Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_c.c
Location:line 508, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 int vfitab;
93 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
94 real *vftab;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 vftab = kernel_data->table_elec_vdw->data;
114 vftabscale = kernel_data->table_elec_vdw->scale;
115
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq1 = facel*charge[inr+1];
119 iq2 = facel*charge[inr+2];
120 iq3 = facel*charge[inr+3];
121 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
122
123 outeriter = 0;
124 inneriter = 0;
125
126 /* Start outer loop over neighborlists */
127 for(iidx=0; iidx<nri; iidx++)
128 {
129 /* Load shift vector for this list */
130 i_shift_offset = DIM3*shiftidx[iidx];
131 shX = shiftvec[i_shift_offset+XX0];
132 shY = shiftvec[i_shift_offset+YY1];
133 shZ = shiftvec[i_shift_offset+ZZ2];
134
135 /* Load limits for loop over neighbors */
136 j_index_start = jindex[iidx];
137 j_index_end = jindex[iidx+1];
138
139 /* Get outer coordinate index */
140 inr = iinr[iidx];
141 i_coord_offset = DIM3*inr;
142
143 /* Load i particle coords and add shift vector */
144 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
145 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
146 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
147 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
148 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
149 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
150 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
151 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
152 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
153 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
154 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
155 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
156
157 fix0 = 0.0;
158 fiy0 = 0.0;
159 fiz0 = 0.0;
160 fix1 = 0.0;
161 fiy1 = 0.0;
162 fiz1 = 0.0;
163 fix2 = 0.0;
164 fiy2 = 0.0;
165 fiz2 = 0.0;
166 fix3 = 0.0;
167 fiy3 = 0.0;
168 fiz3 = 0.0;
169
170 /* Reset potential sums */
171 velecsum = 0.0;
172 vvdwsum = 0.0;
173
174 /* Start inner kernel loop */
175 for(jidx=j_index_start; jidx<j_index_end; jidx++)
176 {
177 /* Get j neighbor index, and coordinate index */
178 jnr = jjnr[jidx];
179 j_coord_offset = DIM3*jnr;
180
181 /* load j atom coordinates */
182 jx0 = x[j_coord_offset+DIM3*0+XX0];
183 jy0 = x[j_coord_offset+DIM3*0+YY1];
184 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
185
186 /* Calculate displacement vector */
187 dx00 = ix0 - jx0;
188 dy00 = iy0 - jy0;
189 dz00 = iz0 - jz0;
190 dx10 = ix1 - jx0;
191 dy10 = iy1 - jy0;
192 dz10 = iz1 - jz0;
193 dx20 = ix2 - jx0;
194 dy20 = iy2 - jy0;
195 dz20 = iz2 - jz0;
196 dx30 = ix3 - jx0;
197 dy30 = iy3 - jy0;
198 dz30 = iz3 - jz0;
199
200 /* Calculate squared distance and things based on it */
201 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
202 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
203 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
204 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
205
206 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
207 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
208 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
209 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
210
211 /* Load parameters for j particles */
212 jq0 = charge[jnr+0];
