Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwNone_GeomW3W3_c.c
Location:line 636, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomW3W3_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: None
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwNone_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 krf = fr->ic->k_rf;
110 krf2 = krf*2.0;
111 crf = fr->ic->c_rf;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq0 = facel*charge[inr+0];
116 iq1 = facel*charge[inr+1];
117 iq2 = facel*charge[inr+2];
118
119 jq0 = charge[inr+0];
120 jq1 = charge[inr+1];
121 jq2 = charge[inr+2];
122 qq00 = iq0*jq0;
123 qq01 = iq0*jq1;
124 qq02 = iq0*jq2;
125 qq10 = iq1*jq0;
126 qq11 = iq1*jq1;
127 qq12 = iq1*jq2;
128 qq20 = iq2*jq0;
129 qq21 = iq2*jq1;
130 qq22 = iq2*jq2;
131
132 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133 rcutoff = fr->rcoulomb;
134 rcutoff2 = rcutoff*rcutoff;
135
136 outeriter = 0;
137 inneriter = 0;
138
139 /* Start outer loop over neighborlists */
140 for(iidx=0; iidx<nri; iidx++)
141 {
142 /* Load shift vector for this list */
143 i_shift_offset = DIM3*shiftidx[iidx];
144 shX = shiftvec[i_shift_offset+XX0];
145 shY = shiftvec[i_shift_offset+YY1];
146 shZ = shiftvec[i_shift_offset+ZZ2];
147
148 /* Load limits for loop over neighbors */
149 j_index_start = jindex[iidx];
150 j_index_end = jindex[iidx+1];
151
152 /* Get outer coordinate index */
153 inr = iinr[iidx];
154 i_coord_offset = DIM3*inr;
155
156 /* Load i particle coords and add shift vector */
157 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
158 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
159 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
160 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
161 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
162 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
163 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
164 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
165 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
166
167 fix0 = 0.0;
168 fiy0 = 0.0;
169 fiz0 = 0.0;
170 fix1 = 0.0;
171 fiy1 = 0.0;
172 fiz1 = 0.0;
173 fix2 = 0.0;
174 fiy2 = 0.0;
175 fiz2 = 0.0;
176
177 /* Reset potential sums */
178 velecsum = 0.0;
179
180 /* Start inner kernel loop */
181 for(jidx=j_index_start; jidx<j_index_end; jidx++)
182 {
183 /* Get j neighbor index, and coordinate index */
184 jnr = jjnr[jidx];
185 j_coord_offset = DIM3*jnr;
186
187 /* load j atom coordinates */
188 jx0 = x[j_coord_offset+DIM3*0+XX0];
189 jy0 = x[j_coord_offset+DIM3*0+YY1];
190 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
191 jx1 = x[j_coord_offset+DIM3*1+XX0];
192 jy1 = x[j_coord_offset+DIM3*1+YY1];
193 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
194 jx2 = x[j_coord_offset+DIM3*2+XX0];
195 jy2 = x[j_coord_offset+DIM3*2+YY1];
196 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
197
198 /* Calculate displacement vector */
199 dx00 = ix0 - jx0;
200 dy00 = iy0 - jy0;
201 dz00 = iz0 - jz0;
202 dx01 = ix0 - jx1;
203 dy01 = iy0 - jy1;
204 dz01 = iz0 - jz1;
205 dx02 = ix0 - jx2;
206 dy02 = iy0 - jy2;
207 dz02 = iz0 - jz2;
208 dx10 = ix1 - jx0;
209 dy10 = iy1 - jy0;
210 dz10 = iz1 - jz0;
211 dx11 = ix1 - jx1;
212 dy11 = iy1 - jy1;
213 dz11 = iz1 - jz1;
214 dx12 = ix1 - jx2;
215 dy12 = iy1 - jy2;
216 dz12 = iz1 - jz2;
217 dx20 = ix2 - jx0;
218 dy20 = iy2 - jy0;
219 dz20 = iz2 - jz0;
220 dx21 = ix2 - jx1;
221 dy21 = iy2 - jy1;
222 dz21 = iz2 - jz1;
223 dx22 = ix2 - jx2;
224 dy22 = iy2 - jy2;
225 dz22 = iz2 - jz2;
226
227 /* Calculate squared distance and things based on it */
228 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
229 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
