Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwNone_GeomP1P1_sse4_1_single.c
Location:line 96, column 22
Description:Value stored to 'signbit' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: None
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 __m128i ewitab;
93 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94 real *ewtab;
95 __m128 dummy_mask,cutoff_mask;
96 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
Value stored to 'signbit' during its initialization is never read
97 __m128 one = _mm_set1_ps(1.0);
98 __m128 two = _mm_set1_ps(2.0);
99 x = xx[0];
100 f = ff[0];
101
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = _mm_set1_ps(fr->epsfac);
111 charge = mdatoms->chargeA;
112
113 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
114 ewtab = fr->ic->tabq_coul_FDV0;
115 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
116 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
117
118 /* Avoid stupid compiler warnings */
119 jnrA = jnrB = jnrC = jnrD = 0;
120 j_coord_offsetA = 0;
121 j_coord_offsetB = 0;
122 j_coord_offsetC = 0;
123 j_coord_offsetD = 0;
124
125 outeriter = 0;
126 inneriter = 0;
127
128 for(iidx=0;iidx<4*DIM3;iidx++)
129 {
130 scratch[iidx] = 0.0;
131 }
132
133 /* Start outer loop over neighborlists */
134 for(iidx=0; iidx<nri; iidx++)
135 {
136 /* Load shift vector for this list */
137 i_shift_offset = DIM3*shiftidx[iidx];
138
139 /* Load limits for loop over neighbors */
140 j_index_start = jindex[iidx];
141 j_index_end = jindex[iidx+1];
142
143 /* Get outer coordinate index */
144 inr = iinr[iidx];
145 i_coord_offset = DIM3*inr;
146
147 /* Load i particle coords and add shift vector */
148 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150 fix0 = _mm_setzero_ps();
151 fiy0 = _mm_setzero_ps();
152 fiz0 = _mm_setzero_ps();
153
154 /* Load parameters for i particles */
155 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
156
157 /* Reset potential sums */
158 velecsum = _mm_setzero_ps();
159
160 /* Start inner kernel loop */
161 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162 {
163
164 /* Get j neighbor index, and coordinate index */
165 jnrA = jjnr[jidx];
166 jnrB = jjnr[jidx+1];
167 jnrC = jjnr[jidx+2];
168 jnrD = jjnr[jidx+3];
169 j_coord_offsetA = DIM3*jnrA;
170 j_coord_offsetB = DIM3*jnrB;
171 j_coord_offsetC = DIM3*jnrC;
172 j_coord_offsetD = DIM3*jnrD;
173
174 /* load j atom coordinates */
175 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176 x+j_coord_offsetC,x+j_coord_offsetD,
177 &jx0,&jy0,&jz0);
178
179 /* Calculate displacement vector */
180 dx00 = _mm_sub_ps(ix0,jx0);
181 dy00 = _mm_sub_ps(iy0,jy0);
182 dz00 = _mm_sub_ps(iz0,jz0);
183
184 /* Calculate squared distance and things based on it */
185 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
186
187 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
188
189 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
190
191 /* Load parameters for j particles */
192 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
193 charge+jnrC+0,charge+jnrD+0);
194
195 /**************************
196 * CALCULATE INTERACTIONS *
197 **************************/
198
199 r00 = _mm_mul_ps(rsq00,rinv00);
200
201 /* Compute parameters for interactions between i and j atoms */
202 qq00 = _mm_mul_ps(iq0,jq0);
203
204 /* EWALD ELECTROSTATICS */
205
206 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
207 ewrt = _mm_mul_ps(r00,ewtabscale);
208 ewitab = _mm_cvttps_epi32(ewrt);
209 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
210 ewitab = _mm_slli_epi32(ewitab,2);
211 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
212 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
213 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
214 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
215 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
216 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
217 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
218 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
219 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
220
221 /* Update potential sum for this i atom from the interaction with this j atom. */
222 velecsum = _mm_add_ps(velecsum,velec);
223
224 fscal = felec;
225
226 /* Calculate temporary vectorial force */
227 tx = _mm_mul_ps(fscal,dx00);
228 ty = _mm_mul_ps(fscal,dy00);
229 tz = _mm_mul_ps(fscal,dz00);
230
231 /* Update vectorial force */
232 fix0 = _mm_add_ps(fix0,tx);
233 fiy0 = _mm_add_ps(fiy0,ty);
234 fiz0 = _mm_add_ps(fiz0,tz);
235
236 fjptrA = f+j_coord_offsetA;
237 fjptrB = f+j_coord_offsetB;
238 fjptrC = f+j_coord_offsetC;
239 fjptrD = f+j_coord_offsetD;
240 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
241
242 /* Inner loop uses 41 flops */
243 }
244
245 if(jidx<j_index_end)
246 {
247
248 /* Get j neighbor index, and coordinate index */
249 jnrlistA = jjnr[jidx];
250 jnrlistB = jjnr[jidx+1];
251 jnrlistC = jjnr[jidx+2];
252 jnrlistD = jjnr[jidx+3];
253 /* Sign of each element will be negative for non-real atoms.
