Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwNone_GeomW3W3_c.c
Location:line 718, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwNone_GeomW3W3_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: None
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwNone_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int vfitab;
96 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
97 real *vftab;
98
99 x = xx[0];
100 f = ff[0];
101
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = fr->epsfac;
111 charge = mdatoms->chargeA;
112
113 vftab = kernel_data->table_elec->data;
114 vftabscale = kernel_data->table_elec->scale;
115
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq0 = facel*charge[inr+0];
119 iq1 = facel*charge[inr+1];
120 iq2 = facel*charge[inr+2];
121
122 jq0 = charge[inr+0];
123 jq1 = charge[inr+1];
124 jq2 = charge[inr+2];
125 qq00 = iq0*jq0;
126 qq01 = iq0*jq1;
127 qq02 = iq0*jq2;
128 qq10 = iq1*jq0;
129 qq11 = iq1*jq1;
130 qq12 = iq1*jq2;
131 qq20 = iq2*jq0;
132 qq21 = iq2*jq1;
133 qq22 = iq2*jq2;
134
135 outeriter = 0;
136 inneriter = 0;
137
138 /* Start outer loop over neighborlists */
139 for(iidx=0; iidx<nri; iidx++)
140 {
141 /* Load shift vector for this list */
142 i_shift_offset = DIM3*shiftidx[iidx];
143 shX = shiftvec[i_shift_offset+XX0];
144 shY = shiftvec[i_shift_offset+YY1];
145 shZ = shiftvec[i_shift_offset+ZZ2];
146
147 /* Load limits for loop over neighbors */
148 j_index_start = jindex[iidx];
149 j_index_end = jindex[iidx+1];
150
151 /* Get outer coordinate index */
152 inr = iinr[iidx];
153 i_coord_offset = DIM3*inr;
154
155 /* Load i particle coords and add shift vector */
156 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
157 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
158 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
159 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
160 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
161 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
162 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
163 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
164 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
165
166 fix0 = 0.0;
167 fiy0 = 0.0;
168 fiz0 = 0.0;
169 fix1 = 0.0;
170 fiy1 = 0.0;
171 fiz1 = 0.0;
172 fix2 = 0.0;
173 fiy2 = 0.0;
174 fiz2 = 0.0;
175
176 /* Reset potential sums */
177 velecsum = 0.0;
178
179 /* Start inner kernel loop */
180 for(jidx=j_index_start; jidx<j_index_end; jidx++)
181 {
182 /* Get j neighbor index, and coordinate index */
183 jnr = jjnr[jidx];
184 j_coord_offset = DIM3*jnr;
185
186 /* load j atom coordinates */
187 jx0 = x[j_coord_offset+DIM3*0+XX0];
188 jy0 = x[j_coord_offset+DIM3*0+YY1];
189 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
190 jx1 = x[j_coord_offset+DIM3*1+XX0];
191 jy1 = x[j_coord_offset+DIM3*1+YY1];
192 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
193 jx2 = x[j_coord_offset+DIM3*2+XX0];
194 jy2 = x[j_coord_offset+DIM3*2+YY1];
195 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
196
197 /* Calculate displacement vector */
198 dx00 = ix0 - jx0;
199 dy00 = iy0 - jy0;
200 dz00 = iz0 - jz0;
201 dx01 = ix0 - jx1;
202 dy01 = iy0 - jy1;
203 dz01 = iz0 - jz1;
204 dx02 = ix0 - jx2;
205 dy02 = iy0 - jy2;
206 dz02 = iz0 - jz2;
207 dx10 = ix1 - jx0;
208 dy10 = iy1 - jy0;
209 dz10 = iz1 - jz0;
210 dx11 = ix1 - jx1;
211 dy11 = iy1 - jy1;
212 dz11 = iz1 - jz1;
213 dx12 = ix1 - jx2;
214 dy12 = iy1 - jy2;
215 dz12 = iz1 - jz2;
216 dx20 = ix2 - jx0;
217 dy20 = iy2 - jy0;
218 dz20 = iz2 - jz0;
219 dx21 = ix2 - jx1;
220 dy21 = iy2 - jy1;
221 dz21 = iz2 - jz1;
222 dx22 = ix2 - jx2;
223 dy22 = iy2 - jy2;
224 dz22 = iz2 - jz2;
225
226 /* Calculate squared distance and things based on it */
227 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
228 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
229 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
230 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
