Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCoul_VdwLJ_GeomW4P1_c.c
Location:line 433, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_c
51 * Electrostatics interaction: Coulomb
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 /* Setup water-specific parameters */
111 inr = nlist->iinr[0];
112 iq1 = facel*charge[inr+1];
113 iq2 = facel*charge[inr+2];
114 iq3 = facel*charge[inr+3];
115 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
116
117 outeriter = 0;
118 inneriter = 0;
119
120 /* Start outer loop over neighborlists */
121 for(iidx=0; iidx<nri; iidx++)
122 {
123 /* Load shift vector for this list */
124 i_shift_offset = DIM3*shiftidx[iidx];
125 shX = shiftvec[i_shift_offset+XX0];
126 shY = shiftvec[i_shift_offset+YY1];
127 shZ = shiftvec[i_shift_offset+ZZ2];
128
129 /* Load limits for loop over neighbors */
130 j_index_start = jindex[iidx];
131 j_index_end = jindex[iidx+1];
132
133 /* Get outer coordinate index */
134 inr = iinr[iidx];
135 i_coord_offset = DIM3*inr;
136
137 /* Load i particle coords and add shift vector */
138 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
139 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
140 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
141 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
142 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
143 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
144 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
145 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
146 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
147 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
148 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
149 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
150
151 fix0 = 0.0;
152 fiy0 = 0.0;
153 fiz0 = 0.0;
154 fix1 = 0.0;
155 fiy1 = 0.0;
156 fiz1 = 0.0;
157 fix2 = 0.0;
158 fiy2 = 0.0;
159 fiz2 = 0.0;
160 fix3 = 0.0;
161 fiy3 = 0.0;
162 fiz3 = 0.0;
163
164 /* Reset potential sums */
165 velecsum = 0.0;
166 vvdwsum = 0.0;
167
168 /* Start inner kernel loop */
169 for(jidx=j_index_start; jidx<j_index_end; jidx++)
170 {
171 /* Get j neighbor index, and coordinate index */
172 jnr = jjnr[jidx];
173 j_coord_offset = DIM3*jnr;
174
175 /* load j atom coordinates */
176 jx0 = x[j_coord_offset+DIM3*0+XX0];
177 jy0 = x[j_coord_offset+DIM3*0+YY1];
178 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
179
180 /* Calculate displacement vector */
181 dx00 = ix0 - jx0;
182 dy00 = iy0 - jy0;
183 dz00 = iz0 - jz0;
184 dx10 = ix1 - jx0;
185 dy10 = iy1 - jy0;
186 dz10 = iz1 - jz0;
187 dx20 = ix2 - jx0;
188 dy20 = iy2 - jy0;
189 dz20 = iz2 - jz0;
190 dx30 = ix3 - jx0;
191 dy30 = iy3 - jy0;
192 dz30 = iz3 - jz0;
193
194 /* Calculate squared distance and things based on it */
195 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
196 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
197 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
198 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
199
200 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
201 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
202 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
203
204 rinvsq00 = 1.0/rsq00;
205 rinvsq10 = rinv10*rinv10;
206 rinvsq20 = rinv20*rinv20;
207 rinvsq30 = rinv30*rinv30;
208
209 /* Load parameters for j particles */
210 jq0 = charge[jnr+0];
211 vdwjidx0 = 2*vdwtype[jnr+0];
212
213 /**************************
214 * CALCULATE INTERACTIONS *
215 **************************/
216
217 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
218 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
219
220 /* LENNARD-JONES DISPERSION/REPULSION */
221
222 rinvsix = rinvsq00*rinvsq00*rinvsq00;
223 vvdw6 = c6_00*rinvsix;
224 vvdw12 = c12_00*rinvsix*rinvsix;
225 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
226 fvdw = (vvdw12-vvdw6)*rinvsq00;
227
228 /* Update potential sums from outer loop */
229 vvdwsum += vvdw;
230
231 fscal = fvdw;
232
233 /* Calculate temporary vectorial force */
234 tx = fscal*dx00;
235 ty = fscal*dy00;
236 tz = fscal*dz00;
237
238 /* Update vectorial force */
239 fix0 += tx;
240 fiy0 += ty;
241 fiz0 += tz;
242 f[j_coord_offset+DIM3*0+XX0] -= tx;
