Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_c.c
Location:line 551, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 real c6grid_00;
93 real c6grid_10;
94 real c6grid_20;
95 real c6grid_30;
96 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
97 real *vdwgridparam;
98 int ewitab;
99 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
100 real *ewtab;
101
102 x = xx[0];
103 f = ff[0];
104
105 nri = nlist->nri;
106 iinr = nlist->iinr;
107 jindex = nlist->jindex;
108 jjnr = nlist->jjnr;
109 shiftidx = nlist->shift;
110 gid = nlist->gid;
111 shiftvec = fr->shift_vec[0];
112 fshift = fr->fshift[0];
113 facel = fr->epsfac;
114 charge = mdatoms->chargeA;
115 nvdwtype = fr->ntype;
116 vdwparam = fr->nbfp;
117 vdwtype = mdatoms->typeA;
118 vdwgridparam = fr->ljpme_c6grid;
119 ewclj = fr->ewaldcoeff_lj;
120 sh_lj_ewald = fr->ic->sh_lj_ewald;
121 ewclj2 = ewclj*ewclj;
122 ewclj6 = ewclj2*ewclj2*ewclj2;
123
124 sh_ewald = fr->ic->sh_ewald;
125 ewtab = fr->ic->tabq_coul_FDV0;
126 ewtabscale = fr->ic->tabq_scale;
127 ewtabhalfspace = 0.5/ewtabscale;
128
129 /* Setup water-specific parameters */
130 inr = nlist->iinr[0];
131 iq1 = facel*charge[inr+1];
132 iq2 = facel*charge[inr+2];
133 iq3 = facel*charge[inr+3];
134 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
135
136 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137 rcutoff = fr->rcoulomb;
138 rcutoff2 = rcutoff*rcutoff;
139
140 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
141 rvdw = fr->rvdw;
142
143 outeriter = 0;
144 inneriter = 0;
145
146 /* Start outer loop over neighborlists */
147 for(iidx=0; iidx<nri; iidx++)
148 {
149 /* Load shift vector for this list */
150 i_shift_offset = DIM3*shiftidx[iidx];
151 shX = shiftvec[i_shift_offset+XX0];
152 shY = shiftvec[i_shift_offset+YY1];
153 shZ = shiftvec[i_shift_offset+ZZ2];
154
155 /* Load limits for loop over neighbors */
156 j_index_start = jindex[iidx];
157 j_index_end = jindex[iidx+1];
158
159 /* Get outer coordinate index */
160 inr = iinr[iidx];
161 i_coord_offset = DIM3*inr;
162
163 /* Load i particle coords and add shift vector */
164 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
165 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
166 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
167 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
168 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
169 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
170 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
171 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
172 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
173 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
174 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
175 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
176
177 fix0 = 0.0;
178 fiy0 = 0.0;
179 fiz0 = 0.0;
180 fix1 = 0.0;
181 fiy1 = 0.0;
182 fiz1 = 0.0;
183 fix2 = 0.0;
184 fiy2 = 0.0;
185 fiz2 = 0.0;
186 fix3 = 0.0;
187 fiy3 = 0.0;
188 fiz3 = 0.0;
189
190 /* Reset potential sums */
191 velecsum = 0.0;
192 vvdwsum = 0.0;
193
194 /* Start inner kernel loop */
195 for(jidx=j_index_start; jidx<j_index_end; jidx++)
196 {
197 /* Get j neighbor index, and coordinate index */
198 jnr = jjnr[jidx];
199 j_coord_offset = DIM3*jnr;
200
201 /* load j atom coordinates */
202 jx0 = x[j_coord_offset+DIM3*0+XX0];
203 jy0 = x[j_coord_offset+DIM3*0+YY1];
204 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
205
206 /* Calculate displacement vector */
207 dx00 = ix0 - jx0;
208 dy00 = iy0 - jy0;
209 dz00 = iz0 - jz0;
210 dx10 = ix1 - jx0;
211 dy10 = iy1 - jy0;
212 dz10 = iz1 - jz0;
213 dx20 = ix2 - jx0;
214 dy20 = iy2 - jy0;
215 dz20 = iz2 - jz0;
216 dx30 = ix3 - jx0;
217 dy30 = iy3 - jy0;
218 dz30 = iz3 - jz0;
219
220 /* Calculate squared distance and things based on it */
221 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
222 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
223 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
224 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
225
226 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
227 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
228 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
