Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_c.c
Location:line 873, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int ewitab;
100 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
101 real *ewtab;
102 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
103
104 x = xx[0];
105 f = ff[0];
106
107 nri = nlist->nri;
108 iinr = nlist->iinr;
109 jindex = nlist->jindex;
110 jjnr = nlist->jjnr;
111 shiftidx = nlist->shift;
112 gid = nlist->gid;
113 shiftvec = fr->shift_vec[0];
114 fshift = fr->fshift[0];
115 facel = fr->epsfac;
116 charge = mdatoms->chargeA;
117 nvdwtype = fr->ntype;
118 vdwparam = fr->nbfp;
119 vdwtype = mdatoms->typeA;
120
121 sh_ewald = fr->ic->sh_ewald;
122 ewtab = fr->ic->tabq_coul_FDV0;
123 ewtabscale = fr->ic->tabq_scale;
124 ewtabhalfspace = 0.5/ewtabscale;
125
126 /* Setup water-specific parameters */
127 inr = nlist->iinr[0];
128 iq0 = facel*charge[inr+0];
129 iq1 = facel*charge[inr+1];
130 iq2 = facel*charge[inr+2];
131 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
132
133 jq0 = charge[inr+0];
134 jq1 = charge[inr+1];
135 jq2 = charge[inr+2];
136 vdwjidx0 = 2*vdwtype[inr+0];
137 qq00 = iq0*jq0;
138 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
139 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
140 qq01 = iq0*jq1;
141 qq02 = iq0*jq2;
142 qq10 = iq1*jq0;
143 qq11 = iq1*jq1;
144 qq12 = iq1*jq2;
145 qq20 = iq2*jq0;
146 qq21 = iq2*jq1;
147 qq22 = iq2*jq2;
148
149 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150 rcutoff = fr->rcoulomb;
151 rcutoff2 = rcutoff*rcutoff;
152
153 rswitch = fr->rcoulomb_switch;
154 /* Setup switch parameters */
155 d = rcutoff-rswitch;
156 swV3 = -10.0/(d*d*d);
157 swV4 = 15.0/(d*d*d*d);
158 swV5 = -6.0/(d*d*d*d*d);
159 swF2 = -30.0/(d*d*d);
160 swF3 = 60.0/(d*d*d*d);
161 swF4 = -30.0/(d*d*d*d*d);
162
163 outeriter = 0;
164 inneriter = 0;
165
166 /* Start outer loop over neighborlists */
167 for(iidx=0; iidx<nri; iidx++)
168 {
169 /* Load shift vector for this list */
170 i_shift_offset = DIM3*shiftidx[iidx];
171 shX = shiftvec[i_shift_offset+XX0];
172 shY = shiftvec[i_shift_offset+YY1];
173 shZ = shiftvec[i_shift_offset+ZZ2];
174
175 /* Load limits for loop over neighbors */
176 j_index_start = jindex[iidx];
177 j_index_end = jindex[iidx+1];
178
179 /* Get outer coordinate index */
180 inr = iinr[iidx];
181 i_coord_offset = DIM3*inr;
182
183 /* Load i particle coords and add shift vector */
184 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
185 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
186 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
187 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
188 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
189 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
190 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
191 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
192 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
193
194 fix0 = 0.0;
195 fiy0 = 0.0;
196 fiz0 = 0.0;
197 fix1 = 0.0;
198 fiy1 = 0.0;
199 fiz1 = 0.0;
200 fix2 = 0.0;
201 fiy2 = 0.0;
202 fiz2 = 0.0;
203
204 /* Reset potential sums */
205 velecsum = 0.0;
206 vvdwsum = 0.0;
207
208 /* Start inner kernel loop */
209 for(jidx=j_index_start; jidx<j_index_end; jidx++)
210 {
211 /* Get j neighbor index, and coordinate index */
212 jnr = jjnr[jidx];
213 j_coord_offset = DIM3*jnr;
214
215 /* load j atom coordinates */
216 jx0 = x[j_coord_offset+DIM3*0+XX0];
217 jy0 = x[j_coord_offset+DIM3*0+YY1];
218 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
219 jx1 = x[j_coord_offset+DIM3*1+XX0];
220 jy1 = x[j_coord_offset+DIM3*1+YY1];
221 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
222 jx2 = x[j_coord_offset+DIM3*2+XX0];
223 jy2 = x[j_coord_offset+DIM3*2+YY1];
224 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
225
226 /* Calculate displacement vector */
227 dx00 = ix0 - jx0;
228 dy00 = iy0 - jy0;
229 dz00 = iz0 - jz0;
230 dx01 = ix0 - jx1;
231 dy01 = iy0 - jy1;
232 dz01 = iz0 - jz1;
233 dx02 = ix0 - jx2;
234 dy02 = iy0 - jy2;
235 dz02 = iz0 - jz2;
236 dx10 = ix1 - jx0;
237 dy10 = iy1 - jy0;
238 dz10 = iz1 - jz0;
239 dx11 = ix1 - jx1;
240 dy11 = iy1 - jy1;
241 dz11 = iz1 - jz1;
242 dx12 = ix1 - jx2;
243 dy12 = iy1 - jy2;
244 dz12 = iz1 - jz2;
245 dx20 = ix2 - jx0;
246 dy20 = iy2 - jy0;
247 dz20 = iz2 - jz0;
248 dx21 = ix2 - jx1;
249 dy21 = iy2 - jy1;
250 dz21 = iz2 - jz1;
251 dx22 = ix2 - jx2;
252 dy22 = iy2 - jy2;
253 dz22 = iz2 - jz2;
254
255 /* Calculate squared distance and things based on it */
256 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
257 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
258 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
259 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
260 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
261 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
262 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