243 f[j_coord_offset+DIM3*0+YY1] -= ty;
244 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
245
246 /**************************
247 * CALCULATE INTERACTIONS *
248 **************************/
249
250 qq10 = iq1*jq0;
251
252 /* COULOMB ELECTROSTATICS */
253 velec = qq10*rinv10;
254 felec = velec*rinvsq10;
255
256 /* Update potential sums from outer loop */
257 velecsum += velec;
258
259 fscal = felec;
260
261 /* Calculate temporary vectorial force */
262 tx = fscal*dx10;
263 ty = fscal*dy10;
264 tz = fscal*dz10;
265
266 /* Update vectorial force */
267 fix1 += tx;
268 fiy1 += ty;
269 fiz1 += tz;
270 f[j_coord_offset+DIM3*0+XX0] -= tx;
271 f[j_coord_offset+DIM3*0+YY1] -= ty;
272 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
273
274 /**************************
275 * CALCULATE INTERACTIONS *
276 **************************/
277
278 qq20 = iq2*jq0;
279
280 /* COULOMB ELECTROSTATICS */
281 velec = qq20*rinv20;
282 felec = velec*rinvsq20;
283
284 /* Update potential sums from outer loop */
285 velecsum += velec;
286
287 fscal = felec;
288
289 /* Calculate temporary vectorial force */
290 tx = fscal*dx20;
291 ty = fscal*dy20;
292 tz = fscal*dz20;
293
294 /* Update vectorial force */
295 fix2 += tx;
296 fiy2 += ty;
297 fiz2 += tz;
298 f[j_coord_offset+DIM3*0+XX0] -= tx;
299 f[j_coord_offset+DIM3*0+YY1] -= ty;
300 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
301
302 /**************************
303 * CALCULATE INTERACTIONS *
304 **************************/
305
306 qq30 = iq3*jq0;
307
308 /* COULOMB ELECTROSTATICS */
309 velec = qq30*rinv30;
310 felec = velec*rinvsq30;
311
312 /* Update potential sums from outer loop */
313 velecsum += velec;
314
315 fscal = felec;
316
317 /* Calculate temporary vectorial force */
318 tx = fscal*dx30;
319 ty = fscal*dy30;
320 tz = fscal*dz30;
321
322 /* Update vectorial force */
323 fix3 += tx;
324 fiy3 += ty;
325 fiz3 += tz;
326 f[j_coord_offset+DIM3*0+XX0] -= tx;
327 f[j_coord_offset+DIM3*0+YY1] -= ty;
328 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
329
330 /* Inner loop uses 116 flops */
331 }
332 /* End of innermost loop */
333
334 tx = ty = tz = 0;
335 f[i_coord_offset+DIM3*0+XX0] += fix0;
336 f[i_coord_offset+DIM3*0+YY1] += fiy0;
337 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
338 tx += fix0;
339 ty += fiy0;
340 tz += fiz0;
341 f[i_coord_offset+DIM3*1+XX0] += fix1;
342 f[i_coord_offset+DIM3*1+YY1] += fiy1;
343 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
344 tx += fix1;
345 ty += fiy1;
346 tz += fiz1;
347 f[i_coord_offset+DIM3*2+XX0] += fix2;
348 f[i_coord_offset+DIM3*2+YY1] += fiy2;
349 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
350 tx += fix2;
351 ty += fiy2;
352 tz += fiz2;
353 f[i_coord_offset+DIM3*3+XX0] += fix3;
354 f[i_coord_offset+DIM3*3+YY1] += fiy3;
355 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
356 tx += fix3;
357 ty += fiy3;
358 tz += fiz3;
359 fshift[i_shift_offset+XX0] += tx;
360 fshift[i_shift_offset+YY1] += ty;
361 fshift[i_shift_offset+ZZ2] += tz;
362
363 ggid = gid[iidx];
364 /* Update potential energies */
365 kernel_data->energygrp_elec[ggid] += velecsum;
366 kernel_data->energygrp_vdw[ggid] += vvdwsum;
367
368 /* Increment number of inner iterations */
369 inneriter += j_index_end - j_index_start;
370
371 /* Outer loop uses 41 flops */
372 }
373
374 /* Increment number of outer iterations */
375 outeriter += nri;
376
377 /* Update outer/inner flops */
378
379 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*116)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*116
;
380}
381/*
382 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_c
383 * Electrostatics interaction: Coulomb
384 * VdW interaction: LennardJones
385 * Geometry: Water4-Particle
386 * Calculate force/pot: Force
387 */
388void
389nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_c
390 (t_nblist * gmx_restrict__restrict nlist,
391 rvec * gmx_restrict__restrict xx,
392 rvec * gmx_restrict__restrict ff,
393 t_forcerec * gmx_restrict__restrict fr,
394 t_mdatoms * gmx_restrict__restrict mdatoms,
395 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
396 t_nrnb * gmx_restrict__restrict nrnb)
397{