230 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
231 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
232 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
233 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
234 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
235 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
236 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
237
238 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
239 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
240 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
241 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
242 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
243 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
244 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
245 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
246 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
247
248 rinvsq00 = rinv00*rinv00;
249 rinvsq01 = rinv01*rinv01;
250 rinvsq02 = rinv02*rinv02;
251 rinvsq10 = rinv10*rinv10;
252 rinvsq11 = rinv11*rinv11;
253 rinvsq12 = rinv12*rinv12;
254 rinvsq20 = rinv20*rinv20;
255 rinvsq21 = rinv21*rinv21;
256 rinvsq22 = rinv22*rinv22;
257
258 /**************************
259 * CALCULATE INTERACTIONS *
260 **************************/
261
262 if (rsq00<rcutoff2)
263 {
264
265 /* REACTION-FIELD ELECTROSTATICS */
266 velec = qq00*(rinv00+krf*rsq00-crf);
267 felec = qq00*(rinv00*rinvsq00-krf2);
268
269 /* Update potential sums from outer loop */
270 velecsum += velec;
271
272 fscal = felec;
273
274 /* Calculate temporary vectorial force */
275 tx = fscal*dx00;
276 ty = fscal*dy00;
277 tz = fscal*dz00;
278
279 /* Update vectorial force */
280 fix0 += tx;
281 fiy0 += ty;
282 fiz0 += tz;
283 f[j_coord_offset+DIM3*0+XX0] -= tx;
284 f[j_coord_offset+DIM3*0+YY1] -= ty;
285 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
286
287 }
288
289 /**************************
290 * CALCULATE INTERACTIONS *
291 **************************/
292
293 if (rsq01<rcutoff2)
294 {
295
296 /* REACTION-FIELD ELECTROSTATICS */
297 velec = qq01*(rinv01+krf*rsq01-crf);
298 felec = qq01*(rinv01*rinvsq01-krf2);
299
300 /* Update potential sums from outer loop */
301 velecsum += velec;
302
303 fscal = felec;
304
305 /* Calculate temporary vectorial force */
306 tx = fscal*dx01;
307 ty = fscal*dy01;
308 tz = fscal*dz01;
309
310 /* Update vectorial force */
311 fix0 += tx;
312 fiy0 += ty;
313 fiz0 += tz;
314 f[j_coord_offset+DIM3*1+XX0] -= tx;
315 f[j_coord_offset+DIM3*1+YY1] -= ty;
316 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
317
318 }
319
320 /**************************
321 * CALCULATE INTERACTIONS *
322 **************************/
323
324 if (rsq02<rcutoff2)
325 {
326
327 /* REACTION-FIELD ELECTROSTATICS */
328 velec = qq02*(rinv02+krf*rsq02-crf);
329 felec = qq02*(rinv02*rinvsq02-krf2);
330
331 /* Update potential sums from outer loop */
332 velecsum += velec;
333
334 fscal = felec;
335
336 /* Calculate temporary vectorial force */
337 tx = fscal*dx02;
338 ty = fscal*dy02;
339 tz = fscal*dz02;
340
341 /* Update vectorial force */
342 fix0 += tx;
343 fiy0 += ty;
344 fiz0 += tz;
345 f[j_coord_offset+DIM3*2+XX0] -= tx;
346 f[j_coord_offset+DIM3*2+YY1] -= ty;
347 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
348
349 }
350
351 /**************************
352 * CALCULATE INTERACTIONS *
353 **************************/
354
355 if (rsq10<rcutoff2)
356 {
357
358 /* REACTION-FIELD ELECTROSTATICS */
359 velec = qq10*(rinv10+krf*rsq10-crf);
360 felec = qq10*(rinv10*rinvsq10-krf2);
361
362 /* Update potential sums from outer loop */
363 velecsum += velec;
364
365 fscal = felec;
366
367 /* Calculate temporary vectorial force */