229 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
230
231 rinvsq00 = rinv00*rinv00;
232 rinvsq10 = rinv10*rinv10;
233 rinvsq20 = rinv20*rinv20;
234 rinvsq30 = rinv30*rinv30;
235
236 /* Load parameters for j particles */
237 jq0 = charge[jnr+0];
238 vdwjidx0 = 2*vdwtype[jnr+0];
239
240 /**************************
241 * CALCULATE INTERACTIONS *
242 **************************/
243
244 if (rsq00<rcutoff2)
245 {
246
247 r00 = rsq00*rinv00;
248
249 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
250 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
251 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
252
253 rinvsix = rinvsq00*rinvsq00*rinvsq00;
254 ewcljrsq = ewclj2*rsq00;
255 exponent = exp(-ewcljrsq);
256 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
257 vvdw6 = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
258 vvdw12 = c12_00*rinvsix*rinvsix;
259 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6 - c6grid_00*sh_lj_ewald)*(1.0/6.0);
260 fvdw = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
261
262 /* Update potential sums from outer loop */
263 vvdwsum += vvdw;
264
265 fscal = fvdw;
266
267 /* Calculate temporary vectorial force */
268 tx = fscal*dx00;
269 ty = fscal*dy00;
270 tz = fscal*dz00;
271
272 /* Update vectorial force */
273 fix0 += tx;
274 fiy0 += ty;
275 fiz0 += tz;
276 f[j_coord_offset+DIM3*0+XX0] -= tx;
277 f[j_coord_offset+DIM3*0+YY1] -= ty;
278 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
279
280 }
281
282 /**************************
283 * CALCULATE INTERACTIONS *
284 **************************/
285
286 if (rsq10<rcutoff2)
287 {
288
289 r10 = rsq10*rinv10;
290
291 qq10 = iq1*jq0;
292
293 /* EWALD ELECTROSTATICS */
294
295 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
296 ewrt = r10*ewtabscale;
297 ewitab = ewrt;
298 eweps = ewrt-ewitab;
299 ewitab = 4*ewitab;
300 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
301 velec = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
302 felec = qq10*rinv10*(rinvsq10-felec);
303
304 /* Update potential sums from outer loop */
305 velecsum += velec;
306
307 fscal = felec;
308
309 /* Calculate temporary vectorial force */
310 tx = fscal*dx10;
311 ty = fscal*dy10;
312 tz = fscal*dz10;
313
314 /* Update vectorial force */
315 fix1 += tx;
316 fiy1 += ty;
317 fiz1 += tz;
318 f[j_coord_offset+DIM3*0+XX0] -= tx;
319 f[j_coord_offset+DIM3*0+YY1] -= ty;
320 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
321
322 }
323
324 /**************************
325 * CALCULATE INTERACTIONS *
326 **************************/
327
328 if (rsq20<rcutoff2)
329 {
330
331 r20 = rsq20*rinv20;
332
333 qq20 = iq2*jq0;
334
335 /* EWALD ELECTROSTATICS */
336
337 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
338 ewrt = r20*ewtabscale;
339 ewitab = ewrt;
340 eweps = ewrt-ewitab;
341 ewitab = 4*ewitab;
342 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
343 velec = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
344 felec = qq20*rinv20*(rinvsq20-felec);
345
346 /* Update potential sums from outer loop */
347 velecsum += velec;
348
349 fscal = felec;
350
351 /* Calculate temporary vectorial force */
352 tx = fscal*dx20;
353 ty = fscal*dy20;
354 tz = fscal*dz20;
355
356 /* Update vectorial force */
357 fix2 += tx;
358 fiy2 += ty;
359 fiz2 += tz;
360 f[j_coord_offset+DIM3*0+XX0] -= tx;
361 f[j_coord_offset+DIM3*0+YY1] -= ty;
362 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
363
364 }
365
366 /**************************
367 * CALCULATE INTERACTIONS *
368 **************************/
369
370 if (rsq30<rcutoff2)
371 {
372
373 r30 = rsq30*rinv30;
374
375 qq30 = iq3*jq0;
376
377 /* EWALD ELECTROSTATICS */
378
379 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
380 ewrt = r30*ewtabscale;
381 ewitab = ewrt;
382 eweps = ewrt-ewitab;
383 ewitab = 4*ewitab;
384 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
385 velec = qq30*((rinv30-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
386 felec = qq30*rinv30*(rinvsq30-felec);
387
388 /* Update potential sums from outer loop */
389 velecsum += velec;
390
391 fscal = felec;
392
393 /* Calculate temporary vectorial force */
394 tx = fscal*dx30;