263 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
264 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
265
266 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
267 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
268 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
269 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
270 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
271 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
272 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
273 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
274 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
275
276 rinvsq00 = rinv00*rinv00;
277 rinvsq01 = rinv01*rinv01;
278 rinvsq02 = rinv02*rinv02;
279 rinvsq10 = rinv10*rinv10;
280 rinvsq11 = rinv11*rinv11;
281 rinvsq12 = rinv12*rinv12;
282 rinvsq20 = rinv20*rinv20;
283 rinvsq21 = rinv21*rinv21;
284 rinvsq22 = rinv22*rinv22;
285
286 /**************************
287 * CALCULATE INTERACTIONS *
288 **************************/
289
290 if (rsq00<rcutoff2)
291 {
292
293 r00 = rsq00*rinv00;
294
295 /* EWALD ELECTROSTATICS */
296
297 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
298 ewrt = r00*ewtabscale;
299 ewitab = ewrt;
300 eweps = ewrt-ewitab;
301 ewitab = 4*ewitab;
302 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
303 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
304 felec = qq00*rinv00*(rinvsq00-felec);
305
306 /* LENNARD-JONES DISPERSION/REPULSION */
307
308 rinvsix = rinvsq00*rinvsq00*rinvsq00;
309 vvdw6 = c6_00*rinvsix;
310 vvdw12 = c12_00*rinvsix*rinvsix;
311 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
312 fvdw = (vvdw12-vvdw6)*rinvsq00;
313
314 d = r00-rswitch;
315 d = (d>0.0) ? d : 0.0;
316 d2 = d*d;
317 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
318
319 dsw = d2*(swF2+d*(swF3+d*swF4));
320
321 /* Evaluate switch function */
322 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
323 felec = felec*sw - rinv00*velec*dsw;
324 fvdw = fvdw*sw - rinv00*vvdw*dsw;
325 velec *= sw;
326 vvdw *= sw;
327
328 /* Update potential sums from outer loop */
329 velecsum += velec;
330 vvdwsum += vvdw;
331
332 fscal = felec+fvdw;
333
334 /* Calculate temporary vectorial force */
335 tx = fscal*dx00;
336 ty = fscal*dy00;
337 tz = fscal*dz00;
338
339 /* Update vectorial force */
340 fix0 += tx;
341 fiy0 += ty;
342 fiz0 += tz;
343 f[j_coord_offset+DIM3*0+XX0] -= tx;
344 f[j_coord_offset+DIM3*0+YY1] -= ty;
345 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
346
347 }
348
349 /**************************
350 * CALCULATE INTERACTIONS *
351 **************************/
352
353 if (rsq01<rcutoff2)
354 {
355
356 r01 = rsq01*rinv01;
357
358 /* EWALD ELECTROSTATICS */
359
360 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
361 ewrt = r01*ewtabscale;
362 ewitab = ewrt;
363 eweps = ewrt-ewitab;
364 ewitab = 4*ewitab;
365 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
366 velec = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
367 felec = qq01*rinv01*(rinvsq01-felec);
368
369 d = r01-rswitch;
370 d = (d>0.0) ? d : 0.0;
371 d2 = d*d;
372 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
373
374 dsw = d2*(swF2+d*(swF3+d*swF4));
375
376 /* Evaluate switch function */
377 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
378 felec = felec*sw - rinv01*velec*dsw;
379 velec *= sw;
380
381 /* Update potential sums from outer loop */
382 velecsum += velec;
383
384 fscal = felec;
385
386 /* Calculate temporary vectorial force */
387 tx = fscal*dx01;
388 ty = fscal*dy01;
389 tz = fscal*dz01;
390
391 /* Update vectorial force */
392 fix0 += tx;
393 fiy0 += ty;
394 fiz0 += tz;
395 f[j_coord_offset+DIM3*1+XX0] -= tx;
396 f[j_coord_offset+DIM3*1+YY1] -= ty;
397 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
398
399 }
400
401 /**************************
402 * CALCULATE INTERACTIONS *
403 **************************/
404
405 if (rsq02<rcutoff2)
406 {
407
408 r02 = rsq02*rinv02;
409
410 /* EWALD ELECTROSTATICS */
411
412 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
413 ewrt = r02*ewtabscale;
414 ewitab = ewrt;
415 eweps = ewrt-ewitab;
416 ewitab = 4*ewitab;
417 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
418 velec = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
419 felec = qq02*rinv02*(rinvsq02-felec);
420
421 d = r02-rswitch;
422 d = (d>0.0) ? d : 0.0;
423 d2 = d*d;
424 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
425
426 dsw = d2*(swF2+d*(swF3+d*swF4));
427
428 /* Evaluate switch function */
429 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
430 felec = felec*sw - rinv02*velec*dsw;
431 velec *= sw;
432
433 /* Update potential sums from outer loop */
434 velecsum += velec;
435
436 fscal = felec;
437
438 /* Calculate temporary vectorial force */
439 tx = fscal*dx02;
440 ty = fscal*dy02;
441 tz = fscal*dz02;
442
443 /* Update vectorial force */
444 fix0 += tx;