368 tx = fscal*dx10;
369 ty = fscal*dy10;
370 tz = fscal*dz10;
371
372 /* Update vectorial force */
373 fix1 += tx;
374 fiy1 += ty;
375 fiz1 += tz;
376 f[j_coord_offset+DIM3*0+XX0] -= tx;
377 f[j_coord_offset+DIM3*0+YY1] -= ty;
378 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
379
380 }
381
382 /**************************
383 * CALCULATE INTERACTIONS *
384 **************************/
385
386 if (rsq11<rcutoff2)
387 {
388
389 /* REACTION-FIELD ELECTROSTATICS */
390 velec = qq11*(rinv11+krf*rsq11-crf);
391 felec = qq11*(rinv11*rinvsq11-krf2);
392
393 /* Update potential sums from outer loop */
394 velecsum += velec;
395
396 fscal = felec;
397
398 /* Calculate temporary vectorial force */
399 tx = fscal*dx11;
400 ty = fscal*dy11;
401 tz = fscal*dz11;
402
403 /* Update vectorial force */
404 fix1 += tx;
405 fiy1 += ty;
406 fiz1 += tz;
407 f[j_coord_offset+DIM3*1+XX0] -= tx;
408 f[j_coord_offset+DIM3*1+YY1] -= ty;
409 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
410
411 }
412
413 /**************************
414 * CALCULATE INTERACTIONS *
415 **************************/
416
417 if (rsq12<rcutoff2)
418 {
419
420 /* REACTION-FIELD ELECTROSTATICS */
421 velec = qq12*(rinv12+krf*rsq12-crf);
422 felec = qq12*(rinv12*rinvsq12-krf2);
423
424 /* Update potential sums from outer loop */
425 velecsum += velec;
426
427 fscal = felec;
428
429 /* Calculate temporary vectorial force */
430 tx = fscal*dx12;
431 ty = fscal*dy12;
432 tz = fscal*dz12;
433
434 /* Update vectorial force */
435 fix1 += tx;
436 fiy1 += ty;
437 fiz1 += tz;
438 f[j_coord_offset+DIM3*2+XX0] -= tx;
439 f[j_coord_offset+DIM3*2+YY1] -= ty;
440 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
441
442 }
443
444 /**************************
445 * CALCULATE INTERACTIONS *
446 **************************/
447
448 if (rsq20<rcutoff2)
449 {
450
451 /* REACTION-FIELD ELECTROSTATICS */
452 velec = qq20*(rinv20+krf*rsq20-crf);
453 felec = qq20*(rinv20*rinvsq20-krf2);
454
455 /* Update potential sums from outer loop */
456 velecsum += velec;
457
458 fscal = felec;
459
460 /* Calculate temporary vectorial force */
461 tx = fscal*dx20;
462 ty = fscal*dy20;
463 tz = fscal*dz20;
464
465 /* Update vectorial force */
466 fix2 += tx;
467 fiy2 += ty;
468 fiz2 += tz;
469 f[j_coord_offset+DIM3*0+XX0] -= tx;
470 f[j_coord_offset+DIM3*0+YY1] -= ty;
471 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
472
473 }
474
475 /**************************
476 * CALCULATE INTERACTIONS *
477 **************************/
478
479 if (rsq21<rcutoff2)
480 {
481
482 /* REACTION-FIELD ELECTROSTATICS */
483 velec = qq21*(rinv21+krf*rsq21-crf);
484 felec = qq21*(rinv21*rinvsq21-krf2);
485
486 /* Update potential sums from outer loop */
487 velecsum += velec;
488
489 fscal = felec;
490
491 /* Calculate temporary vectorial force */
492 tx = fscal*dx21;
493 ty = fscal*dy21;
494 tz = fscal*dz21;
495
496 /* Update vectorial force */
497 fix2 += tx;
498 fiy2 += ty;
499 fiz2 += tz;
500 f[j_coord_offset+DIM3*1+XX0] -= tx;
501 f[j_coord_offset+DIM3*1+YY1] -= ty;
502 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
503
504 }
505
506 /**************************
507 * CALCULATE INTERACTIONS *
508 **************************/
509
510 if (rsq22<rcutoff2)
511 {
512
513 /* REACTION-FIELD ELECTROSTATICS */
514 velec = qq22*(rinv22+krf*rsq22-crf);
515 felec = qq22*(rinv22*rinvsq22-krf2);
516
517 /* Update potential sums from outer loop */
518 velecsum += velec;
519
520 fscal = felec;
521
522 /* Calculate temporary vectorial force */
523 tx = fscal*dx22;
524 ty = fscal*dy22;
525 tz = fscal*dz22;
526
527 /* Update vectorial force */
528 fix2 += tx;
529 fiy2 += ty;
530 fiz2 += tz;
531 f[j_coord_offset+DIM3*2+XX0] -= tx;