395 ty = fscal*dy30;
396 tz = fscal*dz30;
397
398 /* Update vectorial force */
399 fix3 += tx;
400 fiy3 += ty;
401 fiz3 += tz;
402 f[j_coord_offset+DIM3*0+XX0] -= tx;
403 f[j_coord_offset+DIM3*0+YY1] -= ty;
404 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
405
406 }
407
408 /* Inner loop uses 181 flops */
409 }
410 /* End of innermost loop */
411
412 tx = ty = tz = 0;
413 f[i_coord_offset+DIM3*0+XX0] += fix0;
414 f[i_coord_offset+DIM3*0+YY1] += fiy0;
415 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
416 tx += fix0;
417 ty += fiy0;
418 tz += fiz0;
419 f[i_coord_offset+DIM3*1+XX0] += fix1;
420 f[i_coord_offset+DIM3*1+YY1] += fiy1;
421 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
422 tx += fix1;
423 ty += fiy1;
424 tz += fiz1;
425 f[i_coord_offset+DIM3*2+XX0] += fix2;
426 f[i_coord_offset+DIM3*2+YY1] += fiy2;
427 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
428 tx += fix2;
429 ty += fiy2;
430 tz += fiz2;
431 f[i_coord_offset+DIM3*3+XX0] += fix3;
432 f[i_coord_offset+DIM3*3+YY1] += fiy3;
433 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
434 tx += fix3;
435 ty += fiy3;
436 tz += fiz3;
437 fshift[i_shift_offset+XX0] += tx;
438 fshift[i_shift_offset+YY1] += ty;
439 fshift[i_shift_offset+ZZ2] += tz;
440
441 ggid = gid[iidx];
442 /* Update potential energies */
443 kernel_data->energygrp_elec[ggid] += velecsum;
444 kernel_data->energygrp_vdw[ggid] += vvdwsum;
445
446 /* Increment number of inner iterations */
447 inneriter += j_index_end - j_index_start;
448
449 /* Outer loop uses 41 flops */
450 }
451
452 /* Increment number of outer iterations */
453 outeriter += nri;
454
455 /* Update outer/inner flops */
456
457 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*181)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*181
;
458}
459/*
460 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_c
461 * Electrostatics interaction: Ewald
462 * VdW interaction: LJEwald
463 * Geometry: Water4-Particle
464 * Calculate force/pot: Force
465 */
466void
467nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_c
468 (t_nblist * gmx_restrict__restrict nlist,
469 rvec * gmx_restrict__restrict xx,
470 rvec * gmx_restrict__restrict ff,
471 t_forcerec * gmx_restrict__restrict fr,
472 t_mdatoms * gmx_restrict__restrict mdatoms,
473 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
474 t_nrnb * gmx_restrict__restrict nrnb)
475{
476 int i_shift_offset,i_coord_offset,j_coord_offset;
477 int j_index_start,j_index_end;
478 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
479 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
480 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
481 real *shiftvec,*fshift,*x,*f;
482 int vdwioffset0;
483 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
484 int vdwioffset1;
485 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
486 int vdwioffset2;
487 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
488 int vdwioffset3;
489 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
490 int vdwjidx0;
491 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
492 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
493 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
494 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
495 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
496 real velec,felec,velecsum,facel,crf,krf,krf2;
497 real *charge;
498 int nvdwtype;
499 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
500 int *vdwtype;
501 real *vdwparam;
502 real c6grid_00;
503 real c6grid_10;
504 real c6grid_20;
505 real c6grid_30;
506 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
507 real *vdwgridparam;
508 int ewitab;
509 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
510 real *ewtab;
511
512 x = xx[0];
513 f = ff[0];
514
515 nri = nlist->nri;
516 iinr = nlist->iinr;
517 jindex = nlist->jindex;
518 jjnr = nlist->jjnr;
519 shiftidx = nlist->shift;
520 gid = nlist->gid;
521 shiftvec = fr->shift_vec[0];
522 fshift = fr->fshift[0];
523 facel = fr->epsfac;
524 charge = mdatoms->chargeA;
525 nvdwtype = fr->ntype;
526 vdwparam = fr->nbfp;
527 vdwtype = mdatoms->typeA;
528 vdwgridparam = fr->ljpme_c6grid;
529 ewclj = fr->ewaldcoeff_lj;
