Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_c.c
Location:line 316, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83
84 x = xx[0];
85 f = ff[0];
86
87 nri = nlist->nri;
88 iinr = nlist->iinr;
89 jindex = nlist->jindex;
90 jjnr = nlist->jjnr;
91 shiftidx = nlist->shift;
92 gid = nlist->gid;
93 shiftvec = fr->shift_vec[0];
94 fshift = fr->fshift[0];
95 facel = fr->epsfac;
96 charge = mdatoms->chargeA;
97 krf = fr->ic->k_rf;
98 krf2 = krf*2.0;
99 crf = fr->ic->c_rf;
100 nvdwtype = fr->ntype;
101 vdwparam = fr->nbfp;
102 vdwtype = mdatoms->typeA;
103
104 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
105 rcutoff = fr->rcoulomb;
106 rcutoff2 = rcutoff*rcutoff;
107
108 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
109 rvdw = fr->rvdw;
110
111 outeriter = 0;
112 inneriter = 0;
113
114 /* Start outer loop over neighborlists */
115 for(iidx=0; iidx<nri; iidx++)
116 {
117 /* Load shift vector for this list */
118 i_shift_offset = DIM3*shiftidx[iidx];
119 shX = shiftvec[i_shift_offset+XX0];
120 shY = shiftvec[i_shift_offset+YY1];
121 shZ = shiftvec[i_shift_offset+ZZ2];
122
123 /* Load limits for loop over neighbors */
124 j_index_start = jindex[iidx];
125 j_index_end = jindex[iidx+1];
126
127 /* Get outer coordinate index */
128 inr = iinr[iidx];
129 i_coord_offset = DIM3*inr;
130
131 /* Load i particle coords and add shift vector */
132 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
133 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
134 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
135
136 fix0 = 0.0;
137 fiy0 = 0.0;
138 fiz0 = 0.0;
139
140 /* Load parameters for i particles */
141 iq0 = facel*charge[inr+0];
142 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
143
144 /* Reset potential sums */
145 velecsum = 0.0;
146 vvdwsum = 0.0;
147
148 /* Start inner kernel loop */
149 for(jidx=j_index_start; jidx<j_index_end; jidx++)
150 {
151 /* Get j neighbor index, and coordinate index */
152 jnr = jjnr[jidx];
153 j_coord_offset = DIM3*jnr;
154
155 /* load j atom coordinates */
156 jx0 = x[j_coord_offset+DIM3*0+XX0];
157 jy0 = x[j_coord_offset+DIM3*0+YY1];
158 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
159
160 /* Calculate displacement vector */
161 dx00 = ix0 - jx0;
162 dy00 = iy0 - jy0;
163 dz00 = iz0 - jz0;
164
165 /* Calculate squared distance and things based on it */
166 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
167
168 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
169
170 rinvsq00 = rinv00*rinv00;
171
172 /* Load parameters for j particles */
173 jq0 = charge[jnr+0];
174 vdwjidx0 = 3*vdwtype[jnr+0];
175
176 /**************************
177 * CALCULATE INTERACTIONS *
178 **************************/
179
180 if (rsq00<rcutoff2)
181 {
182
183 r00 = rsq00*rinv00;
184
185 qq00 = iq0*jq0;
186 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
187 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
188 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
189
190 /* REACTION-FIELD ELECTROSTATICS */
191 velec = qq00*(rinv00+krf*rsq00-crf);
192 felec = qq00*(rinv00*rinvsq00-krf2);
193
194 /* BUCKINGHAM DISPERSION/REPULSION */
195 rinvsix = rinvsq00*rinvsq00*rinvsq00;
196 vvdw6 = c6_00*rinvsix;
197 br = cexp2_00*r00;
198 vvdwexp = cexp1_00*exp(-br);
199 vvdw = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
200 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
201
202 /* Update potential sums from outer loop */
203 velecsum += velec;
204 vvdwsum += vvdw;
205
206 fscal = felec+fvdw;
207
208 /* Calculate temporary vectorial force */
209 tx = fscal*dx00;
210 ty = fscal*dy00;
211 tz = fscal*dz00;
212
213 /* Update vectorial force */
214 fix0 += tx;
215 fiy0 += ty;
216 fiz0 += tz;
217 f[j_coord_offset+DIM3*0+XX0] -= tx;
218 f[j_coord_offset+DIM3*0+YY1] -= ty;
219 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
220
221 }
222
223 /* Inner loop uses 102 flops */
224 }
225 /* End of innermost loop */
226
227 tx = ty = tz = 0;
228 f[i_coord_offset+DIM3*0+XX0] += fix0;
229 f[i_coord_offset+DIM3*0+YY1] += fiy0;
230 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
231 tx += fix0;
232 ty += fiy0;
233 tz += fiz0;
234 fshift[i_shift_offset+XX0] += tx;
235 fshift[i_shift_offset+YY1] += ty;
236 fshift[i_shift_offset+ZZ2] += tz;
237
238 ggid = gid[iidx];
239 /* Update potential energies */
240 kernel_data->energygrp_elec[ggid] += velecsum;
241 kernel_data->energygrp_vdw[ggid] += vvdwsum;
242
243 /* Increment number of inner iterations */
244 inneriter += j_index_end - j_index_start;
245
246 /* Outer loop uses 15 flops */
247 }
248
249 /* Increment number of outer iterations */
250 outeriter += nri;
251
252 /* Update outer/inner flops */
253
254 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*102)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*102
;
255}
256/*
257 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_F_c
258 * Electrostatics interaction: ReactionField
259 * VdW interaction: Buckingham
260 * Geometry: Particle-Particle
261 * Calculate force/pot: Force
262 */
263void
264nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_F_c
265 (t_nblist * gmx_restrict__restrict nlist,
266 rvec * gmx_restrict__restrict xx,