445 fiy0 += ty;
446 fiz0 += tz;
447 f[j_coord_offset+DIM3*2+XX0] -= tx;
448 f[j_coord_offset+DIM3*2+YY1] -= ty;
449 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
450
451 }
452
453 /**************************
454 * CALCULATE INTERACTIONS *
455 **************************/
456
457 if (rsq10<rcutoff2)
458 {
459
460 r10 = rsq10*rinv10;
461
462 /* EWALD ELECTROSTATICS */
463
464 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
465 ewrt = r10*ewtabscale;
466 ewitab = ewrt;
467 eweps = ewrt-ewitab;
468 ewitab = 4*ewitab;
469 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
470 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
471 felec = qq10*rinv10*(rinvsq10-felec);
472
473 d = r10-rswitch;
474 d = (d>0.0) ? d : 0.0;
475 d2 = d*d;
476 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
477
478 dsw = d2*(swF2+d*(swF3+d*swF4));
479
480 /* Evaluate switch function */
481 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
482 felec = felec*sw - rinv10*velec*dsw;
483 velec *= sw;
484
485 /* Update potential sums from outer loop */
486 velecsum += velec;
487
488 fscal = felec;
489
490 /* Calculate temporary vectorial force */
491 tx = fscal*dx10;
492 ty = fscal*dy10;
493 tz = fscal*dz10;
494
495 /* Update vectorial force */
496 fix1 += tx;
497 fiy1 += ty;
498 fiz1 += tz;
499 f[j_coord_offset+DIM3*0+XX0] -= tx;
500 f[j_coord_offset+DIM3*0+YY1] -= ty;
501 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
502
503 }
504
505 /**************************
506 * CALCULATE INTERACTIONS *
507 **************************/
508
509 if (rsq11<rcutoff2)
510 {
511
512 r11 = rsq11*rinv11;
513
514 /* EWALD ELECTROSTATICS */
515
516 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
517 ewrt = r11*ewtabscale;
518 ewitab = ewrt;
519 eweps = ewrt-ewitab;
520 ewitab = 4*ewitab;
521 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
522 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
523 felec = qq11*rinv11*(rinvsq11-felec);
524
525 d = r11-rswitch;
526 d = (d>0.0) ? d : 0.0;
527 d2 = d*d;
528 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
529
530 dsw = d2*(swF2+d*(swF3+d*swF4));
531
532 /* Evaluate switch function */
533 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
534 felec = felec*sw - rinv11*velec*dsw;
535 velec *= sw;
536
537 /* Update potential sums from outer loop */
538 velecsum += velec;
539
540 fscal = felec;
541
542 /* Calculate temporary vectorial force */
543 tx = fscal*dx11;
544 ty = fscal*dy11;
545 tz = fscal*dz11;
546
547 /* Update vectorial force */
548 fix1 += tx;
549 fiy1 += ty;
550 fiz1 += tz;
551 f[j_coord_offset+DIM3*1+XX0] -= tx;
552 f[j_coord_offset+DIM3*1+YY1] -= ty;
553 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
554
555 }
556
557 /**************************
558 * CALCULATE INTERACTIONS *
559 **************************/
560
561 if (rsq12<rcutoff2)
562 {
563
564 r12 = rsq12*rinv12;
565
566 /* EWALD ELECTROSTATICS */
567
568 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569 ewrt = r12*ewtabscale;
570 ewitab = ewrt;
571 eweps = ewrt-ewitab;
572 ewitab = 4*ewitab;
573 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
574 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
575 felec = qq12*rinv12*(rinvsq12-felec);
576
577 d = r12-rswitch;
578 d = (d>0.0) ? d : 0.0;
579 d2 = d*d;
580 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
581
582 dsw = d2*(swF2+d*(swF3+d*swF4));
583
584 /* Evaluate switch function */
585 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
586 felec = felec*sw - rinv12*velec*dsw;
587 velec *= sw;
588
589 /* Update potential sums from outer loop */
590 velecsum += velec;
591
592 fscal = felec;
593
594 /* Calculate temporary vectorial force */
595 tx = fscal*dx12;
596 ty = fscal*dy12;
597 tz = fscal*dz12;
598
599 /* Update vectorial force */
600 fix1 += tx;
601 fiy1 += ty;
602 fiz1 += tz;
603 f[j_coord_offset+DIM3*2+XX0] -= tx;
604 f[j_coord_offset+DIM3*2+YY1] -= ty;
605 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
606
607 }
608
609 /**************************
610 * CALCULATE INTERACTIONS *
611 **************************/
612
613 if (rsq20<rcutoff2)
614 {
615
616 r20 = rsq20*rinv20;
617
618 /* EWALD ELECTROSTATICS */
619
620 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
621 ewrt = r20*ewtabscale;
622 ewitab = ewrt;
623 eweps = ewrt-ewitab;
624 ewitab = 4*ewitab;
625 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
626 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
627 felec = qq20*rinv20*(rinvsq20-felec);
628
629 d = r20-rswitch;
630 d = (d>0.0) ? d : 0.0;
631 d2 = d*d;
632 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
633
634 dsw = d2*(swF2+d*(swF3+d*swF4));
635
636 /* Evaluate switch function */
637 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
638 felec = felec*sw - rinv20*velec*dsw;
639 velec *= sw;
640
641 /* Update potential sums from outer loop */
642 velecsum += velec;
643
644 fscal = felec;
