one = _mm_set1_ps(-1.0);
115 __m128i ewitab;
116 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117 real *ewtab;
118 __m128 dummy_mask,cutoff_mask;
119 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
120 __m128 one = _mm_set1_ps(1.0);
121 __m128 two = _mm_set1_ps(2.0);
122 x = xx[0];
123 f = ff[0];
124
125 nri = nlist->nri;
126 iinr = nlist->iinr;
127 jindex = nlist->jindex;
128 jjnr = nlist->jjnr;
129 shiftidx = nlist->shift;
130 gid = nlist->gid;
131 shiftvec = fr->shift_vec[0];
132 fshift = fr->fshift[0];
133 facel = _mm_set1_ps(fr->epsfac);
134 charge = mdatoms->chargeA;
135 nvdwtype = fr->ntype;
136 vdwparam = fr->nbfp;
137 vdwtype = mdatoms->typeA;
138 vdwgridparam = fr->ljpme_c6grid;
139 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
140 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
141 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
142
143 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
144 ewtab = fr->ic->tabq_coul_FDV0;
145 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
146 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
147
148 /* Setup water-specific parameters */
149 inr = nlist->iinr[0];
150 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
151 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
152 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
153 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
154
155 /* Avoid stupid compiler warnings */
156 jnrA = jnrB = jnrC = jnrD = 0;
157 j_coord_offsetA = 0;
158 j_coord_offsetB = 0;
159 j_coord_offsetC = 0;
160 j_coord_offsetD = 0;
161
162 outeriter = 0;
163 inneriter = 0;
164
165 for(iidx=0;iidx<4*DIM3;iidx++)
166 {
167 scratch[iidx] = 0.0;
168 }
169
170 /* Start outer loop over neighborlists */
171 for(iidx=0; iidx<nri; iidx++)
172 {
173 /* Load shift vector for this list */
174 i_shift_offset = DIM3*shiftidx[iidx];
175
176 /* Load limits for loop over neighbors */
177 j_index_start = jindex[iidx];
178 j_index_end = jindex[iidx+1];
179
180 /* Get outer coordinate index */
181 inr = iinr[iidx];
182 i_coord_offset = DIM3*inr;
183
184 /* Load i particle coords and add shift vector */
185 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
186 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
187
188 fix0 = _mm_setzero_ps();
189 fiy0 = _mm_setzero_ps();
190 fiz0 = _mm_setzero_ps();
191 fix1 = _mm_setzero_ps();
192 fiy1 = _mm_setzero_ps();
193 fiz1 = _mm_setzero_ps();
194 fix2 = _mm_setzero_ps();
195 fiy2 = _mm_setzero_ps();
196 fiz2 = _mm_setzero_ps();
197 fix3 = _mm_setzero_ps();
198 fiy3 = _mm_setzero_ps();
199 fiz3 = _mm_setzero_ps();
200
201 /* Reset potential sums */
202 velecsum = _mm_setzero_ps();
203 vvdwsum = _mm_setzero_ps();
204
205 /* Start inner kernel loop */
206 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
207 {
208
209 /* Get j neighbor index, and coordinate index */
210 jnrA = jjnr[jidx];
211 jnrB = jjnr[jidx+1];
212 jnrC = jjnr[jidx+2];
213 jnrD = jjnr[jidx+3];
214 j_coord_offsetA = DIM3*jnrA;
215 j_coord_offsetB = DIM3*jnrB;
216 j_coord_offsetC = DIM3*jnrC;
217 j_coord_offsetD = DIM3*jnrD;
218
219 /* load j atom coordinates */
220 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221 x+j_coord_offsetC,x+j_coord_offsetD,
222 &jx0,&jy0,&jz0);
223
224 /* Calculate displacement vector */
225 dx00 = _mm_sub_ps(ix0,jx0);
226 dy00 = _mm_sub_ps(iy0,jy0);
227 dz00 = _mm_sub_ps(iz0,jz0);
228 dx10 = _mm_sub_ps(ix1,jx0);
229 dy10 = _mm_sub_ps(iy1,jy0);
230 dz10 = _mm_sub_ps(iz1,jz0);
231 dx20 = _mm_sub_ps(ix2,jx0);
232 dy20 = _mm_sub_ps(iy2,jy0);
233 dz20 = _mm_sub_ps(iz2,jz0);
234 dx30 = _mm_sub_ps(ix3,jx0);
235 dy30 = _mm_sub_ps(iy3,jy0);
236 dz30 = _mm_sub_ps(iz3,jz0);
237
238 /* Calculate squared distance and things based on it */
239 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
240 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
241 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
242 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
243
244 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
245 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
246 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
247 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
248
249 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
250 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
251 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
252 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
253
254 /* Load parameters for j particles */
255 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
256 charge+jnrC+0,charge+jnrD+0);
257 vdwjidx0A = 2*vdwtype[jnrA+0];
258 vdwjidx0B = 2*vdwtype[jnrB+0];
259 vdwjidx0C = 2*vdwtype[jnrC+0];
260 vdwjidx0D = 2*vdwtype[jnrD+0];
261
262 fjx0 = _mm_setzero_ps();
263 fjy0 = _mm_setzero_ps();
264 fjz0 = _mm_setzero_ps();
265
266 /**************************
267 * CALCULATE INTERACTIONS *
268 **************************/
269
270 r00 = _mm_mul_ps(rsq00,rinv00);
271
272 /* Compute parameters for interactions between i and j atoms */
273 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
274 vdwparam+vdwioffset0+vdwjidx0B,
275 vdwparam+vdwioffset0+vdwjidx0C,
276 vdwparam+vdwioffset0+vdwjidx0D,
277 &c6_00,&c12_00);
278
279 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
280 vdwgridparam+vdwioffset0+vdwjidx0B,
281 vdwgridparam+vdwioffset0+vdwjidx0C,
282 vdwgridparam+vdwioffset0+vdwjidx0D);
283
284 /* Analytical LJ-PME */
285 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
286 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
287 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
288 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
289 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
290 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
291 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
292 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
293 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
