Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecGB_VdwCSTab_GeomP1P1_c.c
Location:line 358, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_c
51 * Electrostatics interaction: GeneralizedBorn
52 * VdW interaction: CubicSplineTable
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int gbitab;
80 real vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
81 real *invsqrta,*dvda,*gbtab;
82 int nvdwtype;
83 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
84 int *vdwtype;
85 real *vdwparam;
86 int vfitab;
87 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
88 real *vftab;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 nvdwtype = fr->ntype;
104 vdwparam = fr->nbfp;
105 vdwtype = mdatoms->typeA;
106
107 vftab = kernel_data->table_vdw->data;
108 vftabscale = kernel_data->table_vdw->scale;
109
110 invsqrta = fr->invsqrta;
111 dvda = fr->dvda;
112 gbtabscale = fr->gbtab.scale;
113 gbtab = fr->gbtab.data;
114 gbinvepsdiff = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
115
116 outeriter = 0;
117 inneriter = 0;
118
119 /* Start outer loop over neighborlists */
120 for(iidx=0; iidx<nri; iidx++)
121 {
122 /* Load shift vector for this list */
123 i_shift_offset = DIM3*shiftidx[iidx];
124 shX = shiftvec[i_shift_offset+XX0];
125 shY = shiftvec[i_shift_offset+YY1];
126 shZ = shiftvec[i_shift_offset+ZZ2];
127
128 /* Load limits for loop over neighbors */
129 j_index_start = jindex[iidx];
130 j_index_end = jindex[iidx+1];
131
132 /* Get outer coordinate index */
133 inr = iinr[iidx];
134 i_coord_offset = DIM3*inr;
135
136 /* Load i particle coords and add shift vector */
137 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
138 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
139 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
140
141 fix0 = 0.0;
142 fiy0 = 0.0;
143 fiz0 = 0.0;
144
145 /* Load parameters for i particles */
146 iq0 = facel*charge[inr+0];
147 isai0 = invsqrta[inr+0];
148 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
149
150 /* Reset potential sums */
151 velecsum = 0.0;
152 vgbsum = 0.0;
153 vvdwsum = 0.0;
154 dvdasum = 0.0;
155
156 /* Start inner kernel loop */
157 for(jidx=j_index_start; jidx<j_index_end; jidx++)
158 {
159 /* Get j neighbor index, and coordinate index */
160 jnr = jjnr[jidx];
161 j_coord_offset = DIM3*jnr;
162
163 /* load j atom coordinates */
164 jx0 = x[j_coord_offset+DIM3*0+XX0];
165 jy0 = x[j_coord_offset+DIM3*0+YY1];
166 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
167
168 /* Calculate displacement vector */
169 dx00 = ix0 - jx0;
170 dy00 = iy0 - jy0;
171 dz00 = iz0 - jz0;
172
173 /* Calculate squared distance and things based on it */
174 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
175
176 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
177
178 /* Load parameters for j particles */
179 jq0 = charge[jnr+0];
180 isaj0 = invsqrta[jnr+0];
181 vdwjidx0 = 2*vdwtype[jnr+0];
182
183 /**************************
184 * CALCULATE INTERACTIONS *
185 **************************/
186
187 r00 = rsq00*rinv00;
188
189 qq00 = iq0*jq0;
190 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
191 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
192
193 /* Calculate table index by multiplying r with table scale and truncate to integer */
194 rt = r00*vftabscale;
195 vfitab = rt;
196 vfeps = rt-vfitab;
197 vfitab = 2*4*vfitab;
198
199 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
200 isaprod = isai0*isaj0;
201 gbqqfactor = isaprod*(-qq00)*gbinvepsdiff;
202 gbscale = isaprod*gbtabscale;
203 dvdaj = dvda[jnr+0];
204
205 /* Calculate generalized born table index - this is a separate table from the normal one,
206 * but we use the same procedure by multiplying r with scale and truncating to integer.
