Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwBham_GeomP1P1_c.c
Location:line 306, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwBham_GeomP1P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: Buckingham
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwBham_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 int vfitab;
84 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
85 real *vftab;
86
87 x = xx[0];
88 f = ff[0];
89
90 nri = nlist->nri;
91 iinr = nlist->iinr;
92 jindex = nlist->jindex;
93 jjnr = nlist->jjnr;
94 shiftidx = nlist->shift;
95 gid = nlist->gid;
96 shiftvec = fr->shift_vec[0];
97 fshift = fr->fshift[0];
98 facel = fr->epsfac;
99 charge = mdatoms->chargeA;
100 nvdwtype = fr->ntype;
101 vdwparam = fr->nbfp;
102 vdwtype = mdatoms->typeA;
103
104 vftab = kernel_data->table_elec->data;
105 vftabscale = kernel_data->table_elec->scale;
106
107 outeriter = 0;
108 inneriter = 0;
109
110 /* Start outer loop over neighborlists */
111 for(iidx=0; iidx<nri; iidx++)
112 {
113 /* Load shift vector for this list */
114 i_shift_offset = DIM3*shiftidx[iidx];
115 shX = shiftvec[i_shift_offset+XX0];
116 shY = shiftvec[i_shift_offset+YY1];
117 shZ = shiftvec[i_shift_offset+ZZ2];
118
119 /* Load limits for loop over neighbors */
120 j_index_start = jindex[iidx];
121 j_index_end = jindex[iidx+1];
122
123 /* Get outer coordinate index */
124 inr = iinr[iidx];
125 i_coord_offset = DIM3*inr;
126
127 /* Load i particle coords and add shift vector */
128 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
129 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
130 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
131
132 fix0 = 0.0;
133 fiy0 = 0.0;
134 fiz0 = 0.0;
135
136 /* Load parameters for i particles */
137 iq0 = facel*charge[inr+0];
138 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
139
140 /* Reset potential sums */
141 velecsum = 0.0;
142 vvdwsum = 0.0;
143
144 /* Start inner kernel loop */
145 for(jidx=j_index_start; jidx<j_index_end; jidx++)
146 {
147 /* Get j neighbor index, and coordinate index */
148 jnr = jjnr[jidx];
149 j_coord_offset = DIM3*jnr;
150
151 /* load j atom coordinates */
152 jx0 = x[j_coord_offset+DIM3*0+XX0];
153 jy0 = x[j_coord_offset+DIM3*0+YY1];
154 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
155
156 /* Calculate displacement vector */
157 dx00 = ix0 - jx0;
158 dy00 = iy0 - jy0;
159 dz00 = iz0 - jz0;
160
161 /* Calculate squared distance and things based on it */
162 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
163
164 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
165
166 rinvsq00 = rinv00*rinv00;
167
168 /* Load parameters for j particles */
169 jq0 = charge[jnr+0];
170 vdwjidx0 = 3*vdwtype[jnr+0];
171
172 /**************************
173 * CALCULATE INTERACTIONS *
174 **************************/
175
176 r00 = rsq00*rinv00;
177
178 qq00 = iq0*jq0;
179 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
180 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
181 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
182
183 /* Calculate table index by multiplying r with table scale and truncate to integer */
184 rt = r00*vftabscale;
185 vfitab = rt;
186 vfeps = rt-vfitab;
187 vfitab = 1*4*vfitab;
188
189 /* CUBIC SPLINE TABLE ELECTROSTATICS */
190 Y = vftab[vfitab];
191 F = vftab[vfitab+1];
192 Geps = vfeps*vftab[vfitab+2];
193 Heps2 = vfeps*vfeps*vftab[vfitab+3];
194 Fp = F+Geps+Heps2;
195 VV = Y+vfeps*Fp;
196 velec = qq00*VV;
197 FF = Fp+Geps+2.0*Heps2;
198 felec = -qq00*FF*vftabscale*rinv00;
199
200 /* BUCKINGHAM DISPERSION/REPULSION */
201 rinvsix = rinvsq00*rinvsq00*rinvsq00;
202 vvdw6 = c6_00*rinvsix;
203 br = cexp2_00*r00;