294 vvdw = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
295 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
296 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
297
298 /* Update potential sum for this i atom from the interaction with this j atom. */
299 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
300
301 fscal = fvdw;
302
303 /* Calculate temporary vectorial force */
304 tx = _mm_mul_ps(fscal,dx00);
305 ty = _mm_mul_ps(fscal,dy00);
306 tz = _mm_mul_ps(fscal,dz00);
307
308 /* Update vectorial force */
309 fix0 = _mm_add_ps(fix0,tx);
310 fiy0 = _mm_add_ps(fiy0,ty);
311 fiz0 = _mm_add_ps(fiz0,tz);
312
313 fjx0 = _mm_add_ps(fjx0,tx);
314 fjy0 = _mm_add_ps(fjy0,ty);
315 fjz0 = _mm_add_ps(fjz0,tz);
316
317 /**************************
318 * CALCULATE INTERACTIONS *
319 **************************/
320
321 r10 = _mm_mul_ps(rsq10,rinv10);
322
323 /* Compute parameters for interactions between i and j atoms */
324 qq10 = _mm_mul_ps(iq1,jq0);
325
326 /* EWALD ELECTROSTATICS */
327
328 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329 ewrt = _mm_mul_ps(r10,ewtabscale);
330 ewitab = _mm_cvttps_epi32(ewrt);
331 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
332 ewitab = _mm_slli_epi32(ewitab,2);
333 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
334 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
335 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
336 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
337 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
338 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
339 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
340 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
341 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
342
343 /* Update potential sum for this i atom from the interaction with this j atom. */
344 velecsum = _mm_add_ps(velecsum,velec);
345
346 fscal = felec;
347
348 /* Calculate temporary vectorial force */
349 tx = _mm_mul_ps(fscal,dx10);
350 ty = _mm_mul_ps(fscal,dy10);
351 tz = _mm_mul_ps(fscal,dz10);
352
353 /* Update vectorial force */
354 fix1 = _mm_add_ps(fix1,tx);
355 fiy1 = _mm_add_ps(fiy1,ty);
356 fiz1 = _mm_add_ps(fiz1,tz);
357
358 fjx0 = _mm_add_ps(fjx0,tx);
359 fjy0 = _mm_add_ps(fjy0,ty);
360 fjz0 = _mm_add_ps(fjz0,tz);
361
362 /**************************
363 * CALCULATE INTERACTIONS *
364 **************************/
365
366 r20 = _mm_mul_ps(rsq20,rinv20);
367
368 /* Compute parameters for interactions between i and j atoms */
369 qq20 = _mm_mul_ps(iq2,jq0);
370
371 /* EWALD ELECTROSTATICS */
372
373 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
374 ewrt = _mm_mul_ps(r20,ewtabscale);
375 ewitab = _mm_cvttps_epi32(ewrt);
376 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
377 ewitab = _mm_slli_epi32(ewitab,2);
378 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
379 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
380 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
381 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
382 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
383 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
384 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
385 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
386 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
387
388 /* Update potential sum for this i atom from the interaction with this j atom. */
389 velecsum = _mm_add_ps(velecsum,velec);
390
391 fscal = felec;
392
393 /* Calculate temporary vectorial force */
394 tx = _mm_mul_ps(fscal,dx20);
395 ty = _mm_mul_ps(fscal,dy20);
396 tz = _mm_mul_ps(fscal,dz20);
397
398 /* Update vectorial force */
399 fix2 = _mm_add_ps(fix2,tx);
400 fiy2 = _mm_add_ps(fiy2,ty);
401 fiz2 = _mm_add_ps(fiz2,tz);
402
403 fjx0 = _mm_add_ps(fjx0,tx);
404 fjy0 = _mm_add_ps(fjy0,ty);
405 fjz0 = _mm_add_ps(fjz0,tz);
406
407 /**************************
408 * CALCULATE INTERACTIONS *
409 **************************/
410
411 r30 = _mm_mul_ps(rsq30,rinv30);
412
413 /* Compute parameters for interactions between i and j atoms */
414 qq30 = _mm_mul_ps(iq3,jq0);
415
416 /* EWALD ELECTROSTATICS */
417
418 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
419 ewrt = _mm_mul_ps(r30,ewtabscale);
420 ewitab = _mm_cvttps_epi32(ewrt);
421 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
422 ewitab = _mm_slli_epi32(ewitab,2);
423 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
424 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
425 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
426 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
427 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
428 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
429 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
430 velec = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
431 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
432
433 /* Update potential sum for this i atom from the interaction with this j atom. */
434 velecsum = _mm_add_ps(velecsum,velec);
435
436 fscal = felec;
437
438 /* Calculate temporary vectorial force */
439 tx = _mm_mul_ps(fscal,dx30);
440 ty = _mm_mul_ps(fscal,dy30);
441 tz = _mm_mul_ps(fscal,dz30);
442
443 /* Update vectorial force */
444 fix3 = _mm_add_ps(fix3,tx);
445 fiy3 = _mm_add_ps(fiy3,ty);
446 fiz3 = _mm_add_ps(fiz3,tz);
447
448 fjx0 = _mm_add_ps(fjx0,tx);
449 fjy0 = _mm_add_ps(fjy0,ty);
450 fjz0 = _mm_add_ps(fjz0,tz);
451
452 fjptrA = f+j_coord_offsetA;
453 fjptrB = f+j_coord_offsetB;
454 fjptrC = f+j_coord_offsetC;
455 fjptrD = f+j_coord_offsetD;
456
457 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
458
459 /* Inner loop uses 174 flops */
460 }
461
462 if(jidx<j_index_end)
463 {
464
465 /* Get j neighbor index, and coordinate index */
466 jnrlistA = jjnr[jidx];
467 jnrlistB = jjnr[jidx+1];
468 jnrlistC = jjnr[jidx+2];
469 jnrlistD = jjnr[jidx+3];
470 /* Sign of each element will be negative for non-real atoms.