207 */
208 rt = r00*gbscale;
209 gbitab = rt;
210 gbeps = rt-gbitab;
211 gbitab = 4*gbitab;
212
213 Y = gbtab[gbitab];
214 F = gbtab[gbitab+1];
215 Geps = gbeps*gbtab[gbitab+2];
216 Heps2 = gbeps*gbeps*gbtab[gbitab+3];
217 Fp = F+Geps+Heps2;
218 VV = Y+gbeps*Fp;
219 vgb = gbqqfactor*VV;
220
221 FF = Fp+Geps+2.0*Heps2;
222 fgb = gbqqfactor*FF*gbscale;
223 dvdatmp = -0.5*(vgb+fgb*r00);
224 dvdasum = dvdasum + dvdatmp;
225 dvda[jnr] = dvdaj+dvdatmp*isaj0*isaj0;
226 velec = qq00*rinv00;
227 felec = (velec*rinv00-fgb)*rinv00;
228
229 /* CUBIC SPLINE TABLE DISPERSION */
230 vfitab += 0;
231 Y = vftab[vfitab];
232 F = vftab[vfitab+1];
233 Geps = vfeps*vftab[vfitab+2];
234 Heps2 = vfeps*vfeps*vftab[vfitab+3];
235 Fp = F+Geps+Heps2;
236 VV = Y+vfeps*Fp;
237 vvdw6 = c6_00*VV;
238 FF = Fp+Geps+2.0*Heps2;
239 fvdw6 = c6_00*FF;
240
241 /* CUBIC SPLINE TABLE REPULSION */
242 Y = vftab[vfitab+4];
243 F = vftab[vfitab+5];
244 Geps = vfeps*vftab[vfitab+6];
245 Heps2 = vfeps*vfeps*vftab[vfitab+7];
246 Fp = F+Geps+Heps2;
247 VV = Y+vfeps*Fp;
248 vvdw12 = c12_00*VV;
249 FF = Fp+Geps+2.0*Heps2;
250 fvdw12 = c12_00*FF;
251 vvdw = vvdw12+vvdw6;
252 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
253
254 /* Update potential sums from outer loop */
255 velecsum += velec;
256 vgbsum += vgb;
257 vvdwsum += vvdw;
258
259 fscal = felec+fvdw;
260
261 /* Calculate temporary vectorial force */
262 tx = fscal*dx00;
263 ty = fscal*dy00;
264 tz = fscal*dz00;
265
266 /* Update vectorial force */
267 fix0 += tx;
268 fiy0 += ty;
269 fiz0 += tz;
270 f[j_coord_offset+DIM3*0+XX0] -= tx;
271 f[j_coord_offset+DIM3*0+YY1] -= ty;
272 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
273
274 /* Inner loop uses 91 flops */
275 }
276 /* End of innermost loop */
277
278 tx = ty = tz = 0;
279 f[i_coord_offset+DIM3*0+XX0] += fix0;
280 f[i_coord_offset+DIM3*0+YY1] += fiy0;
281 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
282 tx += fix0;
283 ty += fiy0;
284 tz += fiz0;
285 fshift[i_shift_offset+XX0] += tx;
286 fshift[i_shift_offset+YY1] += ty;
287 fshift[i_shift_offset+ZZ2] += tz;
288
289 ggid = gid[iidx];
290 /* Update potential energies */
291 kernel_data->energygrp_elec[ggid] += velecsum;
292 kernel_data->energygrp_polarization[ggid] += vgbsum;
293 kernel_data->energygrp_vdw[ggid] += vvdwsum;
294 dvda[inr] = dvda[inr] + dvdasum*isai0*isai0;
295
296 /* Increment number of inner iterations */
297 inneriter += j_index_end - j_index_start;
298
299 /* Outer loop uses 16 flops */
300 }
301
302 /* Increment number of outer iterations */
303 outeriter += nri;
304
305 /* Update outer/inner flops */
306
307 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*16 + inneriter*91)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*16 + inneriter
*91
;
308}
309/*
310 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_c
311 * Electrostatics interaction: GeneralizedBorn
312 * VdW interaction: CubicSplineTable
313 * Geometry: Particle-Particle
314 * Calculate force/pot: Force
315 */
316void
317nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_c
318 (t_nblist * gmx_restrict__restrict nlist,
319 rvec * gmx_restrict__restrict xx,
320 rvec * gmx_restrict__restrict ff,
321 t_forcerec * gmx_restrict__restrict fr,
322 t_mdatoms * gmx_restrict__restrict mdatoms,
323 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
324 t_nrnb * gmx_restrict__restrict nrnb)
325{
326 int i_shift_offset,i_coord_offset,j_coord_offset;
327 int j_index_start,j_index_end;
328 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
329 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
330 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
331 real *shiftvec,*fshift,*x,*f;
332 int vdwioffset0;
333 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
334 int vdwjidx0;
335 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