254 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
255 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
256 */
257 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
258 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
259 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
260 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
261 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
262 j_coord_offsetA = DIM3*jnrA;
263 j_coord_offsetB = DIM3*jnrB;
264 j_coord_offsetC = DIM3*jnrC;
265 j_coord_offsetD = DIM3*jnrD;
266
267 /* load j atom coordinates */
268 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
269 x+j_coord_offsetC,x+j_coord_offsetD,
270 &jx0,&jy0,&jz0);
271
272 /* Calculate displacement vector */
273 dx00 = _mm_sub_ps(ix0,jx0);
274 dy00 = _mm_sub_ps(iy0,jy0);
275 dz00 = _mm_sub_ps(iz0,jz0);
276
277 /* Calculate squared distance and things based on it */
278 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
279
280 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
281
282 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
283
284 /* Load parameters for j particles */
285 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
286 charge+jnrC+0,charge+jnrD+0);
287
288 /**************************
289 * CALCULATE INTERACTIONS *
290 **************************/
291
292 r00 = _mm_mul_ps(rsq00,rinv00);
293 r00 = _mm_andnot_ps(dummy_mask,r00);
294
295 /* Compute parameters for interactions between i and j atoms */
296 qq00 = _mm_mul_ps(iq0,jq0);
297
298 /* EWALD ELECTROSTATICS */
299
300 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
301 ewrt = _mm_mul_ps(r00,ewtabscale);
302 ewitab = _mm_cvttps_epi32(ewrt);
303 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
304 ewitab = _mm_slli_epi32(ewitab,2);
305 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
306 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
307 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
308 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
309 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
310 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
311 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
312 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
313 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
314
315 /* Update potential sum for this i atom from the interaction with this j atom. */
316 velec = _mm_andnot_ps(dummy_mask,velec);
317 velecsum = _mm_add_ps(velecsum,velec);
318
319 fscal = felec;
320
321 fscal = _mm_andnot_ps(dummy_mask,fscal);
322
323 /* Calculate temporary vectorial force */
324 tx = _mm_mul_ps(fscal,dx00);
325 ty = _mm_mul_ps(fscal,dy00);
326 tz = _mm_mul_ps(fscal,dz00);
327
328 /* Update vectorial force */
329 fix0 = _mm_add_ps(fix0,tx);
330 fiy0 = _mm_add_ps(fiy0,ty);
331 fiz0 = _mm_add_ps(fiz0,tz);
332
333 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
334 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
335 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
336 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
337 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
338
339 /* Inner loop uses 42 flops */
340 }
341
342 /* End of innermost loop */
343
344 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
345 f+i_coord_offset,fshift+i_shift_offset);
346
347 ggid = gid[iidx];
348 /* Update potential energies */
349 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
350
351 /* Increment number of inner iterations */
352 inneriter += j_index_end - j_index_start;
353
354 /* Outer loop uses 8 flops */
355 }
356
357 /* Increment number of outer iterations */
358 outeriter += nri;
359
360 /* Update outer/inner flops */
361
362 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*42)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*8 + inneriter
*42
;
363}
364/*
365 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_single
366 * Electrostatics interaction: Ewald
367 * VdW interaction: None
368 * Geometry: Particle-Particle
369 * Calculate force/pot: Force
370 */
371void
372nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_single
373 (t_nblist * gmx_restrict nlist,
374 rvec * gmx_restrict xx,
375 rvec * gmx_restrict ff,
376 t_forcerec * gmx_restrict fr,
377 t_mdatoms * gmx_restrict mdatoms,
378 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
379 t_nrnb * gmx_restrict nrnb)
380{
381 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
382 * just 0 for non-waters.