645
646 /* Calculate temporary vectorial force */
647 tx = fscal*dx20;
648 ty = fscal*dy20;
649 tz = fscal*dz20;
650
651 /* Update vectorial force */
652 fix2 += tx;
653 fiy2 += ty;
654 fiz2 += tz;
655 f[j_coord_offset+DIM3*0+XX0] -= tx;
656 f[j_coord_offset+DIM3*0+YY1] -= ty;
657 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
658
659 }
660
661 /**************************
662 * CALCULATE INTERACTIONS *
663 **************************/
664
665 if (rsq21<rcutoff2)
666 {
667
668 r21 = rsq21*rinv21;
669
670 /* EWALD ELECTROSTATICS */
671
672 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
673 ewrt = r21*ewtabscale;
674 ewitab = ewrt;
675 eweps = ewrt-ewitab;
676 ewitab = 4*ewitab;
677 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
678 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
679 felec = qq21*rinv21*(rinvsq21-felec);
680
681 d = r21-rswitch;
682 d = (d>0.0) ? d : 0.0;
683 d2 = d*d;
684 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
685
686 dsw = d2*(swF2+d*(swF3+d*swF4));
687
688 /* Evaluate switch function */
689 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
690 felec = felec*sw - rinv21*velec*dsw;
691 velec *= sw;
692
693 /* Update potential sums from outer loop */
694 velecsum += velec;
695
696 fscal = felec;
697
698 /* Calculate temporary vectorial force */
699 tx = fscal*dx21;
700 ty = fscal*dy21;
701 tz = fscal*dz21;
702
703 /* Update vectorial force */
704 fix2 += tx;
705 fiy2 += ty;
706 fiz2 += tz;
707 f[j_coord_offset+DIM3*1+XX0] -= tx;
708 f[j_coord_offset+DIM3*1+YY1] -= ty;
709 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
710
711 }
712
713 /**************************
714 * CALCULATE INTERACTIONS *
715 **************************/
716
717 if (rsq22<rcutoff2)
718 {
719
720 r22 = rsq22*rinv22;
721
722 /* EWALD ELECTROSTATICS */
723
724 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
725 ewrt = r22*ewtabscale;
726 ewitab = ewrt;
727 eweps = ewrt-ewitab;
728 ewitab = 4*ewitab;
729 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
730 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
731 felec = qq22*rinv22*(rinvsq22-felec);
732
733 d = r22-rswitch;
734 d = (d>0.0) ? d : 0.0;
735 d2 = d*d;
736 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
737
738 dsw = d2*(swF2+d*(swF3+d*swF4));
739
740 /* Evaluate switch function */
741 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
742 felec = felec*sw - rinv22*velec*dsw;
743 velec *= sw;
744
745 /* Update potential sums from outer loop */
746 velecsum += velec;
747
748 fscal = felec;
749
750 /* Calculate temporary vectorial force */
751 tx = fscal*dx22;
752 ty = fscal*dy22;
753 tz = fscal*dz22;
754
755 /* Update vectorial force */
756 fix2 += tx;
757 fiy2 += ty;
758 fiz2 += tz;
759 f[j_coord_offset+DIM3*2+XX0] -= tx;
760 f[j_coord_offset+DIM3*2+YY1] -= ty;
761 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
762
763 }
764
765 /* Inner loop uses 538 flops */
766 }
767 /* End of innermost loop */
768
769 tx = ty = tz = 0;
770 f[i_coord_offset+DIM3*0+XX0] += fix0;
771 f[i_coord_offset+DIM3*0+YY1] += fiy0;
772 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
773 tx += fix0;
774 ty += fiy0;
775 tz += fiz0;
776 f[i_coord_offset+DIM3*1+XX0] += fix1;
777 f[i_coord_offset+DIM3*1+YY1] += fiy1;
778 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
779 tx += fix1;
780 ty += fiy1;
781 tz += fiz1;
782 f[i_coord_offset+DIM3*2+XX0] += fix2;
783 f[i_coord_offset+DIM3*2+YY1] += fiy2;
784 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
785 tx += fix2;
786 ty += fiy2;
787 tz += fiz2;
788 fshift[i_shift_offset+XX0] += tx;
789 fshift[i_shift_offset+YY1] += ty;
790 fshift[i_shift_offset+ZZ2] += tz;
791
792 ggid = gid[iidx];
793 /* Update potential energies */
794 kernel_data->energygrp_elec[ggid] += velecsum;
795 kernel_data->energygrp_vdw[ggid] += vvdwsum;
796
797 /* Increment number of inner iterations */
798 inneriter += j_index_end - j_index_start;
799
800 /* Outer loop uses 32 flops */
801 }
802
803 /* Increment number of outer iterations */
804 outeriter += nri;
805
806 /* Update outer/inner flops */
807
808 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*538)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*538
;
809}
810/*
811 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_F_c
812 * Electrostatics interaction: Ewald
813 * VdW interaction: LennardJones
814 * Geometry: Water3-Water3
815 * Calculate force/pot: Force
816 */
817void
818nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_F_c
819 (t_nblist * gmx_restrict__restrict nlist,
820 rvec * gmx_restrict__restrict xx,
821 rvec * gmx_restrict__restrict ff,
822 t_forcerec * gmx_restrict__restrict fr,
823 t_mdatoms * gmx_restrict__restrict mdatoms,
824 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
825 t_nrnb * gmx_restrict__restrict nrnb)
826{
827 int i_shift_offset,i_coord_offset,j_coord_offset;
828 int j_index_start,j_index_end;