336 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
337 real velec,felec,velecsum,facel,crf,krf,krf2;
338 real *charge;
339 int gbitab;
340 real vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
341 real *invsqrta,*dvda,*gbtab;
342 int nvdwtype;
343 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
344 int *vdwtype;
345 real *vdwparam;
346 int vfitab;
347 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
348 real *vftab;
349
350 x = xx[0];
351 f = ff[0];
352
353 nri = nlist->nri;
354 iinr = nlist->iinr;
355 jindex = nlist->jindex;
356 jjnr = nlist->jjnr;
357 shiftidx = nlist->shift;
358 gid = nlist->gid;
Value stored to 'gid' is never read
359 shiftvec = fr->shift_vec[0];
360 fshift = fr->fshift[0];
361 facel = fr->epsfac;
362 charge = mdatoms->chargeA;
363 nvdwtype = fr->ntype;
364 vdwparam = fr->nbfp;
365 vdwtype = mdatoms->typeA;
366
367 vftab = kernel_data->table_vdw->data;
368 vftabscale = kernel_data->table_vdw->scale;
369
370 invsqrta = fr->invsqrta;
371 dvda = fr->dvda;
372 gbtabscale = fr->gbtab.scale;
373 gbtab = fr->gbtab.data;
374 gbinvepsdiff = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
375
376 outeriter = 0;
377 inneriter = 0;
378
379 /* Start outer loop over neighborlists */
380 for(iidx=0; iidx<nri; iidx++)
381 {
382 /* Load shift vector for this list */
383 i_shift_offset = DIM3*shiftidx[iidx];
384 shX = shiftvec[i_shift_offset+XX0];
385 shY = shiftvec[i_shift_offset+YY1];
386 shZ = shiftvec[i_shift_offset+ZZ2];
387
388 /* Load limits for loop over neighbors */
389 j_index_start = jindex[iidx];
390 j_index_end = jindex[iidx+1];
391
392 /* Get outer coordinate index */
393 inr = iinr[iidx];
394 i_coord_offset = DIM3*inr;
395
396 /* Load i particle coords and add shift vector */
397 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
398 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
399 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
400
401 fix0 = 0.0;
402 fiy0 = 0.0;
403 fiz0 = 0.0;
404
405 /* Load parameters for i particles */
406 iq0 = facel*charge[inr+0];
407 isai0 = invsqrta[inr+0];
408 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
409
410 dvdasum = 0.0;
411
412 /* Start inner kernel loop */
413 for(jidx=j_index_start; jidx<j_index_end; jidx++)
414 {
415 /* Get j neighbor index, and coordinate index */
416 jnr = jjnr[jidx];
417 j_coord_offset = DIM3*jnr;
418
419 /* load j atom coordinates */
420 jx0 = x[j_coord_offset+DIM3*0+XX0];
421 jy0 = x[j_coord_offset+DIM3*0+YY1];
422 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
423
424 /* Calculate displacement vector */
425 dx00 = ix0 - jx0;
426 dy00 = iy0 - jy0;
427 dz00 = iz0 - jz0;
428
429 /* Calculate squared distance and things based on it */
430 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
431
432 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
433
434 /* Load parameters for j particles */
435 jq0 = charge[jnr+0];
436 isaj0 = invsqrta[jnr+0];
437 vdwjidx0 = 2*vdwtype[jnr+0];
438
439 /**************************
440 * CALCULATE INTERACTIONS *
441 **************************/
442
443 r00 = rsq00*rinv00;
444
445 qq00 = iq0*jq0;
446 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
447 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
448
449 /* Calculate table index by multiplying r with table scale and truncate to integer */
450 rt = r00*vftabscale;
451 vfitab = rt;
452 vfeps = rt-vfitab;
453 vfitab = 2*4*vfitab;
454
455 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
456 isaprod = isai0*isaj0;
457 gbqqfactor = isaprod*(-qq00)*gbinvepsdiff;
458 gbscale = isaprod*gbtabscale;
459 dvdaj = dvda[jnr+0];
460
461 /* Calculate generalized born table index - this is a separate table from the normal one,
462 * but we use the same procedure by multiplying r with scale and truncating to integer.