267 rvec * gmx_restrict__restrict ff,
268 t_forcerec * gmx_restrict__restrict fr,
269 t_mdatoms * gmx_restrict__restrict mdatoms,
270 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
271 t_nrnb * gmx_restrict__restrict nrnb)
272{
273 int i_shift_offset,i_coord_offset,j_coord_offset;
274 int j_index_start,j_index_end;
275 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
276 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
277 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
278 real *shiftvec,*fshift,*x,*f;
279 int vdwioffset0;
280 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
281 int vdwjidx0;
282 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
283 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
284 real velec,felec,velecsum,facel,crf,krf,krf2;
285 real *charge;
286 int nvdwtype;
287 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
288 int *vdwtype;
289 real *vdwparam;
290
291 x = xx[0];
292 f = ff[0];
293
294 nri = nlist->nri;
295 iinr = nlist->iinr;
296 jindex = nlist->jindex;
297 jjnr = nlist->jjnr;
298 shiftidx = nlist->shift;
299 gid = nlist->gid;
300 shiftvec = fr->shift_vec[0];
301 fshift = fr->fshift[0];
302 facel = fr->epsfac;
303 charge = mdatoms->chargeA;
304 krf = fr->ic->k_rf;
305 krf2 = krf*2.0;
306 crf = fr->ic->c_rf;
307 nvdwtype = fr->ntype;
308 vdwparam = fr->nbfp;
309 vdwtype = mdatoms->typeA;
310
311 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
312 rcutoff = fr->rcoulomb;
313 rcutoff2 = rcutoff*rcutoff;
314
315 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
316 rvdw = fr->rvdw;
Value stored to 'rvdw' is never read
317
318 outeriter = 0;
319 inneriter = 0;
320
321 /* Start outer loop over neighborlists */
322 for(iidx=0; iidx<nri; iidx++)
323 {
324 /* Load shift vector for this list */
325 i_shift_offset = DIM3*shiftidx[iidx];
326 shX = shiftvec[i_shift_offset+XX0];
327 shY = shiftvec[i_shift_offset+YY1];
328 shZ = shiftvec[i_shift_offset+ZZ2];
329
330 /* Load limits for loop over neighbors */
331 j_index_start = jindex[iidx];
332 j_index_end = jindex[iidx+1];
333
334 /* Get outer coordinate index */
335 inr = iinr[iidx];
336 i_coord_offset = DIM3*inr;
337
338 /* Load i particle coords and add shift vector */
339 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
340 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
341 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
342
343 fix0 = 0.0;
344 fiy0 = 0.0;
345 fiz0 = 0.0;
346
347 /* Load parameters for i particles */
348 iq0 = facel*charge[inr+0];
349 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
350
351 /* Start inner kernel loop */
352 for(jidx=j_index_start; jidx<j_index_end; jidx++)
353 {
354 /* Get j neighbor index, and coordinate index */
355 jnr = jjnr[jidx];
356 j_coord_offset = DIM3*jnr;
357
358 /* load j atom coordinates */
359 jx0 = x[j_coord_offset+DIM3*0+XX0];
360 jy0 = x[j_coord_offset+DIM3*0+YY1];
361 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
362
363 /* Calculate displacement vector */
364 dx00 = ix0 - jx0;
365 dy00 = iy0 - jy0;
366 dz00 = iz0 - jz0;
367
368 /* Calculate squared distance and things based on it */
369 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
370
371 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
372
373 rinvsq00 = rinv00*rinv00;
374
375 /* Load parameters for j particles */
376 jq0 = charge[jnr+0];
377 vdwjidx0 = 3*vdwtype[jnr+0];
378
379 /**************************
380 * CALCULATE INTERACTIONS *
381 **************************/
382
383 if (rsq00<rcutoff2)
384 {
385
386 r00 = rsq00*rinv00;
387
388 qq00 = iq0*jq0;
389 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
390 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
391 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
392
393 /* REACTION-FIELD ELECTROSTATICS */
394 felec = qq00*(rinv00*rinvsq00-krf2);
395
396 /* BUCKINGHAM DISPERSION/REPULSION */
397 rinvsix = rinvsq00*rinvsq00*rinvsq00;
398 vvdw6 = c6_00*rinvsix;
399 br = cexp2_00*r00;
400 vvdwexp = cexp1_00*exp(-br);
401 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
402
403 fscal = felec+fvdw;
404
405 /* Calculate temporary vectorial force */
406 tx = fscal*dx00;
407 ty = fscal*dy00;
408 tz = fscal*dz00;
409
410 /* Update vectorial force */
411 fix0 += tx;
412 fiy0 += ty;
413 fiz0 += tz;
414 f[j_coord_offset+DIM3*0+XX0] -= tx;
415 f[j_coord_offset+DIM3*0+YY1] -= ty;
416 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
417
418 }
419
420 /* Inner loop uses 63 flops */
421 }
422 /* End of innermost loop */
423
424 tx = ty = tz = 0;
425 f[i_coord_offset+DIM3*0+XX0] += fix0;
426 f[i_coord_offset+DIM3*0+YY1] += fiy0;
427 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
428 tx += fix0;
429 ty += fiy0;
430 tz += fiz0;
431 fshift[i_shift_offset+XX0] += tx;
432 fshift[i_shift_offset+YY1] += ty;
433 fshift[i_shift_offset+ZZ2] += tz;
434
435 /* Increment number of inner iterations */
436 inneriter += j_index_end - j_index_start;
437
438 /* Outer loop uses 13 flops */
439 }
440
441 /* Increment number of outer iterations */
442 outeriter += nri;
443
444 /* Update outer/inner flops */
445
446 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*63)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*63
;
447}