231 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
232 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
233 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
234 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
235 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
236
237 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
238 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
239 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
240 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
241 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
242 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
243 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
244 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
245 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
246
247 /**************************
248 * CALCULATE INTERACTIONS *
249 **************************/
250
251 r00 = rsq00*rinv00;
252
253 /* Calculate table index by multiplying r with table scale and truncate to integer */
254 rt = r00*vftabscale;
255 vfitab = rt;
256 vfeps = rt-vfitab;
257 vfitab = 1*4*vfitab;
258
259 /* CUBIC SPLINE TABLE ELECTROSTATICS */
260 Y = vftab[vfitab];
261 F = vftab[vfitab+1];
262 Geps = vfeps*vftab[vfitab+2];
263 Heps2 = vfeps*vfeps*vftab[vfitab+3];
264 Fp = F+Geps+Heps2;
265 VV = Y+vfeps*Fp;
266 velec = qq00*VV;
267 FF = Fp+Geps+2.0*Heps2;
268 felec = -qq00*FF*vftabscale*rinv00;
269
270 /* Update potential sums from outer loop */
271 velecsum += velec;
272
273 fscal = felec;
274
275 /* Calculate temporary vectorial force */
276 tx = fscal*dx00;
277 ty = fscal*dy00;
278 tz = fscal*dz00;
279
280 /* Update vectorial force */
281 fix0 += tx;
282 fiy0 += ty;
283 fiz0 += tz;
284 f[j_coord_offset+DIM3*0+XX0] -= tx;
285 f[j_coord_offset+DIM3*0+YY1] -= ty;
286 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
287
288 /**************************
289 * CALCULATE INTERACTIONS *
290 **************************/
291
292 r01 = rsq01*rinv01;
293
294 /* Calculate table index by multiplying r with table scale and truncate to integer */
295 rt = r01*vftabscale;
296 vfitab = rt;
297 vfeps = rt-vfitab;
298 vfitab = 1*4*vfitab;
299
300 /* CUBIC SPLINE TABLE ELECTROSTATICS */
301 Y = vftab[vfitab];
302 F = vftab[vfitab+1];
303 Geps = vfeps*vftab[vfitab+2];
304 Heps2 = vfeps*vfeps*vftab[vfitab+3];
305 Fp = F+Geps+Heps2;
306 VV = Y+vfeps*Fp;
307 velec = qq01*VV;
308 FF = Fp+Geps+2.0*Heps2;
309 felec = -qq01*FF*vftabscale*rinv01;
310
311 /* Update potential sums from outer loop */
312 velecsum += velec;
313
314 fscal = felec;
315
316 /* Calculate temporary vectorial force */
317 tx = fscal*dx01;
318 ty = fscal*dy01;
319 tz = fscal*dz01;
320
321 /* Update vectorial force */
322 fix0 += tx;
323 fiy0 += ty;
324 fiz0 += tz;
325 f[j_coord_offset+DIM3*1+XX0] -= tx;
326 f[j_coord_offset+DIM3*1+YY1] -= ty;
327 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
328
329 /**************************
330 * CALCULATE INTERACTIONS *
331 **************************/
332
333 r02 = rsq02*rinv02;
334
335 /* Calculate table index by multiplying r with table scale and truncate to integer */
336 rt = r02*vftabscale;
337 vfitab = rt;
338 vfeps = rt-vfitab;
339 vfitab = 1*4*vfitab;
340
341 /* CUBIC SPLINE TABLE ELECTROSTATICS */
342 Y = vftab[vfitab];
343 F = vftab[vfitab+1];
344 Geps = vfeps*vftab[vfitab+2];
345 Heps2 = vfeps*vfeps*vftab[vfitab+3];
346 Fp = F+Geps+Heps2;
347 VV = Y+vfeps*Fp;
348 velec = qq02*VV;
349 FF = Fp+Geps+2.0*Heps2;
350 felec = -qq02*FF*vftabscale*rinv02;
351
352 /* Update potential sums from outer loop */
353 velecsum += velec;
354
355 fscal = felec;
356
357 /* Calculate temporary vectorial force */
358 tx = fscal*dx02;
359 ty = fscal*dy02;
360 tz = fscal*dz02;
361
362 /* Update vectorial force */
363 fix0 += tx;
364 fiy0 += ty;
365 fiz0 += tz;
366 f[j_coord_offset+DIM3*2+XX0] -= tx;
367 f[j_coord_offset+DIM3*2+YY1] -= ty;
368 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
369
370 /**************************