530 sh_lj_ewald = fr->ic->sh_lj_ewald;
531 ewclj2 = ewclj*ewclj;
532 ewclj6 = ewclj2*ewclj2*ewclj2;
533
534 sh_ewald = fr->ic->sh_ewald;
535 ewtab = fr->ic->tabq_coul_F;
536 ewtabscale = fr->ic->tabq_scale;
537 ewtabhalfspace = 0.5/ewtabscale;
538
539 /* Setup water-specific parameters */
540 inr = nlist->iinr[0];
541 iq1 = facel*charge[inr+1];
542 iq2 = facel*charge[inr+2];
543 iq3 = facel*charge[inr+3];
544 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
545
546 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
547 rcutoff = fr->rcoulomb;
548 rcutoff2 = rcutoff*rcutoff;
549
550 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
551 rvdw = fr->rvdw;
Value stored to 'rvdw' is never read
552
553 outeriter = 0;
554 inneriter = 0;
555
556 /* Start outer loop over neighborlists */
557 for(iidx=0; iidx<nri; iidx++)
558 {
559 /* Load shift vector for this list */
560 i_shift_offset = DIM3*shiftidx[iidx];
561 shX = shiftvec[i_shift_offset+XX0];
562 shY = shiftvec[i_shift_offset+YY1];
563 shZ = shiftvec[i_shift_offset+ZZ2];
564
565 /* Load limits for loop over neighbors */
566 j_index_start = jindex[iidx];
567 j_index_end = jindex[iidx+1];
568
569 /* Get outer coordinate index */
570 inr = iinr[iidx];
571 i_coord_offset = DIM3*inr;
572
573 /* Load i particle coords and add shift vector */
574 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
575 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
576 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
577 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
578 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
579 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
580 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
581 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
582 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
583 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
584 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
585 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
586
587 fix0 = 0.0;
588 fiy0 = 0.0;
589 fiz0 = 0.0;
590 fix1 = 0.0;
591 fiy1 = 0.0;
592 fiz1 = 0.0;
593 fix2 = 0.0;
594 fiy2 = 0.0;
595 fiz2 = 0.0;
596 fix3 = 0.0;
597 fiy3 = 0.0;
598 fiz3 = 0.0;
599
600 /* Start inner kernel loop */
601 for(jidx=j_index_start; jidx<j_index_end; jidx++)
602 {
603 /* Get j neighbor index, and coordinate index */
604 jnr = jjnr[jidx];
605 j_coord_offset = DIM3*jnr;
606
607 /* load j atom coordinates */
608 jx0 = x[j_coord_offset+DIM3*0+XX0];
609 jy0 = x[j_coord_offset+DIM3*0+YY1];
610 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
611
612 /* Calculate displacement vector */
613 dx00 = ix0 - jx0;
614 dy00 = iy0 - jy0;
615 dz00 = iz0 - jz0;
616 dx10 = ix1 - jx0;
617 dy10 = iy1 - jy0;
618 dz10 = iz1 - jz0;
619 dx20 = ix2 - jx0;
620 dy20 = iy2 - jy0;
621 dz20 = iz2 - jz0;
622 dx30 = ix3 - jx0;
623 dy30 = iy3 - jy0;
624 dz30 = iz3 - jz0;
625
626 /* Calculate squared distance and things based on it */
627 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
628 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
629 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
630 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
631
632 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
633 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
634 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
635 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
636
637 rinvsq00 = rinv00*rinv00;
638 rinvsq10 = rinv10*rinv10;
639 rinvsq20 = rinv20*rinv20;
640 rinvsq30 = rinv30*rinv30;
641
642 /* Load parameters for j particles */
643 jq0 = charge[jnr+0];
644 vdwjidx0 = 2*vdwtype[jnr+0];
645
646 /**************************
647 * CALCULATE INTERACTIONS *
648 **************************/
649
650 if (rsq00<rcutoff2)
651 {
652
653 r00 = rsq00*rinv00;
654
655 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
656 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
657 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
658
659 rinvsix = rinvsq00*rinvsq00*rinvsq00;
660 ewcljrsq = ewclj2*rsq00;
661 exponent = exp(-ewcljrsq);
662 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
663 fvdw = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