463 */
464 rt = r00*gbscale;
465 gbitab = rt;
466 gbeps = rt-gbitab;
467 gbitab = 4*gbitab;
468
469 Y = gbtab[gbitab];
470 F = gbtab[gbitab+1];
471 Geps = gbeps*gbtab[gbitab+2];
472 Heps2 = gbeps*gbeps*gbtab[gbitab+3];
473 Fp = F+Geps+Heps2;
474 VV = Y+gbeps*Fp;
475 vgb = gbqqfactor*VV;
476
477 FF = Fp+Geps+2.0*Heps2;
478 fgb = gbqqfactor*FF*gbscale;
479 dvdatmp = -0.5*(vgb+fgb*r00);
480 dvdasum = dvdasum + dvdatmp;
481 dvda[jnr] = dvdaj+dvdatmp*isaj0*isaj0;
482 velec = qq00*rinv00;
483 felec = (velec*rinv00-fgb)*rinv00;
484
485 /* CUBIC SPLINE TABLE DISPERSION */
486 vfitab += 0;
487 F = vftab[vfitab+1];
488 Geps = vfeps*vftab[vfitab+2];
489 Heps2 = vfeps*vfeps*vftab[vfitab+3];
490 Fp = F+Geps+Heps2;
491 FF = Fp+Geps+2.0*Heps2;
492 fvdw6 = c6_00*FF;
493
494 /* CUBIC SPLINE TABLE REPULSION */
495 F = vftab[vfitab+5];
496 Geps = vfeps*vftab[vfitab+6];
497 Heps2 = vfeps*vfeps*vftab[vfitab+7];
498 Fp = F+Geps+Heps2;
499 FF = Fp+Geps+2.0*Heps2;
500 fvdw12 = c12_00*FF;
501 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
502
503 fscal = felec+fvdw;
504
505 /* Calculate temporary vectorial force */
506 tx = fscal*dx00;
507 ty = fscal*dy00;
508 tz = fscal*dz00;
509
510 /* Update vectorial force */
511 fix0 += tx;
512 fiy0 += ty;
513 fiz0 += tz;
514 f[j_coord_offset+DIM3*0+XX0] -= tx;
515 f[j_coord_offset+DIM3*0+YY1] -= ty;
516 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
517
518 /* Inner loop uses 81 flops */
519 }
520 /* End of innermost loop */
521
522 tx = ty = tz = 0;
523 f[i_coord_offset+DIM3*0+XX0] += fix0;
524 f[i_coord_offset+DIM3*0+YY1] += fiy0;
525 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
526 tx += fix0;
527 ty += fiy0;
528 tz += fiz0;
529 fshift[i_shift_offset+XX0] += tx;
530 fshift[i_shift_offset+YY1] += ty;
531 fshift[i_shift_offset+ZZ2] += tz;
532
533 dvda[inr] = dvda[inr] + dvdasum*isai0*isai0;
534
535 /* Increment number of inner iterations */
536 inneriter += j_index_end - j_index_start;
537
538 /* Outer loop uses 13 flops */
539 }
540
541 /* Increment number of outer iterations */
542 outeriter += nri;
543
544 /* Update outer/inner flops */
545
546 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*81)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*81
;
547}