371 * CALCULATE INTERACTIONS *
372 **************************/
373
374 r10 = rsq10*rinv10;
375
376 /* Calculate table index by multiplying r with table scale and truncate to integer */
377 rt = r10*vftabscale;
378 vfitab = rt;
379 vfeps = rt-vfitab;
380 vfitab = 1*4*vfitab;
381
382 /* CUBIC SPLINE TABLE ELECTROSTATICS */
383 Y = vftab[vfitab];
384 F = vftab[vfitab+1];
385 Geps = vfeps*vftab[vfitab+2];
386 Heps2 = vfeps*vfeps*vftab[vfitab+3];
387 Fp = F+Geps+Heps2;
388 VV = Y+vfeps*Fp;
389 velec = qq10*VV;
390 FF = Fp+Geps+2.0*Heps2;
391 felec = -qq10*FF*vftabscale*rinv10;
392
393 /* Update potential sums from outer loop */
394 velecsum += velec;
395
396 fscal = felec;
397
398 /* Calculate temporary vectorial force */
399 tx = fscal*dx10;
400 ty = fscal*dy10;
401 tz = fscal*dz10;
402
403 /* Update vectorial force */
404 fix1 += tx;
405 fiy1 += ty;
406 fiz1 += tz;
407 f[j_coord_offset+DIM3*0+XX0] -= tx;
408 f[j_coord_offset+DIM3*0+YY1] -= ty;
409 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
410
411 /**************************
412 * CALCULATE INTERACTIONS *
413 **************************/
414
415 r11 = rsq11*rinv11;
416
417 /* Calculate table index by multiplying r with table scale and truncate to integer */
418 rt = r11*vftabscale;
419 vfitab = rt;
420 vfeps = rt-vfitab;
421 vfitab = 1*4*vfitab;
422
423 /* CUBIC SPLINE TABLE ELECTROSTATICS */
424 Y = vftab[vfitab];
425 F = vftab[vfitab+1];
426 Geps = vfeps*vftab[vfitab+2];
427 Heps2 = vfeps*vfeps*vftab[vfitab+3];
428 Fp = F+Geps+Heps2;
429 VV = Y+vfeps*Fp;
430 velec = qq11*VV;
431 FF = Fp+Geps+2.0*Heps2;
432 felec = -qq11*FF*vftabscale*rinv11;
433
434 /* Update potential sums from outer loop */
435 velecsum += velec;
436
437 fscal = felec;
438
439 /* Calculate temporary vectorial force */
440 tx = fscal*dx11;
441 ty = fscal*dy11;
442 tz = fscal*dz11;
443
444 /* Update vectorial force */
445 fix1 += tx;
446 fiy1 += ty;
447 fiz1 += tz;
448 f[j_coord_offset+DIM3*1+XX0] -= tx;
449 f[j_coord_offset+DIM3*1+YY1] -= ty;
450 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
451
452 /**************************
453 * CALCULATE INTERACTIONS *
454 **************************/
455
456 r12 = rsq12*rinv12;
457
458 /* Calculate table index by multiplying r with table scale and truncate to integer */
459 rt = r12*vftabscale;
460 vfitab = rt;
461 vfeps = rt-vfitab;
462 vfitab = 1*4*vfitab;
463
464 /* CUBIC SPLINE TABLE ELECTROSTATICS */
465 Y = vftab[vfitab];
466 F = vftab[vfitab+1];
467 Geps = vfeps*vftab[vfitab+2];
468 Heps2 = vfeps*vfeps*vftab[vfitab+3];
469 Fp = F+Geps+Heps2;
470 VV = Y+vfeps*Fp;
471 velec = qq12*VV;
472 FF = Fp+Geps+2.0*Heps2;
473 felec = -qq12*FF*vftabscale*rinv12;
474
475 /* Update potential sums from outer loop */
476 velecsum += velec;
477
478 fscal = felec;
479
480 /* Calculate temporary vectorial force */
481 tx = fscal*dx12;
482 ty = fscal*dy12;
483 tz = fscal*dz12;
484
485 /* Update vectorial force */
486 fix1 += tx;
487 fiy1 += ty;
488 fiz1 += tz;
489 f[j_coord_offset+DIM3*2+XX0] -= tx;
490 f[j_coord_offset+DIM3*2+YY1] -= ty;
491 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
492
493 /**************************
494 * CALCULATE INTERACTIONS *
495 **************************/
496
497 r20 = rsq20*rinv20;
498
499 /* Calculate table index by multiplying r with table scale and truncate to integer */
500 rt = r20*vftabscale;
501 vfitab = rt;
502 vfeps = rt-vfitab;
503 vfitab = 1*4*vfitab;
504
505 /* CUBIC SPLINE TABLE ELECTROSTATICS */
506 Y = vftab[vfitab];
507 F = vftab[vfitab+1];
508 Geps = vfeps*vftab[vfitab+2];
509 Heps2 = vfeps*vfeps*vftab[vfitab+3];
510 Fp = F+Geps+Heps2;
511 VV = Y+vfeps*Fp;
512 velec = qq20*VV;
513 FF = Fp+Geps+2.0*Heps2;
514 felec = -qq20*FF*vftabscale*rinv20;
515
516 /* Update potential sums from outer loop */
517 velecsum += velec;
518
519 fscal = felec;
520
521 /* Calculate temporary vectorial force */
522 tx = fscal*dx20;
523 ty = fscal*dy20;
524 tz = fscal*dz20;
525
526 /* Update vectorial force */