471 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
472 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
473 */
474 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
475 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
476 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
477 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
478 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
479 j_coord_offsetA = DIM3*jnrA;
480 j_coord_offsetB = DIM3*jnrB;
481 j_coord_offsetC = DIM3*jnrC;
482 j_coord_offsetD = DIM3*jnrD;
483
484 /* load j atom coordinates */
485 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
486 x+j_coord_offsetC,x+j_coord_offsetD,
487 &jx0,&jy0,&jz0);
488
489 /* Calculate displacement vector */
490 dx00 = _mm_sub_ps(ix0,jx0);
491 dy00 = _mm_sub_ps(iy0,jy0);
492 dz00 = _mm_sub_ps(iz0,jz0);
493 dx10 = _mm_sub_ps(ix1,jx0);
494 dy10 = _mm_sub_ps(iy1,jy0);
495 dz10 = _mm_sub_ps(iz1,jz0);
496 dx20 = _mm_sub_ps(ix2,jx0);
497 dy20 = _mm_sub_ps(iy2,jy0);
498 dz20 = _mm_sub_ps(iz2,jz0);
499 dx30 = _mm_sub_ps(ix3,jx0);
500 dy30 = _mm_sub_ps(iy3,jy0);
501 dz30 = _mm_sub_ps(iz3,jz0);
502
503 /* Calculate squared distance and things based on it */
504 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
505 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
506 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
507 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
508
509 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
510 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
511 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
512 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
513
514 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
515 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
516 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
517 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
518
519 /* Load parameters for j particles */
520 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
521 charge+jnrC+0,charge+jnrD+0);
522 vdwjidx0A = 2*vdwtype[jnrA+0];
523 vdwjidx0B = 2*vdwtype[jnrB+0];
524 vdwjidx0C = 2*vdwtype[jnrC+0];
525 vdwjidx0D = 2*vdwtype[jnrD+0];
526
527 fjx0 = _mm_setzero_ps();
528 fjy0 = _mm_setzero_ps();
529 fjz0 = _mm_setzero_ps();
530
531 /**************************
532 * CALCULATE INTERACTIONS *
533 **************************/
534
535 r00 = _mm_mul_ps(rsq00,rinv00);
536 r00 = _mm_andnot_ps(dummy_mask,r00);
537
538 /* Compute parameters for interactions between i and j atoms */
539 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
540 vdwparam+vdwioffset0+vdwjidx0B,
541 vdwparam+vdwioffset0+vdwjidx0C,
542 vdwparam+vdwioffset0+vdwjidx0D,
543 &c6_00,&c12_00);
544
545 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
546 vdwgridparam+vdwioffset0+vdwjidx0B,
547 vdwgridparam+vdwioffset0+vdwjidx0C,
548 vdwgridparam+vdwioffset0+vdwjidx0D);
549
550 /* Analytical LJ-PME */
551 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
552 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
553 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
554 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
555 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
556 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
557 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
558 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
559 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
560 vvdw = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
561 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
562 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
563
564 /* Update potential sum for this i atom from the interaction with this j atom. */
565 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
566 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
567
568 fscal = fvdw;
569
570 fscal = _mm_andnot_ps(dummy_mask,fscal);
571
572 /* Calculate temporary vectorial force */
573 tx = _mm_mul_ps(fscal,dx00);
574 ty = _mm_mul_ps(fscal,dy00);
575 tz = _mm_mul_ps(fscal,dz00);
576
577 /* Update vectorial force */
578 fix0 = _mm_add_ps(fix0,tx);
579 fiy0 = _mm_add_ps(fiy0,ty);
580 fiz0 = _mm_add_ps(fiz0,tz);
581
582 fjx0 = _mm_add_ps(fjx0,tx);
583 fjy0 = _mm_add_ps(fjy0,ty);
584 fjz0 = _mm_add_ps(fjz0,tz);
585
586 /**************************
587 * CALCULATE INTERACTIONS *
588 **************************/
589
590 r10 = _mm_mul_ps(rsq10,rinv10);
591 r10 = _mm_andnot_ps(dummy_mask,r10);
592
593 /* Compute parameters for interactions between i and j atoms */
594 qq10 = _mm_mul_ps(iq1,jq0);
595
596 /* EWALD ELECTROSTATICS */
597
598 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599 ewrt = _mm_mul_ps(r10,ewtabscale);
600 ewitab = _mm_cvttps_epi32(ewrt);
601 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
602 ewitab = _mm_slli_epi32(ewitab,2);
603 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
604 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
605 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
606 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
607 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
608 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
609 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
610 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
611 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
612
613 /* Update potential sum for this i atom from the interaction with this j atom. */
614 velec = _mm_andnot_ps(dummy_mask,velec);
615 velecsum = _mm_add_ps(velecsum,velec);
616
617 fscal = felec;