398 int i_shift_offset,i_coord_offset,j_coord_offset;
399 int j_index_start,j_index_end;
400 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
401 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
402 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
403 real *shiftvec,*fshift,*x,*f;
404 int vdwioffset0;
405 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
406 int vdwioffset1;
407 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
408 int vdwioffset2;
409 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
410 int vdwioffset3;
411 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
412 int vdwjidx0;
413 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
414 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
415 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
416 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
417 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
418 real velec,felec,velecsum,facel,crf,krf,krf2;
419 real *charge;
420 int nvdwtype;
421 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
422 int *vdwtype;
423 real *vdwparam;
424
425 x = xx[0];
426 f = ff[0];
427
428 nri = nlist->nri;
429 iinr = nlist->iinr;
430 jindex = nlist->jindex;
431 jjnr = nlist->jjnr;
432 shiftidx = nlist->shift;
433 gid = nlist->gid;
Value stored to 'gid' is never read
434 shiftvec = fr->shift_vec[0];
435 fshift = fr->fshift[0];
436 facel = fr->epsfac;
437 charge = mdatoms->chargeA;
438 nvdwtype = fr->ntype;
439 vdwparam = fr->nbfp;
440 vdwtype = mdatoms->typeA;
441
442 /* Setup water-specific parameters */
443 inr = nlist->iinr[0];
444 iq1 = facel*charge[inr+1];
445 iq2 = facel*charge[inr+2];
446 iq3 = facel*charge[inr+3];
447 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
448
449 outeriter = 0;
450 inneriter = 0;
451
452 /* Start outer loop over neighborlists */
453 for(iidx=0; iidx<nri; iidx++)
454 {
455 /* Load shift vector for this list */
456 i_shift_offset = DIM3*shiftidx[iidx];
457 shX = shiftvec[i_shift_offset+XX0];
458 shY = shiftvec[i_shift_offset+YY1];
459 shZ = shiftvec[i_shift_offset+ZZ2];
460
461 /* Load limits for loop over neighbors */
462 j_index_start = jindex[iidx];
463 j_index_end = jindex[iidx+1];
464
465 /* Get outer coordinate index */
466 inr = iinr[iidx];
467 i_coord_offset = DIM3*inr;
468
469 /* Load i particle coords and add shift vector */
470 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
471 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
472 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
473 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
474 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
475 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
476 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
477 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
478 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
479 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
480 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
481 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
482
483 fix0 = 0.0;
484 fiy0 = 0.0;
485 fiz0 = 0.0;
486 fix1 = 0.0;
487 fiy1 = 0.0;
488 fiz1 = 0.0;
489 fix2 = 0.0;
490 fiy2 = 0.0;
491 fiz2 = 0.0;
492 fix3 = 0.0;
493 fiy3 = 0.0;
494 fiz3 = 0.0;
495
496 /* Start inner kernel loop */
497 for(jidx=j_index_start; jidx<j_index_end; jidx++)
498 {
499 /* Get j neighbor index, and coordinate index */
500 jnr = jjnr[jidx];
501 j_coord_offset = DIM3*jnr;
502
503 /* load j atom coordinates */
504 jx0 = x[j_coord_offset+DIM3*0+XX0];
505 jy0 = x[j_coord_offset+DIM3*0+YY1];
506 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
507
508 /* Calculate displacement vector */
509 dx00 = ix0 - jx0;
510 dy00 = iy0 - jy0;
511 dz00 = iz0 - jz0;
512 dx10 = ix1 - jx0;
513 dy10 = iy1 - jy0;
514 dz10 = iz1 - jz0;
515 dx20 = ix2 - jx0;
516 dy20 = iy2 - jy0;
517 dz20 = iz2 - jz0;
518 dx30 = ix3 - jx0;
519 dy30 = iy3 - jy0;
520 dz30 = iz3 - jz0;
521
522 /* Calculate squared distance and things based on it */
523 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
524 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
525 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
526 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
527