204 vvdwexp = cexp1_00*exp(-br);
205 vvdw = vvdwexp - vvdw6*(1.0/6.0);
206 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
207
208 /* Update potential sums from outer loop */
209 velecsum += velec;
210 vvdwsum += vvdw;
211
212 fscal = felec+fvdw;
213
214 /* Calculate temporary vectorial force */
215 tx = fscal*dx00;
216 ty = fscal*dy00;
217 tz = fscal*dz00;
218
219 /* Update vectorial force */
220 fix0 += tx;
221 fiy0 += ty;
222 fiz0 += tz;
223 f[j_coord_offset+DIM3*0+XX0] -= tx;
224 f[j_coord_offset+DIM3*0+YY1] -= ty;
225 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
226
227 /* Inner loop uses 81 flops */
228 }
229 /* End of innermost loop */
230
231 tx = ty = tz = 0;
232 f[i_coord_offset+DIM3*0+XX0] += fix0;
233 f[i_coord_offset+DIM3*0+YY1] += fiy0;
234 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
235 tx += fix0;
236 ty += fiy0;
237 tz += fiz0;
238 fshift[i_shift_offset+XX0] += tx;
239 fshift[i_shift_offset+YY1] += ty;
240 fshift[i_shift_offset+ZZ2] += tz;
241
242 ggid = gid[iidx];
243 /* Update potential energies */
244 kernel_data->energygrp_elec[ggid] += velecsum;
245 kernel_data->energygrp_vdw[ggid] += vvdwsum;
246
247 /* Increment number of inner iterations */
248 inneriter += j_index_end - j_index_start;
249
250 /* Outer loop uses 15 flops */
251 }
252
253 /* Increment number of outer iterations */
254 outeriter += nri;
255
256 /* Update outer/inner flops */
257
258 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*81)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*81
;
259}
260/*
261 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwBham_GeomP1P1_F_c
262 * Electrostatics interaction: CubicSplineTable
263 * VdW interaction: Buckingham
264 * Geometry: Particle-Particle
265 * Calculate force/pot: Force
266 */
267void
268nb_kernel_ElecCSTab_VdwBham_GeomP1P1_F_c
269 (t_nblist * gmx_restrict__restrict nlist,
270 rvec * gmx_restrict__restrict xx,
271 rvec * gmx_restrict__restrict ff,
272 t_forcerec * gmx_restrict__restrict fr,
273 t_mdatoms * gmx_restrict__restrict mdatoms,
274 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
275 t_nrnb * gmx_restrict__restrict nrnb)
276{
277 int i_shift_offset,i_coord_offset,j_coord_offset;
278 int j_index_start,j_index_end;
279 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
280 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
281 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
282 real *shiftvec,*fshift,*x,*f;
283 int vdwioffset0;
284 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
285 int vdwjidx0;
286 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
287 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
288 real velec,felec,velecsum,facel,crf,krf,krf2;
289 real *charge;
290 int nvdwtype;
291 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
292 int *vdwtype;
293 real *vdwparam;
294 int vfitab;
295 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
296 real *vftab;
297
298 x = xx[0];
299 f = ff[0];
300
301 nri = nlist->nri;
302 iinr = nlist->iinr;
303 jindex = nlist->jindex;
304 jjnr = nlist->jjnr;
305 shiftidx = nlist->shift;
306 gid = nlist->gid;
Value stored to 'gid' is never read
307 shiftvec = fr->shift_vec[0];
308 fshift = fr->fshift[0];
309 facel = fr->epsfac;
310 charge = mdatoms->chargeA;
311 nvdwtype = fr->ntype;
312 vdwparam = fr->nbfp;
313 vdwtype = mdatoms->typeA;
314
315 vftab = kernel_data->table_elec->data;
316 vftabscale = kernel_data->table_elec->scale;
317
318 outeriter = 0;
319 inneriter = 0;
320
321 /* Start outer loop over neighborlists */
322 for(iidx=0; iidx<nri; iidx++)
323 {
324 /* Load shift vector for this list */
325 i_shift_offset = DIM3*shiftidx[iidx];