618
619 fscal = _mm_andnot_ps(dummy_mask,fscal);
620
621 /* Calculate temporary vectorial force */
622 tx = _mm_mul_ps(fscal,dx10);
623 ty = _mm_mul_ps(fscal,dy10);
624 tz = _mm_mul_ps(fscal,dz10);
625
626 /* Update vectorial force */
627 fix1 = _mm_add_ps(fix1,tx);
628 fiy1 = _mm_add_ps(fiy1,ty);
629 fiz1 = _mm_add_ps(fiz1,tz);
630
631 fjx0 = _mm_add_ps(fjx0,tx);
632 fjy0 = _mm_add_ps(fjy0,ty);
633 fjz0 = _mm_add_ps(fjz0,tz);
634
635 /**************************
636 * CALCULATE INTERACTIONS *
637 **************************/
638
639 r20 = _mm_mul_ps(rsq20,rinv20);
640 r20 = _mm_andnot_ps(dummy_mask,r20);
641
642 /* Compute parameters for interactions between i and j atoms */
643 qq20 = _mm_mul_ps(iq2,jq0);
644
645 /* EWALD ELECTROSTATICS */
646
647 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
648 ewrt = _mm_mul_ps(r20,ewtabscale);
649 ewitab = _mm_cvttps_epi32(ewrt);
650 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
651 ewitab = _mm_slli_epi32(ewitab,2);
652 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
653 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
654 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
655 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
656 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
657 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
658 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
659 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
660 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
661
662 /* Update potential sum for this i atom from the interaction with this j atom. */
663 velec = _mm_andnot_ps(dummy_mask,velec);
664 velecsum = _mm_add_ps(velecsum,velec);
665
666 fscal = felec;
667
668 fscal = _mm_andnot_ps(dummy_mask,fscal);
669
670 /* Calculate temporary vectorial force */
671 tx = _mm_mul_ps(fscal,dx20);
672 ty = _mm_mul_ps(fscal,dy20);
673 tz = _mm_mul_ps(fscal,dz20);
674
675 /* Update vectorial force */
676 fix2 = _mm_add_ps(fix2,tx);
677 fiy2 = _mm_add_ps(fiy2,ty);
678 fiz2 = _mm_add_ps(fiz2,tz);
679
680 fjx0 = _mm_add_ps(fjx0,tx);
681 fjy0 = _mm_add_ps(fjy0,ty);
682 fjz0 = _mm_add_ps(fjz0,tz);
683
684 /**************************
685 * CALCULATE INTERACTIONS *
686 **************************/
687
688 r30 = _mm_mul_ps(rsq30,rinv30);
689 r30 = _mm_andnot_ps(dummy_mask,r30);
690
691 /* Compute parameters for interactions between i and j atoms */
692 qq30 = _mm_mul_ps(iq3,jq0);
693
694 /* EWALD ELECTROSTATICS */
695
696 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
697 ewrt = _mm_mul_ps(r30,ewtabscale);
698 ewitab = _mm_cvttps_epi32(ewrt);
699 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
700 ewitab = _mm_slli_epi32(ewitab,2);
701 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
702 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
703 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
704 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
705 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
706 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
707 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
708 velec = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
709 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
710
711 /* Update potential sum for this i atom from the interaction with this j atom. */
712 velec = _mm_andnot_ps(dummy_mask,velec);
713 velecsum = _mm_add_ps(velecsum,velec);
714
715 fscal = felec;
716
717 fscal = _mm_andnot_ps(dummy_mask,fscal);
718
719 /* Calculate temporary vectorial force */
720 tx = _mm_mul_ps(fscal,dx30);
721 ty = _mm_mul_ps(fscal,dy30);
722 tz = _mm_mul_ps(fscal,dz30);
723
724 /* Update vectorial force */
725 fix3 = _mm_add_ps(fix3,tx);
726 fiy3 = _mm_add_ps(fiy3,ty);
727 fiz3 = _mm_add_ps(fiz3,tz);
728
729 fjx0 = _mm_add_ps(fjx0,tx);
730 fjy0 = _mm_add_ps(fjy0,ty);
731 fjz0 = _mm_add_ps(fjz0,tz);
732
733 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
734 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
735 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
736 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
737
738 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
739
740 /* Inner loop uses 178 flops */
741 }
742
743 /* End of innermost loop */
744
745 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
746 f+i_coord_offset,fshift+i_shift_offset);
747
748 ggid = gid[iidx];
749 /* Update potential energies */
750 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
751 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
752
753 /* Increment number of inner iterations */
754 inneriter += j_index_end - j_index_start;
755
756 /* Outer loop uses 26 flops */
757 }
758
759 /* Increment number of outer iterations */
760 outeriter += nri;
761
762 /* Update outer/inner flops */
763
764 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*178)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*26 + inneriter
*178
;
765}
766/*
767 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_single
768 * Electrostatics interaction: Ewald
769 * VdW interaction: LJEwald
770 * Geometry: Water4-Particle
771 * Calculate force/pot: Force
772 */
773void
774nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_single
775 (t_nblist * gmx_restrict nlist,
776 rvec * gmx_restrict xx,
777 rvec * gmx_restrict ff,
778 t_forcerec * gmx_restrict fr,
779 t_mdatoms * gmx_restrict mdatoms,
780 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
781 t_nrnb * gmx_restrict nrnb)
782{
783 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
784 * just 0 for non-waters.