532 f[j_coord_offset+DIM3*2+YY1] -= ty;
533 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
534
535 }
536
537 /* Inner loop uses 279 flops */
538 }
539 /* End of innermost loop */
540
541 tx = ty = tz = 0;
542 f[i_coord_offset+DIM3*0+XX0] += fix0;
543 f[i_coord_offset+DIM3*0+YY1] += fiy0;
544 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
545 tx += fix0;
546 ty += fiy0;
547 tz += fiz0;
548 f[i_coord_offset+DIM3*1+XX0] += fix1;
549 f[i_coord_offset+DIM3*1+YY1] += fiy1;
550 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
551 tx += fix1;
552 ty += fiy1;
553 tz += fiz1;
554 f[i_coord_offset+DIM3*2+XX0] += fix2;
555 f[i_coord_offset+DIM3*2+YY1] += fiy2;
556 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
557 tx += fix2;
558 ty += fiy2;
559 tz += fiz2;
560 fshift[i_shift_offset+XX0] += tx;
561 fshift[i_shift_offset+YY1] += ty;
562 fshift[i_shift_offset+ZZ2] += tz;
563
564 ggid = gid[iidx];
565 /* Update potential energies */
566 kernel_data->energygrp_elec[ggid] += velecsum;
567
568 /* Increment number of inner iterations */
569 inneriter += j_index_end - j_index_start;
570
571 /* Outer loop uses 31 flops */
572 }
573
574 /* Increment number of outer iterations */
575 outeriter += nri;
576
577 /* Update outer/inner flops */
578
579 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*279)(nrnb)->n[eNR_NBKERNEL_ELEC_W3W3_VF] += outeriter*31 + inneriter
*279
;
580}
581/*
582 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomW3W3_F_c
583 * Electrostatics interaction: ReactionField
584 * VdW interaction: None
585 * Geometry: Water3-Water3
586 * Calculate force/pot: Force
587 */
588void
589nb_kernel_ElecRFCut_VdwNone_GeomW3W3_F_c
590 (t_nblist * gmx_restrict__restrict nlist,
591 rvec * gmx_restrict__restrict xx,
592 rvec * gmx_restrict__restrict ff,
593 t_forcerec * gmx_restrict__restrict fr,
594 t_mdatoms * gmx_restrict__restrict mdatoms,
595 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
596 t_nrnb * gmx_restrict__restrict nrnb)
597{
598 int i_shift_offset,i_coord_offset,j_coord_offset;
599 int j_index_start,j_index_end;
600 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
601 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
602 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
603 real *shiftvec,*fshift,*x,*f;
604 int vdwioffset0;
605 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
606 int vdwioffset1;
607 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
608 int vdwioffset2;
609 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
610 int vdwjidx0;
611 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
612 int vdwjidx1;
613 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
614 int vdwjidx2;
615 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
616 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
617 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
618 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
619 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
620 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
621 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
622 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
623 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
624 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
625 real velec,felec,velecsum,facel,crf,krf,krf2;
626 real *charge;
627
628 x = xx[0];
629 f = ff[0];
630
631 nri = nlist->nri;
632 iinr = nlist->iinr;
633 jindex = nlist->jindex;
634 jjnr = nlist->jjnr;
635 shiftidx = nlist->shift;
636 gid = nlist->gid;
Value stored to 'gid' is never read
637 shiftvec = fr->shift_vec[0];
638 fshift = fr->fshift[0];
639 facel = fr->epsfac;
640 charge = mdatoms->chargeA;
641 krf = fr->ic->k_rf;