527 fix2 += tx;
528 fiy2 += ty;
529 fiz2 += tz;
530 f[j_coord_offset+DIM3*0+XX0] -= tx;
531 f[j_coord_offset+DIM3*0+YY1] -= ty;
532 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
533
534 /**************************
535 * CALCULATE INTERACTIONS *
536 **************************/
537
538 r21 = rsq21*rinv21;
539
540 /* Calculate table index by multiplying r with table scale and truncate to integer */
541 rt = r21*vftabscale;
542 vfitab = rt;
543 vfeps = rt-vfitab;
544 vfitab = 1*4*vfitab;
545
546 /* CUBIC SPLINE TABLE ELECTROSTATICS */
547 Y = vftab[vfitab];
548 F = vftab[vfitab+1];
549 Geps = vfeps*vftab[vfitab+2];
550 Heps2 = vfeps*vfeps*vftab[vfitab+3];
551 Fp = F+Geps+Heps2;
552 VV = Y+vfeps*Fp;
553 velec = qq21*VV;
554 FF = Fp+Geps+2.0*Heps2;
555 felec = -qq21*FF*vftabscale*rinv21;
556
557 /* Update potential sums from outer loop */
558 velecsum += velec;
559
560 fscal = felec;
561
562 /* Calculate temporary vectorial force */
563 tx = fscal*dx21;
564 ty = fscal*dy21;
565 tz = fscal*dz21;
566
567 /* Update vectorial force */
568 fix2 += tx;
569 fiy2 += ty;
570 fiz2 += tz;
571 f[j_coord_offset+DIM3*1+XX0] -= tx;
572 f[j_coord_offset+DIM3*1+YY1] -= ty;
573 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
574
575 /**************************
576 * CALCULATE INTERACTIONS *
577 **************************/
578
579 r22 = rsq22*rinv22;
580
581 /* Calculate table index by multiplying r with table scale and truncate to integer */
582 rt = r22*vftabscale;
583 vfitab = rt;
584 vfeps = rt-vfitab;
585 vfitab = 1*4*vfitab;
586
587 /* CUBIC SPLINE TABLE ELECTROSTATICS */
588 Y = vftab[vfitab];
589 F = vftab[vfitab+1];
590 Geps = vfeps*vftab[vfitab+2];
591 Heps2 = vfeps*vfeps*vftab[vfitab+3];
592 Fp = F+Geps+Heps2;
593 VV = Y+vfeps*Fp;
594 velec = qq22*VV;
595 FF = Fp+Geps+2.0*Heps2;
596 felec = -qq22*FF*vftabscale*rinv22;
597
598 /* Update potential sums from outer loop */
599 velecsum += velec;
600
601 fscal = felec;
602
603 /* Calculate temporary vectorial force */
604 tx = fscal*dx22;
605 ty = fscal*dy22;
606 tz = fscal*dz22;
607
608 /* Update vectorial force */
609 fix2 += tx;
610 fiy2 += ty;
611 fiz2 += tz;
612 f[j_coord_offset+DIM3*2+XX0] -= tx;
613 f[j_coord_offset+DIM3*2+YY1] -= ty;
614 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
615
616 /* Inner loop uses 369 flops */
617 }
618 /* End of innermost loop */
619
620 tx = ty = tz = 0;
621 f[i_coord_offset+DIM3*0+XX0] += fix0;
622 f[i_coord_offset+DIM3*0+YY1] += fiy0;
623 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
624 tx += fix0;
625 ty += fiy0;
626 tz += fiz0;
627 f[i_coord_offset+DIM3*1+XX0] += fix1;
628 f[i_coord_offset+DIM3*1+YY1] += fiy1;
629 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
630 tx += fix1;
631 ty += fiy1;
632 tz += fiz1;
633 f[i_coord_offset+DIM3*2+XX0] += fix2;
634 f[i_coord_offset+DIM3*2+YY1] += fiy2;
635 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
636 tx += fix2;
637 ty += fiy2;
638 tz += fiz2;
639 fshift[i_shift_offset+XX0] += tx;
640 fshift[i_shift_offset+YY1] += ty;
641 fshift[i_shift_offset+ZZ2] += tz;
642
643 ggid = gid[iidx];
644 /* Update potential energies */
645 kernel_data->energygrp_elec[ggid] += velecsum;
646
647 /* Increment number of inner iterations */
648 inneriter += j_index_end - j_index_start;
649
650 /* Outer loop uses 31 flops */
651 }
652
653 /* Increment number of outer iterations */
654 outeriter += nri;
655
656 /* Update outer/inner flops */
657
658 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*369)(nrnb)->n[eNR_NBKERNEL_ELEC_W3W3_VF] += outeriter*31 + inneriter
*369
;
659}
660/*
661 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwNone_GeomW3W3_F_c
662 * Electrostatics interaction: CubicSplineTable
663 * VdW interaction: None
664 * Geometry: Water3-Water3
665 * Calculate force/pot: Force
666 */
667void
668nb_kernel_ElecCSTab_VdwNone_GeomW3W3_F_c
669 (t_nblist * gmx_restrict__restrict nlist,
670 rvec * gmx_restrict__restrict xx,
671 rvec * gmx_restrict__restrict ff,