785 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
786 * jnr indices corresponding to data put in the four positions in the SIMD register.
787 */
788 int i_shift_offset,i_coord_offset,outeriter,inneriter;
789 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
790 int jnrA,jnrB,jnrC,jnrD;
791 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
792 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
793 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
794 real rcutoff_scalar;
795 real *shiftvec,*fshift,*x,*f;
796 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
797 real scratch[4*DIM3];
798 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
799 int vdwioffset0;
800 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
801 int vdwioffset1;
802 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
803 int vdwioffset2;
804 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
805 int vdwioffset3;
806 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
807 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
808 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
809 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
810 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
811 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
812 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
813 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
814 real *charge;
815 int nvdwtype;
816 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
817 int *vdwtype;
818 real *vdwparam;
819 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
820 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
821 __m128 c6grid_00;
822 __m128 c6grid_10;
823 __m128 c6grid_20;
824 __m128 c6grid_30;
825 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
826 real *vdwgridparam;
827 __m128 one_half = _mm_set1_ps(0.5);
828 __m128 minus_one = _mm_set1_ps(-1.0);
829 __m128i ewitab;
830 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
831 real *ewtab;
832 __m128 dummy_mask,cutoff_mask;
833 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
Value stored to 'signbit' during its initialization is never read
834 __m128 one = _mm_set1_ps(1.0);
835 __m128 two = _mm_set1_ps(2.0);
836 x = xx[0];
837 f = ff[0];
838
839 nri = nlist->nri;
840 iinr = nlist->iinr;
841 jindex = nlist->jindex;
842 jjnr = nlist->jjnr;
843 shiftidx = nlist->shift;
844 gid = nlist->gid;
845 shiftvec = fr->shift_vec[0];
846 fshift = fr->fshift[0];
847 facel = _mm_set1_ps(fr->epsfac);
848 charge = mdatoms->chargeA;
849 nvdwtype = fr->ntype;
850 vdwparam = fr->nbfp;
851 vdwtype = mdatoms->typeA;
852 vdwgridparam = fr->ljpme_c6grid;
853 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
854 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
855 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
856
857 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
858 ewtab = fr->ic->tabq_coul_F;
859 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
860 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
861
862 /* Setup water-specific parameters */
863 inr = nlist->iinr[0];
864 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
865 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
866 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
867 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
868
869 /* Avoid stupid compiler warnings */
870 jnrA = jnrB = jnrC = jnrD = 0;
871 j_coord_offsetA = 0;
872 j_coord_offsetB = 0;
873 j_coord_offsetC = 0;
874 j_coord_offsetD = 0;
875
876 outeriter = 0;
877 inneriter = 0;
878
879 for(iidx=0;iidx<4*DIM3;iidx++)
880 {
881 scratch[iidx] = 0.0;
882 }
883
884 /* Start outer loop over neighborlists */
885 for(iidx=0; iidx<nri; iidx++)
886 {
887 /* Load shift vector for this list */
888 i_shift_offset = DIM3*shiftidx[iidx];
889
890 /* Load limits for loop over neighbors */
891 j_index_start = jindex[iidx];
892 j_index_end = jindex[iidx+1];
893
894 /* Get outer coordinate index */
895 inr = iinr[iidx];
896 i_coord_offset = DIM3*inr;
897
898 /* Load i particle coords and add shift vector */
899 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
900 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
901
902 fix0 = _mm_setzero_ps();
903 fiy0 = _mm_setzero_ps();
904 fiz0 = _mm_setzero_ps();
905 fix1 = _mm_setzero_ps();
906 fiy1 = _mm_setzero_ps();
907 fiz1 = _mm_setzero_ps();
908 fix2 = _mm_setzero_ps();
909 fiy2 = _mm_setzero_ps();
910 fiz2 = _mm_setzero_ps();
911 fix3 = _mm_setzero_ps();
912 fiy3 = _mm_setzero_ps();
913 fiz3 = _mm_setzero_ps();
914
915 /* Start inner kernel loop */
916 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
917 {
918
919 /* Get j neighbor index, and coordinate index */
920 jnrA = jjnr[jidx];
921 jnrB = jjnr[jidx+1];
922 jnrC = jjnr[jidx+2];
923 jnrD = jjnr[jidx+3];
924 j_coord_offsetA = DIM3*jnrA;
925 j_coord_offsetB = DIM3*jnrB;
926 j_coord_offsetC = DIM3*jnrC;
927 j_coord_offsetD = DIM3*jnrD;
928
929 /* load j atom coordinates */
930 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
931 x+j_coord_offsetC,x+j_coord_offsetD,
932 &jx0,&jy0,&jz0);
933
934 /* Calculate displacement vector */
935 dx00 = _mm_sub_ps(ix0,jx0);
936 dy00 = _mm_sub_ps(iy0,jy0);
937 dz00 = _mm_sub_ps(iz0,jz0);
938 dx10 = _mm_sub_ps(ix1,jx0);
939 dy10 = _mm_sub_ps(iy1,jy0);