642 krf2 = krf*2.0;
643 crf = fr->ic->c_rf;
644
645 /* Setup water-specific parameters */
646 inr = nlist->iinr[0];
647 iq0 = facel*charge[inr+0];
648 iq1 = facel*charge[inr+1];
649 iq2 = facel*charge[inr+2];
650
651 jq0 = charge[inr+0];
652 jq1 = charge[inr+1];
653 jq2 = charge[inr+2];
654 qq00 = iq0*jq0;
655 qq01 = iq0*jq1;
656 qq02 = iq0*jq2;
657 qq10 = iq1*jq0;
658 qq11 = iq1*jq1;
659 qq12 = iq1*jq2;
660 qq20 = iq2*jq0;
661 qq21 = iq2*jq1;
662 qq22 = iq2*jq2;
663
664 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
665 rcutoff = fr->rcoulomb;
666 rcutoff2 = rcutoff*rcutoff;
667
668 outeriter = 0;
669 inneriter = 0;
670
671 /* Start outer loop over neighborlists */
672 for(iidx=0; iidx<nri; iidx++)
673 {
674 /* Load shift vector for this list */
675 i_shift_offset = DIM3*shiftidx[iidx];
676 shX = shiftvec[i_shift_offset+XX0];
677 shY = shiftvec[i_shift_offset+YY1];
678 shZ = shiftvec[i_shift_offset+ZZ2];
679
680 /* Load limits for loop over neighbors */
681 j_index_start = jindex[iidx];
682 j_index_end = jindex[iidx+1];
683
684 /* Get outer coordinate index */
685 inr = iinr[iidx];
686 i_coord_offset = DIM3*inr;
687
688 /* Load i particle coords and add shift vector */
689 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
690 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
691 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
692 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
693 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
694 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
695 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
696 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
697 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
698
699 fix0 = 0.0;
700 fiy0 = 0.0;
701 fiz0 = 0.0;
702 fix1 = 0.0;
703 fiy1 = 0.0;
704 fiz1 = 0.0;
705 fix2 = 0.0;
706 fiy2 = 0.0;
707 fiz2 = 0.0;
708
709 /* Start inner kernel loop */
710 for(jidx=j_index_start; jidx<j_index_end; jidx++)
711 {
712 /* Get j neighbor index, and coordinate index */
713 jnr = jjnr[jidx];
714 j_coord_offset = DIM3*jnr;
715
716 /* load j atom coordinates */
717 jx0 = x[j_coord_offset+DIM3*0+XX0];
718 jy0 = x[j_coord_offset+DIM3*0+YY1];
719 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
720 jx1 = x[j_coord_offset+DIM3*1+XX0];
721 jy1 = x[j_coord_offset+DIM3*1+YY1];
722 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
723 jx2 = x[j_coord_offset+DIM3*2+XX0];
724 jy2 = x[j_coord_offset+DIM3*2+YY1];
725 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
726
727 /* Calculate displacement vector */
728 dx00 = ix0 - jx0;
729 dy00 = iy0 - jy0;
730 dz00 = iz0 - jz0;
731 dx01 = ix0 - jx1;
732 dy01 = iy0 - jy1;
733 dz01 = iz0 - jz1;
734 dx02 = ix0 - jx2;
735 dy02 = iy0 - jy2;
736 dz02 = iz0 - jz2;
737 dx10 = ix1 - jx0;
738 dy10 = iy1 - jy0;
739 dz10 = iz1 - jz0;
740 dx11 = ix1 - jx1;
741 dy11 = iy1 - jy1;
742 dz11 = iz1 - jz1;
743 dx12 = ix1 - jx2;
744 dy12 = iy1 - jy2;
745 dz12 = iz1 - jz2;
746 dx20 = ix2 - jx0;
747 dy20 = iy2 - jy0;
748 dz20 = iz2 - jz0;
749 dx21 = ix2 - jx1;
750 dy21 = iy2 - jy1;
751 dz21 = iz2 - jz1;
752 dx22 = ix2 - jx2;
753 dy22 = iy2 - jy2;
754 dz22 = iz2 - jz2;
755
756 /* Calculate squared distance and things based on it */
757 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
758 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
759 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
760 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
761 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
762 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
763 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
764 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