672 t_forcerec * gmx_restrict__restrict fr,
673 t_mdatoms * gmx_restrict__restrict mdatoms,
674 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
675 t_nrnb * gmx_restrict__restrict nrnb)
676{
677 int i_shift_offset,i_coord_offset,j_coord_offset;
678 int j_index_start,j_index_end;
679 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
680 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
681 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
682 real *shiftvec,*fshift,*x,*f;
683 int vdwioffset0;
684 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
685 int vdwioffset1;
686 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
687 int vdwioffset2;
688 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
689 int vdwjidx0;
690 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
691 int vdwjidx1;
692 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
693 int vdwjidx2;
694 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
695 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
696 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
697 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
698 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
699 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
700 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
701 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
702 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
703 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
704 real velec,felec,velecsum,facel,crf,krf,krf2;
705 real *charge;
706 int vfitab;
707 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
708 real *vftab;
709
710 x = xx[0];
711 f = ff[0];
712
713 nri = nlist->nri;
714 iinr = nlist->iinr;
715 jindex = nlist->jindex;
716 jjnr = nlist->jjnr;
717 shiftidx = nlist->shift;
718 gid = nlist->gid;
Value stored to 'gid' is never read
719 shiftvec = fr->shift_vec[0];
720 fshift = fr->fshift[0];
721 facel = fr->epsfac;
722 charge = mdatoms->chargeA;
723
724 vftab = kernel_data->table_elec->data;
725 vftabscale = kernel_data->table_elec->scale;
726
727 /* Setup water-specific parameters */
728 inr = nlist->iinr[0];
729 iq0 = facel*charge[inr+0];
730 iq1 = facel*charge[inr+1];
731 iq2 = facel*charge[inr+2];
732
733 jq0 = charge[inr+0];
734 jq1 = charge[inr+1];
735 jq2 = charge[inr+2];
736 qq00 = iq0*jq0;
737 qq01 = iq0*jq1;
738 qq02 = iq0*jq2;
739 qq10 = iq1*jq0;
740 qq11 = iq1*jq1;
741 qq12 = iq1*jq2;
742 qq20 = iq2*jq0;
743 qq21 = iq2*jq1;
744 qq22 = iq2*jq2;
745
746 outeriter = 0;
747 inneriter = 0;
748
749 /* Start outer loop over neighborlists */
750 for(iidx=0; iidx<nri; iidx++)
751 {
752 /* Load shift vector for this list */
753 i_shift_offset = DIM3*shiftidx[iidx];
754 shX = shiftvec[i_shift_offset+XX0];
755 shY = shiftvec[i_shift_offset+YY1];
756 shZ = shiftvec[i_shift_offset+ZZ2];
757
758 /* Load limits for loop over neighbors */
759 j_index_start = jindex[iidx];
760 j_index_end = jindex[iidx+1];
761
762 /* Get outer coordinate index */
763 inr = iinr[iidx];
764 i_coord_offset = DIM3*inr;
765
766 /* Load i particle coords and add shift vector */
767 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
768 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
769 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
770 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
771 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
772 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
773 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
774 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
775 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
776
777 fix0 = 0.0;
778 fiy0 = 0.0;
779 fiz0 = 0.0;
780 fix1 = 0.0;
781 fiy1 = 0.0;
782 fiz1 = 0.0;
783 fix2 = 0.0;
784 fiy2 = 0.0;
785 fiz2 = 0.0;
786
787 /* Start inner kernel loop */
788 for(jidx=j_index_start; jidx<j_index_end; jidx++)
789 {
790 /* Get j neighbor index, and coordinate index */
791 jnr = jjnr[jidx];
792 j_coord_offset = DIM3*jnr;
793