326 shX = shiftvec[i_shift_offset+XX0];
327 shY = shiftvec[i_shift_offset+YY1];
328 shZ = shiftvec[i_shift_offset+ZZ2];
329
330 /* Load limits for loop over neighbors */
331 j_index_start = jindex[iidx];
332 j_index_end = jindex[iidx+1];
333
334 /* Get outer coordinate index */
335 inr = iinr[iidx];
336 i_coord_offset = DIM3*inr;
337
338 /* Load i particle coords and add shift vector */
339 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
340 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
341 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
342
343 fix0 = 0.0;
344 fiy0 = 0.0;
345 fiz0 = 0.0;
346
347 /* Load parameters for i particles */
348 iq0 = facel*charge[inr+0];
349 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
350
351 /* Start inner kernel loop */
352 for(jidx=j_index_start; jidx<j_index_end; jidx++)
353 {
354 /* Get j neighbor index, and coordinate index */
355 jnr = jjnr[jidx];
356 j_coord_offset = DIM3*jnr;
357
358 /* load j atom coordinates */
359 jx0 = x[j_coord_offset+DIM3*0+XX0];
360 jy0 = x[j_coord_offset+DIM3*0+YY1];
361 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
362
363 /* Calculate displacement vector */
364 dx00 = ix0 - jx0;
365 dy00 = iy0 - jy0;
366 dz00 = iz0 - jz0;
367
368 /* Calculate squared distance and things based on it */
369 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
370
371 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
372
373 rinvsq00 = rinv00*rinv00;
374
375 /* Load parameters for j particles */
376 jq0 = charge[jnr+0];
377 vdwjidx0 = 3*vdwtype[jnr+0];
378
379 /**************************
380 * CALCULATE INTERACTIONS *
381 **************************/
382
383 r00 = rsq00*rinv00;
384
385 qq00 = iq0*jq0;
386 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
387 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
388 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
389
390 /* Calculate table index by multiplying r with table scale and truncate to integer */
391 rt = r00*vftabscale;
392 vfitab = rt;
393 vfeps = rt-vfitab;
394 vfitab = 1*4*vfitab;
395
396 /* CUBIC SPLINE TABLE ELECTROSTATICS */
397 F = vftab[vfitab+1];
398 Geps = vfeps*vftab[vfitab+2];
399 Heps2 = vfeps*vfeps*vftab[vfitab+3];
400 Fp = F+Geps+Heps2;
401 FF = Fp+Geps+2.0*Heps2;
402 felec = -qq00*FF*vftabscale*rinv00;
403
404 /* BUCKINGHAM DISPERSION/REPULSION */
405 rinvsix = rinvsq00*rinvsq00*rinvsq00;
406 vvdw6 = c6_00*rinvsix;
407 br = cexp2_00*r00;
408 vvdwexp = cexp1_00*exp(-br);
409 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
410
411 fscal = felec+fvdw;
412
413 /* Calculate temporary vectorial force */
414 tx = fscal*dx00;
415 ty = fscal*dy00;
416 tz = fscal*dz00;
417
418 /* Update vectorial force */
419 fix0 += tx;
420 fiy0 += ty;
421 fiz0 += tz;
422 f[j_coord_offset+DIM3*0+XX0] -= tx;
423 f[j_coord_offset+DIM3*0+YY1] -= ty;
424 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
425
426 /* Inner loop uses 74 flops */
427 }
428 /* End of innermost loop */
429
430 tx = ty = tz = 0;
431 f[i_coord_offset+DIM3*0+XX0] += fix0;
432 f[i_coord_offset+DIM3*0+YY1] += fiy0;
433 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
434 tx += fix0;
435 ty += fiy0;
436 tz += fiz0;
437 fshift[i_shift_offset+XX0] += tx;
438 fshift[i_shift_offset+YY1] += ty;
439 fshift[i_shift_offset+ZZ2] += tz;
440
441 /* Increment number of inner iterations */
442 inneriter += j_index_end - j_index_start;
443
444 /* Outer loop uses 13 flops */
445 }
446
447 /* Increment number of outer iterations */
448 outeriter += nri;
449
450 /* Update outer/inner flops */
451
452 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*74)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*74
;
453}