765 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
766
767 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
768 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
769 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
770 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
771 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
772 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
773 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
774 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
775 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
776
777 rinvsq00 = rinv00*rinv00;
778 rinvsq01 = rinv01*rinv01;
779 rinvsq02 = rinv02*rinv02;
780 rinvsq10 = rinv10*rinv10;
781 rinvsq11 = rinv11*rinv11;
782 rinvsq12 = rinv12*rinv12;
783 rinvsq20 = rinv20*rinv20;
784 rinvsq21 = rinv21*rinv21;
785 rinvsq22 = rinv22*rinv22;
786
787 /**************************
788 * CALCULATE INTERACTIONS *
789 **************************/
790
791 if (rsq00<rcutoff2)
792 {
793
794 /* REACTION-FIELD ELECTROSTATICS */
795 felec = qq00*(rinv00*rinvsq00-krf2);
796
797 fscal = felec;
798
799 /* Calculate temporary vectorial force */
800 tx = fscal*dx00;
801 ty = fscal*dy00;
802 tz = fscal*dz00;
803
804 /* Update vectorial force */
805 fix0 += tx;
806 fiy0 += ty;
807 fiz0 += tz;
808 f[j_coord_offset+DIM3*0+XX0] -= tx;
809 f[j_coord_offset+DIM3*0+YY1] -= ty;
810 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
811
812 }
813
814 /**************************
815 * CALCULATE INTERACTIONS *
816 **************************/
817
818 if (rsq01<rcutoff2)
819 {
820
821 /* REACTION-FIELD ELECTROSTATICS */
822 felec = qq01*(rinv01*rinvsq01-krf2);
823
824 fscal = felec;
825
826 /* Calculate temporary vectorial force */
827 tx = fscal*dx01;
828 ty = fscal*dy01;
829 tz = fscal*dz01;
830
831 /* Update vectorial force */
832 fix0 += tx;
833 fiy0 += ty;
834 fiz0 += tz;
835 f[j_coord_offset+DIM3*1+XX0] -= tx;
836 f[j_coord_offset+DIM3*1+YY1] -= ty;
837 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
838
839 }
840
841 /**************************
842 * CALCULATE INTERACTIONS *
843 **************************/
844
845 if (rsq02<rcutoff2)
846 {
847
848 /* REACTION-FIELD ELECTROSTATICS */
849 felec = qq02*(rinv02*rinvsq02-krf2);
850
851 fscal = felec;
852
853 /* Calculate temporary vectorial force */
854 tx = fscal*dx02;
855 ty = fscal*dy02;
856 tz = fscal*dz02;
857
858 /* Update vectorial force */
859 fix0 += tx;
860 fiy0 += ty;
861 fiz0 += tz;
862 f[j_coord_offset+DIM3*2+XX0] -= tx;
863 f[j_coord_offset+DIM3*2+YY1] -= ty;
864 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
865
866 }
867
868 /**************************
869 * CALCULATE INTERACTIONS *
870 **************************/
871
872 if (rsq10<rcutoff2)
873 {
874
875 /* REACTION-FIELD ELECTROSTATICS */
876 felec = qq10*(rinv10*rinvsq10-krf2);
877
878 fscal = felec;
879
880 /* Calculate temporary vectorial force */
881 tx = fscal*dx10;
882 ty = fscal*dy10;
883 tz = fscal*dz10;
884
885 /* Update vectorial force */
886 fix1 += tx;
887 fiy1 += ty;
888 fiz1 += tz;
889 f[j_coord_offset+DIM3*0+XX0] -= tx;
890 f[j_coord_offset+DIM3*0+YY1] -= ty;
891 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
892
893 }
894
895 /**************************
896 * CALCULATE INTERACTIONS *
897 **************************/
898
899 if (rsq11<rcutoff2)
900 {
901
902 /* REACTION-FIELD ELECTROSTATICS */
903 felec = qq11*(rinv11*rinvsq11-krf2);
904
905 fscal = felec;
906
907 /* Calculate temporary vectorial force */
908 tx = fscal*dx11;
909 ty = fscal*dy11;
910 tz = fscal*dz11;
911
912 /* Update vectorial force */
913 fix1 += tx;
914 fiy1 += ty;
915 fiz1 += tz;
916 f[j_coord_offset+DIM3*1+XX0] -= tx;
917 f[j_coord_offset+DIM3*1+YY1] -= ty;