794 /* load j atom coordinates */
795 jx0 = x[j_coord_offset+DIM3*0+XX0];
796 jy0 = x[j_coord_offset+DIM3*0+YY1];
797 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
798 jx1 = x[j_coord_offset+DIM3*1+XX0];
799 jy1 = x[j_coord_offset+DIM3*1+YY1];
800 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
801 jx2 = x[j_coord_offset+DIM3*2+XX0];
802 jy2 = x[j_coord_offset+DIM3*2+YY1];
803 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
804
805 /* Calculate displacement vector */
806 dx00 = ix0 - jx0;
807 dy00 = iy0 - jy0;
808 dz00 = iz0 - jz0;
809 dx01 = ix0 - jx1;
810 dy01 = iy0 - jy1;
811 dz01 = iz0 - jz1;
812 dx02 = ix0 - jx2;
813 dy02 = iy0 - jy2;
814 dz02 = iz0 - jz2;
815 dx10 = ix1 - jx0;
816 dy10 = iy1 - jy0;
817 dz10 = iz1 - jz0;
818 dx11 = ix1 - jx1;
819 dy11 = iy1 - jy1;
820 dz11 = iz1 - jz1;
821 dx12 = ix1 - jx2;
822 dy12 = iy1 - jy2;
823 dz12 = iz1 - jz2;
824 dx20 = ix2 - jx0;
825 dy20 = iy2 - jy0;
826 dz20 = iz2 - jz0;
827 dx21 = ix2 - jx1;
828 dy21 = iy2 - jy1;
829 dz21 = iz2 - jz1;
830 dx22 = ix2 - jx2;
831 dy22 = iy2 - jy2;
832 dz22 = iz2 - jz2;
833
834 /* Calculate squared distance and things based on it */
835 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
836 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
837 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
838 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
839 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
840 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
841 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
842 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
843 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
844
845 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
846 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
847 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
848 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
849 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
850 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
851 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
852 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
853 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
854
855 /**************************
856 * CALCULATE INTERACTIONS *
857 **************************/
858
859 r00 = rsq00*rinv00;
860
861 /* Calculate table index by multiplying r with table scale and truncate to integer */
862 rt = r00*vftabscale;
863 vfitab = rt;
864 vfeps = rt-vfitab;
865 vfitab = 1*4*vfitab;
866
867 /* CUBIC SPLINE TABLE ELECTROSTATICS */
868 F = vftab[vfitab+1];
869 Geps = vfeps*vftab[vfitab+2];
870 Heps2 = vfeps*vfeps*vftab[vfitab+3];
871 Fp = F+Geps+Heps2;
872 FF = Fp+Geps+2.0*Heps2;
873 felec = -qq00*FF*vftabscale*rinv00;
874
875 fscal = felec;
876
877 /* Calculate temporary vectorial force */
878 tx = fscal*dx00;
879 ty = fscal*dy00;
880 tz = fscal*dz00;
881
882 /* Update vectorial force */
883 fix0 += tx;
884 fiy0 += ty;
885 fiz0 += tz;
886 f[j_coord_offset+DIM3*0+XX0] -= tx;
887 f[j_coord_offset+DIM3*0+YY1] -= ty;
888 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
889
890 /**************************
891 * CALCULATE INTERACTIONS *
892 **************************/
893
894 r01 = rsq01*rinv01;
895
896 /* Calculate table index by multiplying r with table scale and truncate to integer */
897 rt = r01*vftabscale;
898 vfitab = rt;
899 vfeps = rt-vfitab;
900 vfitab = 1*4*vfitab;
901
902 /* CUBIC SPLINE TABLE ELECTROSTATICS */
903 F = vftab[vfitab+1];
904 Geps = vfeps*vftab[vfitab+2];
905 Heps2 = vfeps*vfeps*vftab[vfitab+3];
906 Fp = F+Geps+Heps2;
907 FF = Fp+Geps+2.0*Heps2;
908 felec = -qq01*FF*vftabscale*rinv01;
909
910 fscal = felec;
911
912 /* Calculate temporary vectorial force */
913 tx = fscal*dx01;
914 ty = fscal*dy01;
915 tz = fscal*dz01;
916
917 /* Update vectorial force */
918 fix0 += tx;
919 fiy0 += ty;
920 fiz0 += tz;
921 f[j_coord_offset+DIM3*1+XX0] -= tx;
922 f[j_coord_offset+DIM3*1+YY1] -= ty;
923 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