383 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
384 * jnr indices corresponding to data put in the four positions in the SIMD register.
385 */
386 int i_shift_offset,i_coord_offset,outeriter,inneriter;
387 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
388 int jnrA,jnrB,jnrC,jnrD;
389 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
390 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
391 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
392 real rcutoff_scalar;
393 real *shiftvec,*fshift,*x,*f;
394 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
395 real scratch[4*DIM3];
396 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
397 int vdwioffset0;
398 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
399 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
400 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
401 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
402 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
403 real *charge;
404 __m128i ewitab;
405 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
406 real *ewtab;
407 __m128 dummy_mask,cutoff_mask;
408 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
409 __m128 one = _mm_set1_ps(1.0);
410 __m128 two = _mm_set1_ps(2.0);
411 x = xx[0];
412 f = ff[0];
413
414 nri = nlist->nri;
415 iinr = nlist->iinr;
416 jindex = nlist->jindex;
417 jjnr = nlist->jjnr;
418 shiftidx = nlist->shift;
419 gid = nlist->gid;
420 shiftvec = fr->shift_vec[0];
421 fshift = fr->fshift[0];
422 facel = _mm_set1_ps(fr->epsfac);
423 charge = mdatoms->chargeA;
424
425 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
426 ewtab = fr->ic->tabq_coul_F;
427 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
428 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
429
430 /* Avoid stupid compiler warnings */
431 jnrA = jnrB = jnrC = jnrD = 0;
432 j_coord_offsetA = 0;
433 j_coord_offsetB = 0;
434 j_coord_offsetC = 0;
435 j_coord_offsetD = 0;
436
437 outeriter = 0;
438 inneriter = 0;
439
440 for(iidx=0;iidx<4*DIM3;iidx++)
441 {
442 scratch[iidx] = 0.0;
443 }
444
445 /* Start outer loop over neighborlists */
446 for(iidx=0; iidx<nri; iidx++)
447 {
448 /* Load shift vector for this list */
449 i_shift_offset = DIM3*shiftidx[iidx];
450
451 /* Load limits for loop over neighbors */
452 j_index_start = jindex[iidx];
453 j_index_end = jindex[iidx+1];
454
455 /* Get outer coordinate index */
456 inr = iinr[iidx];
457 i_coord_offset = DIM3*inr;
458
459 /* Load i particle coords and add shift vector */
460 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
461
462 fix0 = _mm_setzero_ps();
463 fiy0 = _mm_setzero_ps();
464 fiz0 = _mm_setzero_ps();
465
466 /* Load parameters for i particles */
467 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
468
469 /* Start inner kernel loop */
470 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
471 {
472
473 /* Get j neighbor index, and coordinate index */
474 jnrA = jjnr[jidx];
475 jnrB = jjnr[jidx+1];
476 jnrC = jjnr[jidx+2];
477 jnrD = jjnr[jidx+3];
478 j_coord_offsetA = DIM3*jnrA;
479 j_coord_offsetB = DIM3*jnrB;
480 j_coord_offsetC = DIM3*jnrC;
481 j_coord_offsetD = DIM3*jnrD;
482
483 /* load j atom coordinates */
484 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
485 x+j_coord_offsetC,x+j_coord_offsetD,
486 &jx0,&jy0,&jz0);
487
488 /* Calculate displacement vector */
489 dx00 = _mm_sub_ps(ix0,jx0);
490 dy00 = _mm_sub_ps(iy0,jy0);
491 dz00 = _mm_sub_ps(iz0,jz0);
492
493 /* Calculate squared distance and things based on it */
494 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
495
496 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
497
498 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
499
500 /* Load parameters for j particles */
501 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
502 charge+jnrC+0,charge+jnrD+0);
503
504 /**************************
505 * CALCULATE INTERACTIONS *
506 **************************/
507
508 r00 = _mm_mul_ps(rsq00,rinv00);
509
510 /* Compute parameters for interactions between i and j atoms */
511 qq00 = _mm_mul_ps(iq0,jq0);
512
513 /* EWALD ELECTROSTATICS */
514
515 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
516 ewrt = _mm_mul_ps(r00,ewtabscale);
517 ewitab = _mm_cvttps_epi32(ewrt);
518 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