940 dz10 = _mm_sub_ps(iz1,jz0);
941 dx20 = _mm_sub_ps(ix2,jx0);
942 dy20 = _mm_sub_ps(iy2,jy0);
943 dz20 = _mm_sub_ps(iz2,jz0);
944 dx30 = _mm_sub_ps(ix3,jx0);
945 dy30 = _mm_sub_ps(iy3,jy0);
946 dz30 = _mm_sub_ps(iz3,jz0);
947
948 /* Calculate squared distance and things based on it */
949 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
950 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
951 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
952 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
953
954 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
955 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
956 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
957 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
958
959 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
960 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
961 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
962 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
963
964 /* Load parameters for j particles */
965 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
966 charge+jnrC+0,charge+jnrD+0);
967 vdwjidx0A = 2*vdwtype[jnrA+0];
968 vdwjidx0B = 2*vdwtype[jnrB+0];
969 vdwjidx0C = 2*vdwtype[jnrC+0];
970 vdwjidx0D = 2*vdwtype[jnrD+0];
971
972 fjx0 = _mm_setzero_ps();
973 fjy0 = _mm_setzero_ps();
974 fjz0 = _mm_setzero_ps();
975
976 /**************************
977 * CALCULATE INTERACTIONS *
978 **************************/
979
980 r00 = _mm_mul_ps(rsq00,rinv00);
981
982 /* Compute parameters for interactions between i and j atoms */
983 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
984 vdwparam+vdwioffset0+vdwjidx0B,
985 vdwparam+vdwioffset0+vdwjidx0C,
986 vdwparam+vdwioffset0+vdwjidx0D,
987 &c6_00,&c12_00);
988
989 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
990 vdwgridparam+vdwioffset0+vdwjidx0B,
991 vdwgridparam+vdwioffset0+vdwjidx0C,
992 vdwgridparam+vdwioffset0+vdwjidx0D);
993
994 /* Analytical LJ-PME */
995 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
996 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
997 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
998 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
999 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1000 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1001 /* f6A = 6 * C6grid * (1 - poly) */
1002 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1003 /* f6B = C6grid * exponent * beta^6 */
1004 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1005 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1006 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1007
1008 fscal = fvdw;
1009
1010 /* Calculate temporary vectorial force */
1011 tx = _mm_mul_ps(fscal,dx00);
1012 ty = _mm_mul_ps(fscal,dy00);
1013 tz = _mm_mul_ps(fscal,dz00);
1014
1015 /* Update vectorial force */
1016 fix0 = _mm_add_ps(fix0,tx);
1017 fiy0 = _mm_add_ps(fiy0,ty);
1018 fiz0 = _mm_add_ps(fiz0,tz);
1019
1020 fjx0 = _mm_add_ps(fjx0,tx);
1021 fjy0 = _mm_add_ps(fjy0,ty);
1022 fjz0 = _mm_add_ps(fjz0,tz);
1023
1024 /**************************
1025 * CALCULATE INTERACTIONS *
1026 **************************/
1027
1028 r10 = _mm_mul_ps(rsq10,rinv10);
1029
1030 /* Compute parameters for interactions between i and j atoms */
1031 qq10 = _mm_mul_ps(iq1,jq0);
1032
1033 /* EWALD ELECTROSTATICS */
1034
1035 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1036 ewrt = _mm_mul_ps(r10,ewtabscale);
1037 ewitab = _mm_cvttps_epi32(ewrt);
1038 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1039 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1040 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1041 &ewtabF,&ewtabFn);
1042 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1043 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1044
1045 fscal = felec;
1046
1047 /* Calculate temporary vectorial force */
1048 tx = _mm_mul_ps(fscal,dx10);
1049 ty = _mm_mul_ps(fscal,dy10);
1050 tz = _mm_mul_ps(fscal,dz10);
1051
1052 /* Update vectorial force */
1053 fix1 = _mm_add_ps(fix1,tx);
1054 fiy1 = _mm_add_ps(fiy1,ty);
1055 fiz1 = _mm_add_ps(fiz1,tz);
1056
1057 fjx0 = _mm_add_ps(fjx0,tx);
1058 fjy0 = _mm_add_ps(fjy0,ty);
1059 fjz0 = _mm_add_ps(fjz0,tz);
1060
1061 /**************************
1062 * CALCULATE INTERACTIONS *
1063 **************************/
1064
1065 r20 = _mm_mul_ps(rsq20,rinv20);
1066
1067 /* Compute parameters for interactions between i and j atoms */
1068 qq20 = _mm_mul_ps(iq2,jq0);
1069
1070 /* EWALD ELECTROSTATICS */
1071
1072 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1073 ewrt = _mm_mul_ps(r20,ewtabscale);
1074 ewitab = _mm_cvttps_epi32(ewrt);
1075 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1076 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1077 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1078 &ewtabF,&ewtabFn);
1079 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1080 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1081
1082 fscal = felec;
1083
1084 /* Calculate temporary vectorial force */
1085 tx = _mm_mul_ps(fscal,dx20);
1086 ty = _mm_mul_ps(fscal,dy20);
1087 tz = _mm_mul_ps(fscal,dz20);
1088
1089 /* Update vectorial force */
1090 fix2 = _mm_add_ps(fix2,tx);
1091 fiy2 = _mm_add_ps(fiy2,ty);
1092 fiz2 = _mm_add_ps(fiz2,tz);
1093