829 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
830 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
831 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
832 real *shiftvec,*fshift,*x,*f;
833 int vdwioffset0;
834 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
835 int vdwioffset1;
836 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
837 int vdwioffset2;
838 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
839 int vdwjidx0;
840 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
841 int vdwjidx1;
842 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
843 int vdwjidx2;
844 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
845 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
846 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
847 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
848 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
849 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
850 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
851 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
852 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
853 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
854 real velec,felec,velecsum,facel,crf,krf,krf2;
855 real *charge;
856 int nvdwtype;
857 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
858 int *vdwtype;
859 real *vdwparam;
860 int ewitab;
861 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
862 real *ewtab;
863 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
864
865 x = xx[0];
866 f = ff[0];
867
868 nri = nlist->nri;
869 iinr = nlist->iinr;
870 jindex = nlist->jindex;
871 jjnr = nlist->jjnr;
872 shiftidx = nlist->shift;
873 gid = nlist->gid;
Value stored to 'gid' is never read
874 shiftvec = fr->shift_vec[0];
875 fshift = fr->fshift[0];
876 facel = fr->epsfac;
877 charge = mdatoms->chargeA;
878 nvdwtype = fr->ntype;
879 vdwparam = fr->nbfp;
880 vdwtype = mdatoms->typeA;
881
882 sh_ewald = fr->ic->sh_ewald;
883 ewtab = fr->ic->tabq_coul_FDV0;
884 ewtabscale = fr->ic->tabq_scale;
885 ewtabhalfspace = 0.5/ewtabscale;
886
887 /* Setup water-specific parameters */
888 inr = nlist->iinr[0];
889 iq0 = facel*charge[inr+0];
890 iq1 = facel*charge[inr+1];
891 iq2 = facel*charge[inr+2];
892 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
893
894 jq0 = charge[inr+0];
895 jq1 = charge[inr+1];
896 jq2 = charge[inr+2];
897 vdwjidx0 = 2*vdwtype[inr+0];
898 qq00 = iq0*jq0;
899 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
900 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
901 qq01 = iq0*jq1;
902 qq02 = iq0*jq2;
903 qq10 = iq1*jq0;
904 qq11 = iq1*jq1;
905 qq12 = iq1*jq2;
906 qq20 = iq2*jq0;
907 qq21 = iq2*jq1;
908 qq22 = iq2*jq2;
909
910 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
911 rcutoff = fr->rcoulomb;
912 rcutoff2 = rcutoff*rcutoff;
913
914 rswitch = fr->rcoulomb_switch;
915 /* Setup switch parameters */
916 d = rcutoff-rswitch;
917 swV3 = -10.0/(d*d*d);
918 swV4 = 15.0/(d*d*d*d);
919 swV5 = -6.0/(d*d*d*d*d);
920 swF2 = -30.0/(d*d*d);
921 swF3 = 60.0/(d*d*d*d);
922 swF4 = -30.0/(d*d*d*d*d);
923
924 outeriter = 0;
925 inneriter = 0;
926
927 /* Start outer loop over neighborlists */
928 for(iidx=0; iidx<nri; iidx++)
929 {
930 /* Load shift vector for this list */
931 i_shift_offset = DIM3*shiftidx[iidx];
932 shX = shiftvec[i_shift_offset+XX0];
933 shY = shiftvec[i_shift_offset+YY1];
934 shZ = shiftvec[i_shift_offset+ZZ2];
935
936 /* Load limits for loop over neighbors */
937 j_index_start = jindex[iidx];
938 j_index_end = jindex[iidx+1];
939
940 /* Get outer coordinate index */
941 inr = iinr[iidx];
942 i_coord_offset = DIM3*inr;
943
944 /* Load i particle coords and add shift vector */
945 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
946 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
947 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
948 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
949 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
950 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
951 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
952 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
953 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
954
955 fix0 = 0.0;
956 fiy0 = 0.0;
957 fiz0 = 0.0;
958 fix1 = 0.0;
959 fiy1 = 0.0;
960 fiz1 = 0.0;
961 fix2 = 0.0;
962 fiy2 = 0.0;
963 fiz2 = 0.0;
964
965 /* Start inner kernel loop */
966 for(jidx=j_index_start; jidx<j_index_end; jidx++)
967 {
968 /* Get j neighbor index, and coordinate index */
969 jnr = jjnr[jidx];
970 j_coord_offset = DIM3*jnr;
971
972 /* load j atom coordinates */
973 jx0 = x[j_coord_offset+DIM3*0+XX0];
974 jy0 = x[j_coord_offset+DIM3*0+YY1];
975 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
976 jx1 = x[j_coord_offset+DIM3*1+XX0];
977 jy1 = x[j_coord_offset+DIM3*1+YY1];
978 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
979 jx2 = x[j_coord_offset+DIM3*2+XX0];