213 vdwjidx0 = 2*vdwtype[jnr+0];
214
215 /**************************
216 * CALCULATE INTERACTIONS *
217 **************************/
218
219 r00 = rsq00*rinv00;
220
221 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
222 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
223
224 /* Calculate table index by multiplying r with table scale and truncate to integer */
225 rt = r00*vftabscale;
226 vfitab = rt;
227 vfeps = rt-vfitab;
228 vfitab = 3*4*vfitab;
229
230 /* CUBIC SPLINE TABLE DISPERSION */
231 vfitab += 4;
232 Y = vftab[vfitab];
233 F = vftab[vfitab+1];
234 Geps = vfeps*vftab[vfitab+2];
235 Heps2 = vfeps*vfeps*vftab[vfitab+3];
236 Fp = F+Geps+Heps2;
237 VV = Y+vfeps*Fp;
238 vvdw6 = c6_00*VV;
239 FF = Fp+Geps+2.0*Heps2;
240 fvdw6 = c6_00*FF;
241
242 /* CUBIC SPLINE TABLE REPULSION */
243 Y = vftab[vfitab+4];
244 F = vftab[vfitab+5];
245 Geps = vfeps*vftab[vfitab+6];
246 Heps2 = vfeps*vfeps*vftab[vfitab+7];
247 Fp = F+Geps+Heps2;
248 VV = Y+vfeps*Fp;
249 vvdw12 = c12_00*VV;
250 FF = Fp+Geps+2.0*Heps2;
251 fvdw12 = c12_00*FF;
252 vvdw = vvdw12+vvdw6;
253 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
254
255 /* Update potential sums from outer loop */
256 vvdwsum += vvdw;
257
258 fscal = fvdw;
259
260 /* Calculate temporary vectorial force */
261 tx = fscal*dx00;
262 ty = fscal*dy00;
263 tz = fscal*dz00;
264
265 /* Update vectorial force */
266 fix0 += tx;
267 fiy0 += ty;
268 fiz0 += tz;
269 f[j_coord_offset+DIM3*0+XX0] -= tx;
270 f[j_coord_offset+DIM3*0+YY1] -= ty;
271 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
272
273 /**************************
274 * CALCULATE INTERACTIONS *
275 **************************/
276
277 r10 = rsq10*rinv10;
278
279 qq10 = iq1*jq0;
280
281 /* Calculate table index by multiplying r with table scale and truncate to integer */
282 rt = r10*vftabscale;
283 vfitab = rt;
284 vfeps = rt-vfitab;
285 vfitab = 3*4*vfitab;
286
287 /* CUBIC SPLINE TABLE ELECTROSTATICS */
288 Y = vftab[vfitab];
289 F = vftab[vfitab+1];
290 Geps = vfeps*vftab[vfitab+2];
291 Heps2 = vfeps*vfeps*vftab[vfitab+3];
292 Fp = F+Geps+Heps2;
293 VV = Y+vfeps*Fp;
294 velec = qq10*VV;
295 FF = Fp+Geps+2.0*Heps2;
296 felec = -qq10*FF*vftabscale*rinv10;
297
298 /* Update potential sums from outer loop */
299 velecsum += velec;
300
301 fscal = felec;
302
303 /* Calculate temporary vectorial force */
304 tx = fscal*dx10;
305 ty = fscal*dy10;
306 tz = fscal*dz10;
307
308 /* Update vectorial force */
309 fix1 += tx;
310 fiy1 += ty;
311 fiz1 += tz;
312 f[j_coord_offset+DIM3*0+XX0] -= tx;
313 f[j_coord_offset+DIM3*0+YY1] -= ty;
314 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
315
316 /**************************
317 * CALCULATE INTERACTIONS *
318 **************************/
319
320 r20 = rsq20*rinv20;
321
322 qq20 = iq2*jq0;
323
324 /* Calculate table index by multiplying r with table scale and truncate to integer */
325 rt = r20*vftabscale;
326 vfitab = rt;
327 vfeps = rt-vfitab;
328 vfitab = 3*4*vfitab;
329
330 /* CUBIC SPLINE TABLE ELECTROSTATICS */
331 Y = vftab[vfitab];
332 F = vftab[vfitab+1];
333 Geps = vfeps*vftab[vfitab+2];
334 Heps2 = vfeps*vfeps*vftab[vfitab+3];
335 Fp = F+Geps+Heps2;
336 VV = Y+vfeps*Fp;
337 velec = qq20*VV;
338 FF = Fp+Geps+2.0*Heps2;
339 felec = -qq20*FF*vftabscale*rinv20;
340
341 /* Update potential sums from outer loop */
342 velecsum += velec;
343
344 fscal = felec;
345
346 /* Calculate temporary vectorial force */