924
925 /**************************
926 * CALCULATE INTERACTIONS *
927 **************************/
928
929 r02 = rsq02*rinv02;
930
931 /* Calculate table index by multiplying r with table scale and truncate to integer */
932 rt = r02*vftabscale;
933 vfitab = rt;
934 vfeps = rt-vfitab;
935 vfitab = 1*4*vfitab;
936
937 /* CUBIC SPLINE TABLE ELECTROSTATICS */
938 F = vftab[vfitab+1];
939 Geps = vfeps*vftab[vfitab+2];
940 Heps2 = vfeps*vfeps*vftab[vfitab+3];
941 Fp = F+Geps+Heps2;
942 FF = Fp+Geps+2.0*Heps2;
943 felec = -qq02*FF*vftabscale*rinv02;
944
945 fscal = felec;
946
947 /* Calculate temporary vectorial force */
948 tx = fscal*dx02;
949 ty = fscal*dy02;
950 tz = fscal*dz02;
951
952 /* Update vectorial force */
953 fix0 += tx;
954 fiy0 += ty;
955 fiz0 += tz;
956 f[j_coord_offset+DIM3*2+XX0] -= tx;
957 f[j_coord_offset+DIM3*2+YY1] -= ty;
958 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
959
960 /**************************
961 * CALCULATE INTERACTIONS *
962 **************************/
963
964 r10 = rsq10*rinv10;
965
966 /* Calculate table index by multiplying r with table scale and truncate to integer */
967 rt = r10*vftabscale;
968 vfitab = rt;
969 vfeps = rt-vfitab;
970 vfitab = 1*4*vfitab;
971
972 /* CUBIC SPLINE TABLE ELECTROSTATICS */
973 F = vftab[vfitab+1];
974 Geps = vfeps*vftab[vfitab+2];
975 Heps2 = vfeps*vfeps*vftab[vfitab+3];
976 Fp = F+Geps+Heps2;
977 FF = Fp+Geps+2.0*Heps2;
978 felec = -qq10*FF*vftabscale*rinv10;
979
980 fscal = felec;
981
982 /* Calculate temporary vectorial force */
983 tx = fscal*dx10;
984 ty = fscal*dy10;
985 tz = fscal*dz10;
986
987 /* Update vectorial force */
988 fix1 += tx;
989 fiy1 += ty;
990 fiz1 += tz;
991 f[j_coord_offset+DIM3*0+XX0] -= tx;
992 f[j_coord_offset+DIM3*0+YY1] -= ty;
993 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
994
995 /**************************
996 * CALCULATE INTERACTIONS *
997 **************************/
998
999 r11 = rsq11*rinv11;
1000
1001 /* Calculate table index by multiplying r with table scale and truncate to integer */
1002 rt = r11*vftabscale;
1003 vfitab = rt;
1004 vfeps = rt-vfitab;
1005 vfitab = 1*4*vfitab;
1006
1007 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1008 F = vftab[vfitab+1];
1009 Geps = vfeps*vftab[vfitab+2];
1010 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1011 Fp = F+Geps+Heps2;
1012 FF = Fp+Geps+2.0*Heps2;
1013 felec = -qq11*FF*vftabscale*rinv11;
1014
1015 fscal = felec;
1016
1017 /* Calculate temporary vectorial force */
1018 tx = fscal*dx11;
1019 ty = fscal*dy11;
1020 tz = fscal*dz11;
1021
1022 /* Update vectorial force */
1023 fix1 += tx;
1024 fiy1 += ty;
1025 fiz1 += tz;
1026 f[j_coord_offset+DIM3*1+XX0] -= tx;
1027 f[j_coord_offset+DIM3*1+YY1] -= ty;
1028 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1029
1030 /**************************
1031 * CALCULATE INTERACTIONS *
1032 **************************/
1033
1034 r12 = rsq12*rinv12;
1035
1036 /* Calculate table index by multiplying r with table scale and truncate to integer */
1037 rt = r12*vftabscale;
1038 vfitab = rt;
1039 vfeps = rt-vfitab;
1040 vfitab = 1*4*vfitab;
1041
1042 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1043 F = vftab[vfitab+1];
1044 Geps = vfeps*vftab[vfitab+2];
1045 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1046 Fp = F+Geps+Heps2;
1047 FF = Fp+Geps+2.0*Heps2;
1048 felec = -qq12*FF*vftabscale*rinv12;
1049
1050 fscal = felec;
1051
1052 /* Calculate temporary vectorial force */
1053 tx = fscal*dx12;
1054 ty = fscal*dy12;
1055 tz = fscal*dz12;
1056
1057 /* Update vectorial force */
1058 fix1 += tx;
1059 fiy1 += ty;
1060 fiz1 += tz;
1061 f[j_coord_offset+DIM3*2+XX0] -= tx;
1062 f[j_coord_offset+DIM3*2+YY1] -= ty;
1063 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1064
1065 /**************************
1066 * CALCULATE INTERACTIONS *
1067 **************************/
1068
1069 r20 = rsq20*rinv20;
1070
1071 /* Calculate table index by multiplying r with table scale and truncate to integer */