980 jy2 = x[j_coord_offset+DIM3*2+YY1];
981 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
982
983 /* Calculate displacement vector */
984 dx00 = ix0 - jx0;
985 dy00 = iy0 - jy0;
986 dz00 = iz0 - jz0;
987 dx01 = ix0 - jx1;
988 dy01 = iy0 - jy1;
989 dz01 = iz0 - jz1;
990 dx02 = ix0 - jx2;
991 dy02 = iy0 - jy2;
992 dz02 = iz0 - jz2;
993 dx10 = ix1 - jx0;
994 dy10 = iy1 - jy0;
995 dz10 = iz1 - jz0;
996 dx11 = ix1 - jx1;
997 dy11 = iy1 - jy1;
998 dz11 = iz1 - jz1;
999 dx12 = ix1 - jx2;
1000 dy12 = iy1 - jy2;
1001 dz12 = iz1 - jz2;
1002 dx20 = ix2 - jx0;
1003 dy20 = iy2 - jy0;
1004 dz20 = iz2 - jz0;
1005 dx21 = ix2 - jx1;
1006 dy21 = iy2 - jy1;
1007 dz21 = iz2 - jz1;
1008 dx22 = ix2 - jx2;
1009 dy22 = iy2 - jy2;
1010 dz22 = iz2 - jz2;
1011
1012 /* Calculate squared distance and things based on it */
1013 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
1014 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
1015 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
1016 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
1017 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
1018 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
1019 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
1020 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
1021 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
1022
1023 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
1024 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
1025 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
1026 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
1027 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
1028 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
1029 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
1030 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
1031 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
1032
1033 rinvsq00 = rinv00*rinv00;
1034 rinvsq01 = rinv01*rinv01;
1035 rinvsq02 = rinv02*rinv02;
1036 rinvsq10 = rinv10*rinv10;
1037 rinvsq11 = rinv11*rinv11;
1038 rinvsq12 = rinv12*rinv12;
1039 rinvsq20 = rinv20*rinv20;
1040 rinvsq21 = rinv21*rinv21;
1041 rinvsq22 = rinv22*rinv22;
1042
1043 /**************************
1044 * CALCULATE INTERACTIONS *
1045 **************************/
1046
1047 if (rsq00<rcutoff2)
1048 {
1049
1050 r00 = rsq00*rinv00;
1051
1052 /* EWALD ELECTROSTATICS */
1053
1054 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1055 ewrt = r00*ewtabscale;
1056 ewitab = ewrt;
1057 eweps = ewrt-ewitab;
1058 ewitab = 4*ewitab;
1059 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1060 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1061 felec = qq00*rinv00*(rinvsq00-felec);
1062
1063 /* LENNARD-JONES DISPERSION/REPULSION */
1064
1065 rinvsix = rinvsq00*rinvsq00*rinvsq00;
1066 vvdw6 = c6_00*rinvsix;
1067 vvdw12 = c12_00*rinvsix*rinvsix;
1068 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
1069 fvdw = (vvdw12-vvdw6)*rinvsq00;
1070
1071 d = r00-rswitch;
1072 d = (d>0.0) ? d : 0.0;
1073 d2 = d*d;
1074 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1075
1076 dsw = d2*(swF2+d*(swF3+d*swF4));
1077
1078 /* Evaluate switch function */
1079 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1080 felec = felec*sw - rinv00*velec*dsw;
1081 fvdw = fvdw*sw - rinv00*vvdw*dsw;
1082
1083 fscal = felec+fvdw;
1084
1085 /* Calculate temporary vectorial force */
1086 tx = fscal*dx00;
1087 ty = fscal*dy00;
1088 tz = fscal*dz00;
1089
1090 /* Update vectorial force */
1091 fix0 += tx;
1092 fiy0 += ty;
1093 fiz0 += tz;
1094 f[j_coord_offset+DIM3*0+XX0] -= tx;
1095 f[j_coord_offset+DIM3*0+YY1] -= ty;
1096 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1097
1098 }
1099
1100 /**************************
1101 * CALCULATE INTERACTIONS *
1102 **************************/
1103
1104 if (rsq01<rcutoff2)
1105 {
1106
1107 r01 = rsq01*rinv01;
1108
1109 /* EWALD ELECTROSTATICS */
1110
1111 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1112 ewrt = r01*ewtabscale;
1113 ewitab = ewrt;
1114 eweps = ewrt-ewitab;
1115 ewitab = 4*ewitab;
1116 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1117 velec = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1118 felec = qq01*rinv01*(rinvsq01-felec);
1119
1120 d = r01-rswitch;
1121 d = (d>0.0) ? d : 0.0;
1122 d2 = d*d;
1123 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1124
1125 dsw = d2*(swF2+d*(swF3+d*swF4));
1126
1127 /* Evaluate switch function */
1128 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1129 felec = felec*sw - rinv01*velec*dsw;
1130
1131 fscal = felec;
1132
1133 /* Calculate temporary vectorial force */
1134 tx = fscal*dx01;
1135 ty = fscal*dy01;
1136 tz = fscal*dz01;
1137
1138 /* Update vectorial force */
1139 fix0 += tx;
1140 fiy0 += ty;
1141 fiz0 += tz;
1142 f[j_coord_offset+DIM3*1+XX0] -= tx;
1143 f[j_coord_offset+DIM3*1+YY1] -= ty;
1144 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1145