347 tx = fscal*dx20;
348 ty = fscal*dy20;
349 tz = fscal*dz20;
350
351 /* Update vectorial force */
352 fix2 += tx;
353 fiy2 += ty;
354 fiz2 += tz;
355 f[j_coord_offset+DIM3*0+XX0] -= tx;
356 f[j_coord_offset+DIM3*0+YY1] -= ty;
357 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
358
359 /**************************
360 * CALCULATE INTERACTIONS *
361 **************************/
362
363 r30 = rsq30*rinv30;
364
365 qq30 = iq3*jq0;
366
367 /* Calculate table index by multiplying r with table scale and truncate to integer */
368 rt = r30*vftabscale;
369 vfitab = rt;
370 vfeps = rt-vfitab;
371 vfitab = 3*4*vfitab;
372
373 /* CUBIC SPLINE TABLE ELECTROSTATICS */
374 Y = vftab[vfitab];
375 F = vftab[vfitab+1];
376 Geps = vfeps*vftab[vfitab+2];
377 Heps2 = vfeps*vfeps*vftab[vfitab+3];
378 Fp = F+Geps+Heps2;
379 VV = Y+vfeps*Fp;
380 velec = qq30*VV;
381 FF = Fp+Geps+2.0*Heps2;
382 felec = -qq30*FF*vftabscale*rinv30;
383
384 /* Update potential sums from outer loop */
385 velecsum += velec;
386
387 fscal = felec;
388
389 /* Calculate temporary vectorial force */
390 tx = fscal*dx30;
391 ty = fscal*dy30;
392 tz = fscal*dz30;
393
394 /* Update vectorial force */
395 fix3 += tx;
396 fiy3 += ty;
397 fiz3 += tz;
398 f[j_coord_offset+DIM3*0+XX0] -= tx;
399 f[j_coord_offset+DIM3*0+YY1] -= ty;
400 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
401
402 /* Inner loop uses 181 flops */
403 }
404 /* End of innermost loop */
405
406 tx = ty = tz = 0;
407 f[i_coord_offset+DIM3*0+XX0] += fix0;
408 f[i_coord_offset+DIM3*0+YY1] += fiy0;
409 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
410 tx += fix0;
411 ty += fiy0;
412 tz += fiz0;
413 f[i_coord_offset+DIM3*1+XX0] += fix1;
414 f[i_coord_offset+DIM3*1+YY1] += fiy1;
415 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
416 tx += fix1;
417 ty += fiy1;
418 tz += fiz1;
419 f[i_coord_offset+DIM3*2+XX0] += fix2;
420 f[i_coord_offset+DIM3*2+YY1] += fiy2;
421 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
422 tx += fix2;
423 ty += fiy2;
424 tz += fiz2;
425 f[i_coord_offset+DIM3*3+XX0] += fix3;
426 f[i_coord_offset+DIM3*3+YY1] += fiy3;
427 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
428 tx += fix3;
429 ty += fiy3;
430 tz += fiz3;
431 fshift[i_shift_offset+XX0] += tx;
432 fshift[i_shift_offset+YY1] += ty;
433 fshift[i_shift_offset+ZZ2] += tz;
434
435 ggid = gid[iidx];
436 /* Update potential energies */
437 kernel_data->energygrp_elec[ggid] += velecsum;
438 kernel_data->energygrp_vdw[ggid] += vvdwsum;
439
440 /* Increment number of inner iterations */
441 inneriter += j_index_end - j_index_start;
442
443 /* Outer loop uses 41 flops */
444 }
445
446 /* Increment number of outer iterations */
447 outeriter += nri;
448
449 /* Update outer/inner flops */
450
451 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*181)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*181
;
452}
453/*
454 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_c
455 * Electrostatics interaction: CubicSplineTable
456 * VdW interaction: CubicSplineTable
457 * Geometry: Water4-Particle
458 * Calculate force/pot: Force
459 */
460void
461nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_c
462 (t_nblist * gmx_restrict__restrict nlist,
463 rvec * gmx_restrict__restrict xx,
464 rvec * gmx_restrict__restrict ff,
465 t_forcerec * gmx_restrict__restrict fr,
466 t_mdatoms * gmx_restrict__restrict mdatoms,
467 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