519 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
520 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
521 &ewtabF,&ewtabFn);
522 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
523 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
524
525 fscal = felec;
526
527 /* Calculate temporary vectorial force */
528 tx = _mm_mul_ps(fscal,dx00);
529 ty = _mm_mul_ps(fscal,dy00);
530 tz = _mm_mul_ps(fscal,dz00);
531
532 /* Update vectorial force */
533 fix0 = _mm_add_ps(fix0,tx);
534 fiy0 = _mm_add_ps(fiy0,ty);
535 fiz0 = _mm_add_ps(fiz0,tz);
536
537 fjptrA = f+j_coord_offsetA;
538 fjptrB = f+j_coord_offsetB;
539 fjptrC = f+j_coord_offsetC;
540 fjptrD = f+j_coord_offsetD;
541 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
542
543 /* Inner loop uses 36 flops */
544 }
545
546 if(jidx<j_index_end)
547 {
548
549 /* Get j neighbor index, and coordinate index */
550 jnrlistA = jjnr[jidx];
551 jnrlistB = jjnr[jidx+1];
552 jnrlistC = jjnr[jidx+2];
553 jnrlistD = jjnr[jidx+3];
554 /* Sign of each element will be negative for non-real atoms.
555 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
556 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
557 */
558 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
559 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
560 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
561 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
562 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
563 j_coord_offsetA = DIM3*jnrA;
564 j_coord_offsetB = DIM3*jnrB;
565 j_coord_offsetC = DIM3*jnrC;
566 j_coord_offsetD = DIM3*jnrD;
567
568 /* load j atom coordinates */
569 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
570 x+j_coord_offsetC,x+j_coord_offsetD,
571 &jx0,&jy0,&jz0);
572
573 /* Calculate displacement vector */
574 dx00 = _mm_sub_ps(ix0,jx0);
575 dy00 = _mm_sub_ps(iy0,jy0);
576 dz00 = _mm_sub_ps(iz0,jz0);
577
578 /* Calculate squared distance and things based on it */
579 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
580
581 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
582
583 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
584
585 /* Load parameters for j particles */
586 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
587 charge+jnrC+0,charge+jnrD+0);
588
589 /**************************
590 * CALCULATE INTERACTIONS *
591 **************************/
592
593 r00 = _mm_mul_ps(rsq00,rinv00);
594 r00 = _mm_andnot_ps(dummy_mask,r00);
595
596 /* Compute parameters for interactions between i and j atoms */
597 qq00 = _mm_mul_ps(iq0,jq0);
598
599 /* EWALD ELECTROSTATICS */
600
601 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602 ewrt = _mm_mul_ps(r00,ewtabscale);
603 ewitab = _mm_cvttps_epi32(ewrt);
604 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
605 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
606 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
607 &ewtabF,&ewtabFn);
608 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
609 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
610
611 fscal = felec;
612
613 fscal = _mm_andnot_ps(dummy_mask,fscal);
614
615 /* Calculate temporary vectorial force */
616 tx = _mm_mul_ps(fscal,dx00);
617 ty = _mm_mul_ps(fscal,dy00);
618 tz = _mm_mul_ps(fscal,dz00);
619
620 /* Update vectorial force */
621 fix0 = _mm_add_ps(fix0,tx);
622 fiy0 = _mm_add_ps(fiy0,ty);
623 fiz0 = _mm_add_ps(fiz0,tz);
624
625 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
626 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
627 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
628 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
629 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
630
631 /* Inner loop uses 37 flops */
632 }
633
634 /* End of innermost loop */
635
636 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
637 f+i_coord_offset,fshift+i_shift_offset);
638
639 /* Increment number of inner iterations */
640 inneriter += j_index_end - j_index_start;
641
642 /* Outer loop uses 7 flops */
643 }
644
645 /* Increment number of outer iterations */
646 outeriter += nri;
647
648 /* Update outer/inner flops */
649
650 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*37)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*7 + inneriter*
37
;
651}