918 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
919
920 }
921
922 /**************************
923 * CALCULATE INTERACTIONS *
924 **************************/
925
926 if (rsq12<rcutoff2)
927 {
928
929 /* REACTION-FIELD ELECTROSTATICS */
930 felec = qq12*(rinv12*rinvsq12-krf2);
931
932 fscal = felec;
933
934 /* Calculate temporary vectorial force */
935 tx = fscal*dx12;
936 ty = fscal*dy12;
937 tz = fscal*dz12;
938
939 /* Update vectorial force */
940 fix1 += tx;
941 fiy1 += ty;
942 fiz1 += tz;
943 f[j_coord_offset+DIM3*2+XX0] -= tx;
944 f[j_coord_offset+DIM3*2+YY1] -= ty;
945 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
946
947 }
948
949 /**************************
950 * CALCULATE INTERACTIONS *
951 **************************/
952
953 if (rsq20<rcutoff2)
954 {
955
956 /* REACTION-FIELD ELECTROSTATICS */
957 felec = qq20*(rinv20*rinvsq20-krf2);
958
959 fscal = felec;
960
961 /* Calculate temporary vectorial force */
962 tx = fscal*dx20;
963 ty = fscal*dy20;
964 tz = fscal*dz20;
965
966 /* Update vectorial force */
967 fix2 += tx;
968 fiy2 += ty;
969 fiz2 += tz;
970 f[j_coord_offset+DIM3*0+XX0] -= tx;
971 f[j_coord_offset+DIM3*0+YY1] -= ty;
972 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
973
974 }
975
976 /**************************
977 * CALCULATE INTERACTIONS *
978 **************************/
979
980 if (rsq21<rcutoff2)
981 {
982
983 /* REACTION-FIELD ELECTROSTATICS */
984 felec = qq21*(rinv21*rinvsq21-krf2);
985
986 fscal = felec;
987
988 /* Calculate temporary vectorial force */
989 tx = fscal*dx21;
990 ty = fscal*dy21;
991 tz = fscal*dz21;
992
993 /* Update vectorial force */
994 fix2 += tx;
995 fiy2 += ty;
996 fiz2 += tz;
997 f[j_coord_offset+DIM3*1+XX0] -= tx;
998 f[j_coord_offset+DIM3*1+YY1] -= ty;
999 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1000
1001 }
1002
1003 /**************************
1004 * CALCULATE INTERACTIONS *
1005 **************************/
1006
1007 if (rsq22<rcutoff2)
1008 {
1009
1010 /* REACTION-FIELD ELECTROSTATICS */
1011 felec = qq22*(rinv22*rinvsq22-krf2);
1012
1013 fscal = felec;
1014
1015 /* Calculate temporary vectorial force */
1016 tx = fscal*dx22;
1017 ty = fscal*dy22;
1018 tz = fscal*dz22;
1019
1020 /* Update vectorial force */
1021 fix2 += tx;
1022 fiy2 += ty;
1023 fiz2 += tz;
1024 f[j_coord_offset+DIM3*2+XX0] -= tx;
1025 f[j_coord_offset+DIM3*2+YY1] -= ty;
1026 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1027
1028 }
1029
1030 /* Inner loop uses 234 flops */
1031 }
1032 /* End of innermost loop */
1033
1034 tx = ty = tz = 0;
1035 f[i_coord_offset+DIM3*0+XX0] += fix0;
1036 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1037 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1038 tx += fix0;
1039 ty += fiy0;
1040 tz += fiz0;
1041 f[i_coord_offset+DIM3*1+XX0] += fix1;
1042 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1043 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1044 tx += fix1;
1045 ty += fiy1;
1046 tz += fiz1;
1047 f[i_coord_offset+DIM3*2+XX0] += fix2;
1048 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1049 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1050 tx += fix2;
1051 ty += fiy2;
1052 tz += fiz2;
1053 fshift[i_shift_offset+XX0] += tx;
1054 fshift[i_shift_offset+YY1] += ty;
1055 fshift[i_shift_offset+ZZ2] += tz;
1056
1057 /* Increment number of inner iterations */
1058 inneriter += j_index_end - j_index_start;
1059
1060 /* Outer loop uses 30 flops */
1061 }
1062
1063 /* Increment number of outer iterations */
1064 outeriter += nri;
1065
1066 /* Update outer/inner flops */
1067
1068 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*234)(nrnb)->n[eNR_NBKERNEL_ELEC_W3W3_F] += outeriter*30 + inneriter
*234
;
1069}