1146 }
1147
1148 /**************************
1149 * CALCULATE INTERACTIONS *
1150 **************************/
1151
1152 if (rsq02<rcutoff2)
1153 {
1154
1155 r02 = rsq02*rinv02;
1156
1157 /* EWALD ELECTROSTATICS */
1158
1159 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1160 ewrt = r02*ewtabscale;
1161 ewitab = ewrt;
1162 eweps = ewrt-ewitab;
1163 ewitab = 4*ewitab;
1164 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1165 velec = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1166 felec = qq02*rinv02*(rinvsq02-felec);
1167
1168 d = r02-rswitch;
1169 d = (d>0.0) ? d : 0.0;
1170 d2 = d*d;
1171 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1172
1173 dsw = d2*(swF2+d*(swF3+d*swF4));
1174
1175 /* Evaluate switch function */
1176 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1177 felec = felec*sw - rinv02*velec*dsw;
1178
1179 fscal = felec;
1180
1181 /* Calculate temporary vectorial force */
1182 tx = fscal*dx02;
1183 ty = fscal*dy02;
1184 tz = fscal*dz02;
1185
1186 /* Update vectorial force */
1187 fix0 += tx;
1188 fiy0 += ty;
1189 fiz0 += tz;
1190 f[j_coord_offset+DIM3*2+XX0] -= tx;
1191 f[j_coord_offset+DIM3*2+YY1] -= ty;
1192 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1193
1194 }
1195
1196 /**************************
1197 * CALCULATE INTERACTIONS *
1198 **************************/
1199
1200 if (rsq10<rcutoff2)
1201 {
1202
1203 r10 = rsq10*rinv10;
1204
1205 /* EWALD ELECTROSTATICS */
1206
1207 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1208 ewrt = r10*ewtabscale;
1209 ewitab = ewrt;
1210 eweps = ewrt-ewitab;
1211 ewitab = 4*ewitab;
1212 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1213 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1214 felec = qq10*rinv10*(rinvsq10-felec);
1215
1216 d = r10-rswitch;
1217 d = (d>0.0) ? d : 0.0;
1218 d2 = d*d;
1219 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1220
1221 dsw = d2*(swF2+d*(swF3+d*swF4));
1222
1223 /* Evaluate switch function */
1224 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1225 felec = felec*sw - rinv10*velec*dsw;
1226
1227 fscal = felec;
1228
1229 /* Calculate temporary vectorial force */
1230 tx = fscal*dx10;
1231 ty = fscal*dy10;
1232 tz = fscal*dz10;
1233
1234 /* Update vectorial force */
1235 fix1 += tx;
1236 fiy1 += ty;
1237 fiz1 += tz;
1238 f[j_coord_offset+DIM3*0+XX0] -= tx;
1239 f[j_coord_offset+DIM3*0+YY1] -= ty;
1240 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1241
1242 }
1243
1244 /**************************
1245 * CALCULATE INTERACTIONS *
1246 **************************/
1247
1248 if (rsq11<rcutoff2)
1249 {
1250
1251 r11 = rsq11*rinv11;
1252
1253 /* EWALD ELECTROSTATICS */
1254
1255 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1256 ewrt = r11*ewtabscale;
1257 ewitab = ewrt;
1258 eweps = ewrt-ewitab;
1259 ewitab = 4*ewitab;
1260 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1261 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1262 felec = qq11*rinv11*(rinvsq11-felec);
1263
1264 d = r11-rswitch;
1265 d = (d>0.0) ? d : 0.0;
1266 d2 = d*d;
1267 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1268
1269 dsw = d2*(swF2+d*(swF3+d*swF4));
1270
1271 /* Evaluate switch function */
1272 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1273 felec = felec*sw - rinv11*velec*dsw;
1274
1275 fscal = felec;
1276
1277 /* Calculate temporary vectorial force */
1278 tx = fscal*dx11;
1279 ty = fscal*dy11;
1280 tz = fscal*dz11;
1281
1282 /* Update vectorial force */
1283 fix1 += tx;
1284 fiy1 += ty;
1285 fiz1 += tz;
1286 f[j_coord_offset+DIM3*1+XX0] -= tx;
1287 f[j_coord_offset+DIM3*1+YY1] -= ty;
1288 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1289
1290 }
1291
1292 /**************************
1293 * CALCULATE INTERACTIONS *
1294 **************************/
1295
1296 if (rsq12<rcutoff2)
1297 {
1298
1299 r12 = rsq12*rinv12;
1300
1301 /* EWALD ELECTROSTATICS */
1302
1303 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1304 ewrt = r12*ewtabscale;
1305 ewitab = ewrt;
1306 eweps = ewrt-ewitab;
1307 ewitab = 4*ewitab;
1308 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1309 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1310 felec = qq12*rinv12*(rinvsq12-felec);
1311
1312 d = r12-rswitch;
1313 d = (d>0.0) ? d : 0.0;
1314 d2 = d*d;
1315 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1316
1317 dsw = d2*(swF2+d*(swF3+d*swF4));
1318
1319 /* Evaluate switch function */
1320 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1321 felec = felec*sw - rinv12*velec*dsw;
1322
1323 fscal = felec;
1324
1325 /* Calculate temporary vectorial force */
1326 tx = fscal*dx12;
1327 ty = fscal*dy12;
1328 tz = fscal*dz12;
1329
1330 /* Update vectorial force */
1331 fix1 += tx;
1332 fiy1 += ty;
1333 fiz1 += tz;
1334 f[j_coord_offset+DIM3*2+XX0] -= tx;
1335 f[j_coord_offset+DIM3*2+YY1] -= ty;
1336 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1337
1338 }
1339