1094 fjx0 = _mm_add_ps(fjx0,tx);
1095 fjy0 = _mm_add_ps(fjy0,ty);
1096 fjz0 = _mm_add_ps(fjz0,tz);
1097
1098 /**************************
1099 * CALCULATE INTERACTIONS *
1100 **************************/
1101
1102 r30 = _mm_mul_ps(rsq30,rinv30);
1103
1104 /* Compute parameters for interactions between i and j atoms */
1105 qq30 = _mm_mul_ps(iq3,jq0);
1106
1107 /* EWALD ELECTROSTATICS */
1108
1109 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110 ewrt = _mm_mul_ps(r30,ewtabscale);
1111 ewitab = _mm_cvttps_epi32(ewrt);
1112 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1113 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1114 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1115 &ewtabF,&ewtabFn);
1116 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1117 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1118
1119 fscal = felec;
1120
1121 /* Calculate temporary vectorial force */
1122 tx = _mm_mul_ps(fscal,dx30);
1123 ty = _mm_mul_ps(fscal,dy30);
1124 tz = _mm_mul_ps(fscal,dz30);
1125
1126 /* Update vectorial force */
1127 fix3 = _mm_add_ps(fix3,tx);
1128 fiy3 = _mm_add_ps(fiy3,ty);
1129 fiz3 = _mm_add_ps(fiz3,tz);
1130
1131 fjx0 = _mm_add_ps(fjx0,tx);
1132 fjy0 = _mm_add_ps(fjy0,ty);
1133 fjz0 = _mm_add_ps(fjz0,tz);
1134
1135 fjptrA = f+j_coord_offsetA;
1136 fjptrB = f+j_coord_offsetB;
1137 fjptrC = f+j_coord_offsetC;
1138 fjptrD = f+j_coord_offsetD;
1139
1140 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1141
1142 /* Inner loop uses 154 flops */
1143 }
1144
1145 if(jidx<j_index_end)
1146 {
1147
1148 /* Get j neighbor index, and coordinate index */
1149 jnrlistA = jjnr[jidx];
1150 jnrlistB = jjnr[jidx+1];
1151 jnrlistC = jjnr[jidx+2];
1152 jnrlistD = jjnr[jidx+3];
1153 /* Sign of each element will be negative for non-real atoms.
1154 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1155 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1156 */
1157 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1158 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1159 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1160 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1161 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1162 j_coord_offsetA = DIM3*jnrA;
1163 j_coord_offsetB = DIM3*jnrB;
1164 j_coord_offsetC = DIM3*jnrC;
1165 j_coord_offsetD = DIM3*jnrD;
1166
1167 /* load j atom coordinates */
1168 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1169 x+j_coord_offsetC,x+j_coord_offsetD,
1170 &jx0,&jy0,&jz0);
1171
1172 /* Calculate displacement vector */
1173 dx00 = _mm_sub_ps(ix0,jx0);
1174 dy00 = _mm_sub_ps(iy0,jy0);
1175 dz00 = _mm_sub_ps(iz0,jz0);
1176 dx10 = _mm_sub_ps(ix1,jx0);
1177 dy10 = _mm_sub_ps(iy1,jy0);
1178 dz10 = _mm_sub_ps(iz1,jz0);
1179 dx20 = _mm_sub_ps(ix2,jx0);
1180 dy20 = _mm_sub_ps(iy2,jy0);
1181 dz20 = _mm_sub_ps(iz2,jz0);
1182 dx30 = _mm_sub_ps(ix3,jx0);
1183 dy30 = _mm_sub_ps(iy3,jy0);
1184 dz30 = _mm_sub_ps(iz3,jz0);
1185
1186 /* Calculate squared distance and things based on it */
1187 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1188 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1189 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1190 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1191
1192 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1193 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1194 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1195 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
1196
1197 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
1198 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1199 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1200 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
1201
1202 /* Load parameters for j particles */
1203 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1204 charge+jnrC+0,charge+jnrD+0);
1205 vdwjidx0A = 2*vdwtype[jnrA+0];
1206 vdwjidx0B = 2*vdwtype[jnrB+0];
1207 vdwjidx0C = 2*vdwtype[jnrC+0];
1208 vdwjidx0D = 2*vdwtype[jnrD+0];
1209
1210 fjx0 = _mm_setzero_ps();
1211 fjy0 = _mm_setzero_ps();
1212 fjz0 = _mm_setzero_ps();
1213
1214 /**************************
1215 * CALCULATE INTERACTIONS *
1216 **************************/
1217
1218 r00 = _mm_mul_ps(rsq00,rinv00);
1219 r00 = _mm_andnot_ps(dummy_mask,r00);
1220
1221 /* Compute parameters for interactions between i and j atoms */
1222 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1223 vdwparam+vdwioffset0+vdwjidx0B,
1224 vdwparam+vdwioffset0+vdwjidx0C,
1225 vdwparam+vdwioffset0+vdwjidx0D,
1226 &c6_00,&c12_00);
1227
1228 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1229 vdwgridparam+vdwioffset0+vdwjidx0B,
1230 vdwgridparam+vdwioffset0+vdwjidx0C,
1231 vdwgridparam+vdwioffset0+vdwjidx0D);
1232
1233 /* Analytical LJ-PME */
1234 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1235 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
1236 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1237 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
1238 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1239 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1240 /* f6A = 6 * C6grid * (1 - poly) */
1241 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1242 /* f6B = C6grid * exponent * beta^6 */