468 t_nrnb * gmx_restrict__restrict nrnb)
469{
470 int i_shift_offset,i_coord_offset,j_coord_offset;
471 int j_index_start,j_index_end;
472 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
473 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
474 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
475 real *shiftvec,*fshift,*x,*f;
476 int vdwioffset0;
477 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
478 int vdwioffset1;
479 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
480 int vdwioffset2;
481 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
482 int vdwioffset3;
483 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
484 int vdwjidx0;
485 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
486 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
487 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
488 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
489 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
490 real velec,felec,velecsum,facel,crf,krf,krf2;
491 real *charge;
492 int nvdwtype;
493 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
494 int *vdwtype;
495 real *vdwparam;
496 int vfitab;
497 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
498 real *vftab;
499
500 x = xx[0];
501 f = ff[0];
502
503 nri = nlist->nri;
504 iinr = nlist->iinr;
505 jindex = nlist->jindex;
506 jjnr = nlist->jjnr;
507 shiftidx = nlist->shift;
508 gid = nlist->gid;
Value stored to 'gid' is never read
509 shiftvec = fr->shift_vec[0];
510 fshift = fr->fshift[0];
511 facel = fr->epsfac;
512 charge = mdatoms->chargeA;
513 nvdwtype = fr->ntype;
514 vdwparam = fr->nbfp;
515 vdwtype = mdatoms->typeA;
516
517 vftab = kernel_data->table_elec_vdw->data;
518 vftabscale = kernel_data->table_elec_vdw->scale;
519
520 /* Setup water-specific parameters */
521 inr = nlist->iinr[0];
522 iq1 = facel*charge[inr+1];
523 iq2 = facel*charge[inr+2];
524 iq3 = facel*charge[inr+3];
525 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
526
527 outeriter = 0;
528 inneriter = 0;
529
530 /* Start outer loop over neighborlists */
531 for(iidx=0; iidx<nri; iidx++)
532 {
533 /* Load shift vector for this list */
534 i_shift_offset = DIM3*shiftidx[iidx];
535 shX = shiftvec[i_shift_offset+XX0];
536 shY = shiftvec[i_shift_offset+YY1];
537 shZ = shiftvec[i_shift_offset+ZZ2];
538
539 /* Load limits for loop over neighbors */
540 j_index_start = jindex[iidx];
541 j_index_end = jindex[iidx+1];
542
543 /* Get outer coordinate index */
544 inr = iinr[iidx];
545 i_coord_offset = DIM3*inr;
546
547 /* Load i particle coords and add shift vector */
548 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
549 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
550 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
551 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
552 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
553 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
554 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
555 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
556 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
557 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
558 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
559 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
560
561 fix0 = 0.0;
562 fiy0 = 0.0;
563 fiz0 = 0.0;
564 fix1 = 0.0;
565 fiy1 = 0.0;
566 fiz1 = 0.0;
567 fix2 = 0.0;