664
665 fscal = fvdw;
666
667 /* Calculate temporary vectorial force */
668 tx = fscal*dx00;
669 ty = fscal*dy00;
670 tz = fscal*dz00;
671
672 /* Update vectorial force */
673 fix0 += tx;
674 fiy0 += ty;
675 fiz0 += tz;
676 f[j_coord_offset+DIM3*0+XX0] -= tx;
677 f[j_coord_offset+DIM3*0+YY1] -= ty;
678 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
679
680 }
681
682 /**************************
683 * CALCULATE INTERACTIONS *
684 **************************/
685
686 if (rsq10<rcutoff2)
687 {
688
689 r10 = rsq10*rinv10;
690
691 qq10 = iq1*jq0;
692
693 /* EWALD ELECTROSTATICS */
694
695 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
696 ewrt = r10*ewtabscale;
697 ewitab = ewrt;
698 eweps = ewrt-ewitab;
699 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
700 felec = qq10*rinv10*(rinvsq10-felec);
701
702 fscal = felec;
703
704 /* Calculate temporary vectorial force */
705 tx = fscal*dx10;
706 ty = fscal*dy10;
707 tz = fscal*dz10;
708
709 /* Update vectorial force */
710 fix1 += tx;
711 fiy1 += ty;
712 fiz1 += tz;
713 f[j_coord_offset+DIM3*0+XX0] -= tx;
714 f[j_coord_offset+DIM3*0+YY1] -= ty;
715 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
716
717 }
718
719 /**************************
720 * CALCULATE INTERACTIONS *
721 **************************/
722
723 if (rsq20<rcutoff2)
724 {
725
726 r20 = rsq20*rinv20;
727
728 qq20 = iq2*jq0;
729
730 /* EWALD ELECTROSTATICS */
731
732 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
733 ewrt = r20*ewtabscale;
734 ewitab = ewrt;
735 eweps = ewrt-ewitab;
736 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
737 felec = qq20*rinv20*(rinvsq20-felec);
738
739 fscal = felec;
740
741 /* Calculate temporary vectorial force */
742 tx = fscal*dx20;
743 ty = fscal*dy20;
744 tz = fscal*dz20;
745
746 /* Update vectorial force */
747 fix2 += tx;
748 fiy2 += ty;
749 fiz2 += tz;
750 f[j_coord_offset+DIM3*0+XX0] -= tx;
751 f[j_coord_offset+DIM3*0+YY1] -= ty;
752 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
753
754 }
755
756 /**************************
757 * CALCULATE INTERACTIONS *
758 **************************/
759
760 if (rsq30<rcutoff2)
761 {
762
763 r30 = rsq30*rinv30;
764
765 qq30 = iq3*jq0;
766
767 /* EWALD ELECTROSTATICS */
768
769 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
770 ewrt = r30*ewtabscale;
771 ewitab = ewrt;
772 eweps = ewrt-ewitab;
773 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
774 felec = qq30*rinv30*(rinvsq30-felec);
775
776 fscal = felec;
777
778 /* Calculate temporary vectorial force */
779 tx = fscal*dx30;
780 ty = fscal*dy30;
781 tz = fscal*dz30;
782
783 /* Update vectorial force */
784 fix3 += tx;
785 fiy3 += ty;
786 fiz3 += tz;
787 f[j_coord_offset+DIM3*0+XX0] -= tx;
788 f[j_coord_offset+DIM3*0+YY1] -= ty;
789 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
790
791 }
792
793 /* Inner loop uses 146 flops */
794 }
795 /* End of innermost loop */
796
797 tx = ty = tz = 0;
798 f[i_coord_offset+DIM3*0+XX0] += fix0;
799 f[i_coord_offset+DIM3*0+YY1] += fiy0;
800 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
801 tx += fix0;
802 ty += fiy0;
803 tz += fiz0;
804 f[i_coord_offset+DIM3*1+XX0] += fix1;
805 f[i_coord_offset+DIM3*1+YY1] += fiy1;
806 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
807 tx += fix1;
808 ty += fiy1;
809 tz += fiz1;
810 f[i_coord_offset+DIM3*2+XX0] += fix2;
811 f[i_coord_offset+DIM3*2+YY1] += fiy2;
812 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
813 tx += fix2;
814 ty += fiy2;
815 tz += fiz2;
816 f[i_coord_offset+DIM3*3+XX0] += fix3;
817 f[i_coord_offset+DIM3*3+YY1] += fiy3;
818 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
819 tx += fix3;
820 ty += fiy3;
821 tz += fiz3;
822 fshift[i_shift_offset+XX0] += tx;
823 fshift[i_shift_offset+YY1] += ty;
824 fshift[i_shift_offset+ZZ2] += tz;
825
826 /* Increment number of inner iterations */
827 inneriter += j_index_end - j_index_start;
828
829 /* Outer loop uses 39 flops */
830 }
831
832 /* Increment number of outer iterations */
833 outeriter += nri;
834
835 /* Update outer/inner flops */
836
837 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*146)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*146
;
838}