1243 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1244 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1245 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1246
1247 fscal = fvdw;
1248
1249 fscal = _mm_andnot_ps(dummy_mask,fscal);
1250
1251 /* Calculate temporary vectorial force */
1252 tx = _mm_mul_ps(fscal,dx00);
1253 ty = _mm_mul_ps(fscal,dy00);
1254 tz = _mm_mul_ps(fscal,dz00);
1255
1256 /* Update vectorial force */
1257 fix0 = _mm_add_ps(fix0,tx);
1258 fiy0 = _mm_add_ps(fiy0,ty);
1259 fiz0 = _mm_add_ps(fiz0,tz);
1260
1261 fjx0 = _mm_add_ps(fjx0,tx);
1262 fjy0 = _mm_add_ps(fjy0,ty);
1263 fjz0 = _mm_add_ps(fjz0,tz);
1264
1265 /**************************
1266 * CALCULATE INTERACTIONS *
1267 **************************/
1268
1269 r10 = _mm_mul_ps(rsq10,rinv10);
1270 r10 = _mm_andnot_ps(dummy_mask,r10);
1271
1272 /* Compute parameters for interactions between i and j atoms */
1273 qq10 = _mm_mul_ps(iq1,jq0);
1274
1275 /* EWALD ELECTROSTATICS */
1276
1277 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1278 ewrt = _mm_mul_ps(r10,ewtabscale);
1279 ewitab = _mm_cvttps_epi32(ewrt);
1280 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1281 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1282 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1283 &ewtabF,&ewtabFn);
1284 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1285 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1286
1287 fscal = felec;
1288
1289 fscal = _mm_andnot_ps(dummy_mask,fscal);
1290
1291 /* Calculate temporary vectorial force */
1292 tx = _mm_mul_ps(fscal,dx10);
1293 ty = _mm_mul_ps(fscal,dy10);
1294 tz = _mm_mul_ps(fscal,dz10);
1295
1296 /* Update vectorial force */
1297 fix1 = _mm_add_ps(fix1,tx);
1298 fiy1 = _mm_add_ps(fiy1,ty);
1299 fiz1 = _mm_add_ps(fiz1,tz);
1300
1301 fjx0 = _mm_add_ps(fjx0,tx);
1302 fjy0 = _mm_add_ps(fjy0,ty);
1303 fjz0 = _mm_add_ps(fjz0,tz);
1304
1305 /**************************
1306 * CALCULATE INTERACTIONS *
1307 **************************/
1308
1309 r20 = _mm_mul_ps(rsq20,rinv20);
1310 r20 = _mm_andnot_ps(dummy_mask,r20);
1311
1312 /* Compute parameters for interactions between i and j atoms */
1313 qq20 = _mm_mul_ps(iq2,jq0);
1314
1315 /* EWALD ELECTROSTATICS */
1316
1317 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1318 ewrt = _mm_mul_ps(r20,ewtabscale);
1319 ewitab = _mm_cvttps_epi32(ewrt);
1320 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1321 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1322 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1323 &ewtabF,&ewtabFn);
1324 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1325 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1326
1327 fscal = felec;
1328
1329 fscal = _mm_andnot_ps(dummy_mask,fscal);
1330
1331 /* Calculate temporary vectorial force */
1332 tx = _mm_mul_ps(fscal,dx20);
1333 ty = _mm_mul_ps(fscal,dy20);
1334 tz = _mm_mul_ps(fscal,dz20);
1335
1336 /* Update vectorial force */
1337 fix2 = _mm_add_ps(fix2,tx);
1338 fiy2 = _mm_add_ps(fiy2,ty);
1339 fiz2 = _mm_add_ps(fiz2,tz);
1340
1341 fjx0 = _mm_add_ps(fjx0,tx);
1342 fjy0 = _mm_add_ps(fjy0,ty);
1343 fjz0 = _mm_add_ps(fjz0,tz);
1344
1345 /**************************
1346 * CALCULATE INTERACTIONS *
1347 **************************/
1348
1349 r30 = _mm_mul_ps(rsq30,rinv30);
1350 r30 = _mm_andnot_ps(dummy_mask,r30);
1351
1352 /* Compute parameters for interactions between i and j atoms */
1353 qq30 = _mm_mul_ps(iq3,jq0);
1354
1355 /* EWALD ELECTROSTATICS */
1356
1357 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1358 ewrt = _mm_mul_ps(r30,ewtabscale);
1359 ewitab = _mm_cvttps_epi32(ewrt);
1360 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1361 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1362 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1363 &ewtabF,&ewtabFn);
1364 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1365 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1366
1367 fscal = felec;
1368
1369 fscal = _mm_andnot_ps(dummy_mask,fscal);
1370
1371 /* Calculate temporary vectorial force */
1372 tx = _mm_mul_ps(fscal,dx30);
1373 ty = _mm_mul_ps(fscal,dy30);
1374 tz = _mm_mul_ps(fscal,dz30);
1375
1376 /* Update vectorial force */
1377 fix3 = _mm_add_ps(fix3,tx);
1378 fiy3 = _mm_add_ps(fiy3,ty);
1379 fiz3 = _mm_add_ps(fiz3,tz);
1380
1381 fjx0 = _mm_add_ps(fjx0,tx);
1382 fjy0 = _mm_add_ps(fjy0,ty);
1383 fjz0 = _mm_add_ps(fjz0,tz);
1384
1385 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1386 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1387 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1388 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1389
1390 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1391
1392 /* Inner loop uses 158 flops */
1393 }
1394
1395 /* End of innermost loop */
1396
1397 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1398 f+i_coord_offset,fshift+i_shift_offset);
1399
1400 /* Increment number of inner iterations */
1401 inneriter += j_index_end - j_index_start;
1402
1403 /* Outer loop uses 24 flops */
1404 }
1405
1406 /* Increment number of outer iterations */
1407 outeriter += nri;
1408
1409 /* Update outer/inner flops */
1410
1411 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*158)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*24 + inneriter
*158
;
1412}