1340 /**************************
1341 * CALCULATE INTERACTIONS *
1342 **************************/
1343
1344 if (rsq20<rcutoff2)
1345 {
1346
1347 r20 = rsq20*rinv20;
1348
1349 /* EWALD ELECTROSTATICS */
1350
1351 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1352 ewrt = r20*ewtabscale;
1353 ewitab = ewrt;
1354 eweps = ewrt-ewitab;
1355 ewitab = 4*ewitab;
1356 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1357 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1358 felec = qq20*rinv20*(rinvsq20-felec);
1359
1360 d = r20-rswitch;
1361 d = (d>0.0) ? d : 0.0;
1362 d2 = d*d;
1363 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1364
1365 dsw = d2*(swF2+d*(swF3+d*swF4));
1366
1367 /* Evaluate switch function */
1368 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1369 felec = felec*sw - rinv20*velec*dsw;
1370
1371 fscal = felec;
1372
1373 /* Calculate temporary vectorial force */
1374 tx = fscal*dx20;
1375 ty = fscal*dy20;
1376 tz = fscal*dz20;
1377
1378 /* Update vectorial force */
1379 fix2 += tx;
1380 fiy2 += ty;
1381 fiz2 += tz;
1382 f[j_coord_offset+DIM3*0+XX0] -= tx;
1383 f[j_coord_offset+DIM3*0+YY1] -= ty;
1384 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1385
1386 }
1387
1388 /**************************
1389 * CALCULATE INTERACTIONS *
1390 **************************/
1391
1392 if (rsq21<rcutoff2)
1393 {
1394
1395 r21 = rsq21*rinv21;
1396
1397 /* EWALD ELECTROSTATICS */
1398
1399 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1400 ewrt = r21*ewtabscale;
1401 ewitab = ewrt;
1402 eweps = ewrt-ewitab;
1403 ewitab = 4*ewitab;
1404 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1405 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1406 felec = qq21*rinv21*(rinvsq21-felec);
1407
1408 d = r21-rswitch;
1409 d = (d>0.0) ? d : 0.0;
1410 d2 = d*d;
1411 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1412
1413 dsw = d2*(swF2+d*(swF3+d*swF4));
1414
1415 /* Evaluate switch function */
1416 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1417 felec = felec*sw - rinv21*velec*dsw;
1418
1419 fscal = felec;
1420
1421 /* Calculate temporary vectorial force */
1422 tx = fscal*dx21;
1423 ty = fscal*dy21;
1424 tz = fscal*dz21;
1425
1426 /* Update vectorial force */
1427 fix2 += tx;
1428 fiy2 += ty;
1429 fiz2 += tz;
1430 f[j_coord_offset+DIM3*1+XX0] -= tx;
1431 f[j_coord_offset+DIM3*1+YY1] -= ty;
1432 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1433
1434 }
1435
1436 /**************************
1437 * CALCULATE INTERACTIONS *
1438 **************************/
1439
1440 if (rsq22<rcutoff2)
1441 {
1442
1443 r22 = rsq22*rinv22;
1444
1445 /* EWALD ELECTROSTATICS */
1446
1447 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1448 ewrt = r22*ewtabscale;
1449 ewitab = ewrt;
1450 eweps = ewrt-ewitab;
1451 ewitab = 4*ewitab;
1452 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1453 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1454 felec = qq22*rinv22*(rinvsq22-felec);
1455
1456 d = r22-rswitch;
1457 d = (d>0.0) ? d : 0.0;
1458 d2 = d*d;
1459 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1460
1461 dsw = d2*(swF2+d*(swF3+d*swF4));
1462
1463 /* Evaluate switch function */
1464 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1465 felec = felec*sw - rinv22*velec*dsw;
1466
1467 fscal = felec;
1468
1469 /* Calculate temporary vectorial force */
1470 tx = fscal*dx22;
1471 ty = fscal*dy22;
1472 tz = fscal*dz22;
1473
1474 /* Update vectorial force */
1475 fix2 += tx;
1476 fiy2 += ty;
1477 fiz2 += tz;
1478 f[j_coord_offset+DIM3*2+XX0] -= tx;
1479 f[j_coord_offset+DIM3*2+YY1] -= ty;
1480 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1481
1482 }
1483
1484 /* Inner loop uses 518 flops */
1485 }
1486 /* End of innermost loop */
1487
1488 tx = ty = tz = 0;
1489 f[i_coord_offset+DIM3*0+XX0] += fix0;
1490 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1491 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1492 tx += fix0;
1493 ty += fiy0;
1494 tz += fiz0;
1495 f[i_coord_offset+DIM3*1+XX0] += fix1;
1496 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1497 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1498 tx += fix1;
1499 ty += fiy1;
1500 tz += fiz1;
1501 f[i_coord_offset+DIM3*2+XX0] += fix2;
1502 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1503 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1504 tx += fix2;
1505 ty += fiy2;
1506 tz += fiz2;
1507 fshift[i_shift_offset+XX0] += tx;
1508 fshift[i_shift_offset+YY1] += ty;
1509 fshift[i_shift_offset+ZZ2] += tz;
1510
1511 /* Increment number of inner iterations */
1512 inneriter += j_index_end - j_index_start;
1513
1514 /* Outer loop uses 30 flops */
1515 }
1516
1517 /* Increment number of outer iterations */
1518 outeriter += nri;
1519
1520 /* Update outer/inner flops */
1521
1522 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*518)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*518
;
1523}