528 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
529 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
530 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
531
532 rinvsq00 = 1.0/rsq00;
533 rinvsq10 = rinv10*rinv10;
534 rinvsq20 = rinv20*rinv20;
535 rinvsq30 = rinv30*rinv30;
536
537 /* Load parameters for j particles */
538 jq0 = charge[jnr+0];
539 vdwjidx0 = 2*vdwtype[jnr+0];
540
541 /**************************
542 * CALCULATE INTERACTIONS *
543 **************************/
544
545 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
546 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
547
548 /* LENNARD-JONES DISPERSION/REPULSION */
549
550 rinvsix = rinvsq00*rinvsq00*rinvsq00;
551 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
552
553 fscal = fvdw;
554
555 /* Calculate temporary vectorial force */
556 tx = fscal*dx00;
557 ty = fscal*dy00;
558 tz = fscal*dz00;
559
560 /* Update vectorial force */
561 fix0 += tx;
562 fiy0 += ty;
563 fiz0 += tz;
564 f[j_coord_offset+DIM3*0+XX0] -= tx;
565 f[j_coord_offset+DIM3*0+YY1] -= ty;
566 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
567
568 /**************************
569 * CALCULATE INTERACTIONS *
570 **************************/
571
572 qq10 = iq1*jq0;
573
574 /* COULOMB ELECTROSTATICS */
575 velec = qq10*rinv10;
576 felec = velec*rinvsq10;
577
578 fscal = felec;
579
580 /* Calculate temporary vectorial force */
581 tx = fscal*dx10;
582 ty = fscal*dy10;
583 tz = fscal*dz10;
584
585 /* Update vectorial force */
586 fix1 += tx;
587 fiy1 += ty;
588 fiz1 += tz;
589 f[j_coord_offset+DIM3*0+XX0] -= tx;
590 f[j_coord_offset+DIM3*0+YY1] -= ty;
591 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
592
593 /**************************
594 * CALCULATE INTERACTIONS *
595 **************************/
596
597 qq20 = iq2*jq0;
598
599 /* COULOMB ELECTROSTATICS */
600 velec = qq20*rinv20;
601 felec = velec*rinvsq20;
602
603 fscal = felec;
604
605 /* Calculate temporary vectorial force */
606 tx = fscal*dx20;
607 ty = fscal*dy20;
608 tz = fscal*dz20;
609
610 /* Update vectorial force */
611 fix2 += tx;
612 fiy2 += ty;
613 fiz2 += tz;
614 f[j_coord_offset+DIM3*0+XX0] -= tx;
615 f[j_coord_offset+DIM3*0+YY1] -= ty;
616 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
617
618 /**************************
619 * CALCULATE INTERACTIONS *
620 **************************/
621
622 qq30 = iq3*jq0;
623
624 /* COULOMB ELECTROSTATICS */
625 velec = qq30*rinv30;
626 felec = velec*rinvsq30;
627
628 fscal = felec;
629
630 /* Calculate temporary vectorial force */
631 tx = fscal*dx30;
632 ty = fscal*dy30;
633 tz = fscal*dz30;
634
635 /* Update vectorial force */
636 fix3 += tx;
637 fiy3 += ty;
638 fiz3 += tz;
639 f[j_coord_offset+DIM3*0+XX0] -= tx;
640 f[j_coord_offset+DIM3*0+YY1] -= ty;
641 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
642
643 /* Inner loop uses 108 flops */
644 }
645 /* End of innermost loop */
646
647 tx = ty = tz = 0;
648 f[i_coord_offset+DIM3*0+XX0] += fix0;
649 f[i_coord_offset+DIM3*0+YY1] += fiy0;
650 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
651 tx += fix0;
652 ty += fiy0;
653 tz += fiz0;
654 f[i_coord_offset+DIM3*1+XX0] += fix1;
655 f[i_coord_offset+DIM3*1+YY1] += fiy1;
656 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
657 tx += fix1;
658 ty += fiy1;
659 tz += fiz1;
660 f[i_coord_offset+DIM3*2+XX0] += fix2;
661 f[i_coord_offset+DIM3*2+YY1] += fiy2;
662 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
663 tx += fix2;
664 ty += fiy2;
665 tz += fiz2;
666 f[i_coord_offset+DIM3*3+XX0] += fix3;
667 f[i_coord_offset+DIM3*3+YY1] += fiy3;
668 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
669 tx += fix3;
670 ty += fiy3;
671 tz += fiz3;
672 fshift[i_shift_offset+XX0] += tx;
673 fshift[i_shift_offset+YY1] += ty;
674 fshift[i_shift_offset+ZZ2] += tz;
675
676 /* Increment number of inner iterations */
677 inneriter += j_index_end - j_index_start;
678
679 /* Outer loop uses 39 flops */
680 }
681
682 /* Increment number of outer iterations */
683 outeriter += nri;
684
685 /* Update outer/inner flops */
686
687 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*108)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*108
;
688}