568 fiy2 = 0.0;
569 fiz2 = 0.0;
570 fix3 = 0.0;
571 fiy3 = 0.0;
572 fiz3 = 0.0;
573
574 /* Start inner kernel loop */
575 for(jidx=j_index_start; jidx<j_index_end; jidx++)
576 {
577 /* Get j neighbor index, and coordinate index */
578 jnr = jjnr[jidx];
579 j_coord_offset = DIM3*jnr;
580
581 /* load j atom coordinates */
582 jx0 = x[j_coord_offset+DIM3*0+XX0];
583 jy0 = x[j_coord_offset+DIM3*0+YY1];
584 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
585
586 /* Calculate displacement vector */
587 dx00 = ix0 - jx0;
588 dy00 = iy0 - jy0;
589 dz00 = iz0 - jz0;
590 dx10 = ix1 - jx0;
591 dy10 = iy1 - jy0;
592 dz10 = iz1 - jz0;
593 dx20 = ix2 - jx0;
594 dy20 = iy2 - jy0;
595 dz20 = iz2 - jz0;
596 dx30 = ix3 - jx0;
597 dy30 = iy3 - jy0;
598 dz30 = iz3 - jz0;
599
600 /* Calculate squared distance and things based on it */
601 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
602 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
603 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
604 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
605
606 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
607 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
608 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
609 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
610
611 /* Load parameters for j particles */
612 jq0 = charge[jnr+0];
613 vdwjidx0 = 2*vdwtype[jnr+0];
614
615 /**************************
616 * CALCULATE INTERACTIONS *
617 **************************/
618
619 r00 = rsq00*rinv00;
620
621 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
622 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
623
624 /* Calculate table index by multiplying r with table scale and truncate to integer */
625 rt = r00*vftabscale;
626 vfitab = rt;
627 vfeps = rt-vfitab;
628 vfitab = 3*4*vfitab;
629
630 /* CUBIC SPLINE TABLE DISPERSION */
631 vfitab += 4;
632 F = vftab[vfitab+1];
633 Geps = vfeps*vftab[vfitab+2];
634 Heps2 = vfeps*vfeps*vftab[vfitab+3];
635 Fp = F+Geps+Heps2;
636 FF = Fp+Geps+2.0*Heps2;
637 fvdw6 = c6_00*FF;
638
639 /* CUBIC SPLINE TABLE REPULSION */
640 F = vftab[vfitab+5];
641 Geps = vfeps*vftab[vfitab+6];
642 Heps2 = vfeps*vfeps*vftab[vfitab+7];
643 Fp = F+Geps+Heps2;
644 FF = Fp+Geps+2.0*Heps2;
645 fvdw12 = c12_00*FF;
646 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
647
648 fscal = fvdw;
649
650 /* Calculate temporary vectorial force */
651 tx = fscal*dx00;
652 ty = fscal*dy00;
653 tz = fscal*dz00;
654
655 /* Update vectorial force */
656 fix0 += tx;
657 fiy0 += ty;
658 fiz0 += tz;
659 f[j_coord_offset+DIM3*0+XX0] -= tx;
660 f[j_coord_offset+DIM3*0+YY1] -= ty;
661 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
662
663 /**************************
664 * CALCULATE INTERACTIONS *
665 **************************/
666
667 r10 = rsq10*rinv10;
668
669 qq10 = iq1*jq0;
670
671 /* Calculate table index by multiplying r with table scale and truncate to integer */
672 rt = r10*vftabscale;
673 vfitab = rt;
674 vfeps = rt-vfitab;
675 vfitab = 3*4*vfitab;
676
677 /* CUBIC SPLINE TABLE ELECTROSTATICS */
678 F = vftab[vfitab+1];
679 Geps = vfeps*vftab[vfitab+2];
680 Heps2 = vfeps*vfeps*vftab[vfitab+3];
681 Fp = F+Geps+Heps2;
682 FF = Fp+Geps+2.0*Heps2;
683 felec = -qq10*FF*vftabscale*rinv10;
684
685 fscal = felec;
686
687 /* Calculate temporary vectorial force */
688 tx = fscal*dx10;
689 ty = fscal*dy10;
690 tz = fscal*dz10;
691
692 /* Update vectorial force */