1072 rt = r20*vftabscale;
1073 vfitab = rt;
1074 vfeps = rt-vfitab;
1075 vfitab = 1*4*vfitab;
1076
1077 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1078 F = vftab[vfitab+1];
1079 Geps = vfeps*vftab[vfitab+2];
1080 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1081 Fp = F+Geps+Heps2;
1082 FF = Fp+Geps+2.0*Heps2;
1083 felec = -qq20*FF*vftabscale*rinv20;
1084
1085 fscal = felec;
1086
1087 /* Calculate temporary vectorial force */
1088 tx = fscal*dx20;
1089 ty = fscal*dy20;
1090 tz = fscal*dz20;
1091
1092 /* Update vectorial force */
1093 fix2 += tx;
1094 fiy2 += ty;
1095 fiz2 += tz;
1096 f[j_coord_offset+DIM3*0+XX0] -= tx;
1097 f[j_coord_offset+DIM3*0+YY1] -= ty;
1098 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1099
1100 /**************************
1101 * CALCULATE INTERACTIONS *
1102 **************************/
1103
1104 r21 = rsq21*rinv21;
1105
1106 /* Calculate table index by multiplying r with table scale and truncate to integer */
1107 rt = r21*vftabscale;
1108 vfitab = rt;
1109 vfeps = rt-vfitab;
1110 vfitab = 1*4*vfitab;
1111
1112 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1113 F = vftab[vfitab+1];
1114 Geps = vfeps*vftab[vfitab+2];
1115 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1116 Fp = F+Geps+Heps2;
1117 FF = Fp+Geps+2.0*Heps2;
1118 felec = -qq21*FF*vftabscale*rinv21;
1119
1120 fscal = felec;
1121
1122 /* Calculate temporary vectorial force */
1123 tx = fscal*dx21;
1124 ty = fscal*dy21;
1125 tz = fscal*dz21;
1126
1127 /* Update vectorial force */
1128 fix2 += tx;
1129 fiy2 += ty;
1130 fiz2 += tz;
1131 f[j_coord_offset+DIM3*1+XX0] -= tx;
1132 f[j_coord_offset+DIM3*1+YY1] -= ty;
1133 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1134
1135 /**************************
1136 * CALCULATE INTERACTIONS *
1137 **************************/
1138
1139 r22 = rsq22*rinv22;
1140
1141 /* Calculate table index by multiplying r with table scale and truncate to integer */
1142 rt = r22*vftabscale;
1143 vfitab = rt;
1144 vfeps = rt-vfitab;
1145 vfitab = 1*4*vfitab;
1146
1147 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1148 F = vftab[vfitab+1];
1149 Geps = vfeps*vftab[vfitab+2];
1150 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1151 Fp = F+Geps+Heps2;
1152 FF = Fp+Geps+2.0*Heps2;
1153 felec = -qq22*FF*vftabscale*rinv22;
1154
1155 fscal = felec;
1156
1157 /* Calculate temporary vectorial force */
1158 tx = fscal*dx22;
1159 ty = fscal*dy22;
1160 tz = fscal*dz22;
1161
1162 /* Update vectorial force */
1163 fix2 += tx;
1164 fiy2 += ty;
1165 fiz2 += tz;
1166 f[j_coord_offset+DIM3*2+XX0] -= tx;
1167 f[j_coord_offset+DIM3*2+YY1] -= ty;
1168 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1169
1170 /* Inner loop uses 333 flops */
1171 }
1172 /* End of innermost loop */
1173
1174 tx = ty = tz = 0;
1175 f[i_coord_offset+DIM3*0+XX0] += fix0;
1176 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1177 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1178 tx += fix0;
1179 ty += fiy0;
1180 tz += fiz0;
1181 f[i_coord_offset+DIM3*1+XX0] += fix1;
1182 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1183 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1184 tx += fix1;
1185 ty += fiy1;
1186 tz += fiz1;
1187 f[i_coord_offset+DIM3*2+XX0] += fix2;
1188 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1189 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1190 tx += fix2;
1191 ty += fiy2;
1192 tz += fiz2;
1193 fshift[i_shift_offset+XX0] += tx;
1194 fshift[i_shift_offset+YY1] += ty;
1195 fshift[i_shift_offset+ZZ2] += tz;
1196
1197 /* Increment number of inner iterations */
1198 inneriter += j_index_end - j_index_start;
1199
1200 /* Outer loop uses 30 flops */
1201 }
1202
1203 /* Increment number of outer iterations */
1204 outeriter += nri;
1205
1206 /* Update outer/inner flops */
1207
1208 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*333)(nrnb)->n[eNR_NBKERNEL_ELEC_W3W3_F] += outeriter*30 + inneriter
*333
;
1209}