693 fix1 += tx;
694 fiy1 += ty;
695 fiz1 += tz;
696 f[j_coord_offset+DIM3*0+XX0] -= tx;
697 f[j_coord_offset+DIM3*0+YY1] -= ty;
698 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
699
700 /**************************
701 * CALCULATE INTERACTIONS *
702 **************************/
703
704 r20 = rsq20*rinv20;
705
706 qq20 = iq2*jq0;
707
708 /* Calculate table index by multiplying r with table scale and truncate to integer */
709 rt = r20*vftabscale;
710 vfitab = rt;
711 vfeps = rt-vfitab;
712 vfitab = 3*4*vfitab;
713
714 /* CUBIC SPLINE TABLE ELECTROSTATICS */
715 F = vftab[vfitab+1];
716 Geps = vfeps*vftab[vfitab+2];
717 Heps2 = vfeps*vfeps*vftab[vfitab+3];
718 Fp = F+Geps+Heps2;
719 FF = Fp+Geps+2.0*Heps2;
720 felec = -qq20*FF*vftabscale*rinv20;
721
722 fscal = felec;
723
724 /* Calculate temporary vectorial force */
725 tx = fscal*dx20;
726 ty = fscal*dy20;
727 tz = fscal*dz20;
728
729 /* Update vectorial force */
730 fix2 += tx;
731 fiy2 += ty;
732 fiz2 += tz;
733 f[j_coord_offset+DIM3*0+XX0] -= tx;
734 f[j_coord_offset+DIM3*0+YY1] -= ty;
735 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
736
737 /**************************
738 * CALCULATE INTERACTIONS *
739 **************************/
740
741 r30 = rsq30*rinv30;
742
743 qq30 = iq3*jq0;
744
745 /* Calculate table index by multiplying r with table scale and truncate to integer */
746 rt = r30*vftabscale;
747 vfitab = rt;
748 vfeps = rt-vfitab;
749 vfitab = 3*4*vfitab;
750
751 /* CUBIC SPLINE TABLE ELECTROSTATICS */
752 F = vftab[vfitab+1];
753 Geps = vfeps*vftab[vfitab+2];
754 Heps2 = vfeps*vfeps*vftab[vfitab+3];
755 Fp = F+Geps+Heps2;
756 FF = Fp+Geps+2.0*Heps2;
757 felec = -qq30*FF*vftabscale*rinv30;
758
759 fscal = felec;
760
761 /* Calculate temporary vectorial force */
762 tx = fscal*dx30;
763 ty = fscal*dy30;
764 tz = fscal*dz30;
765
766 /* Update vectorial force */
767 fix3 += tx;
768 fiy3 += ty;
769 fiz3 += tz;
770 f[j_coord_offset+DIM3*0+XX0] -= tx;
771 f[j_coord_offset+DIM3*0+YY1] -= ty;
772 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
773
774 /* Inner loop uses 161 flops */
775 }
776 /* End of innermost loop */
777
778 tx = ty = tz = 0;
779 f[i_coord_offset+DIM3*0+XX0] += fix0;
780 f[i_coord_offset+DIM3*0+YY1] += fiy0;
781 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
782 tx += fix0;
783 ty += fiy0;
784 tz += fiz0;
785 f[i_coord_offset+DIM3*1+XX0] += fix1;
786 f[i_coord_offset+DIM3*1+YY1] += fiy1;
787 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
788 tx += fix1;
789 ty += fiy1;
790 tz += fiz1;
791 f[i_coord_offset+DIM3*2+XX0] += fix2;
792 f[i_coord_offset+DIM3*2+YY1] += fiy2;
793 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
794 tx += fix2;
795 ty += fiy2;
796 tz += fiz2;
797 f[i_coord_offset+DIM3*3+XX0] += fix3;
798 f[i_coord_offset+DIM3*3+YY1] += fiy3;
799 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
800 tx += fix3;
801 ty += fiy3;
802 tz += fiz3;
803 fshift[i_shift_offset+XX0] += tx;
804 fshift[i_shift_offset+YY1] += ty;
805 fshift[i_shift_offset+ZZ2] += tz;
806
807 /* Increment number of inner iterations */
808 inneriter += j_index_end - j_index_start;
809
810 /* Outer loop uses 39 flops */
811 }
812
813 /* Increment number of outer iterations */
814 outeriter += nri;
815
816 /* Update outer/inner flops */
817
818 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*161)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*161
;
819}