Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse4_1_single.c
Location:line 134, column 5
Description:Value stored to 'jnrA' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: GeneralizedBorn
55 * VdW interaction: LennardJones
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 __m128i gbitab;
93 __m128 vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
94 __m128 minushalf = _mm_set1_ps(-0.5);
95 real *invsqrta,*dvda,*gbtab;
96 int nvdwtype;
97 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98 int *vdwtype;
99 real *vdwparam;
100 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
101 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
102 __m128i vfitab;
103 __m128i ifour = _mm_set1_epi32(4);
104 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105 real *vftab;
106 __m128 dummy_mask,cutoff_mask;
107 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108 __m128 one = _mm_set1_ps(1.0);
109 __m128 two = _mm_set1_ps(2.0);
110 x = xx[0];
111 f = ff[0];
112
113 nri = nlist->nri;
114 iinr = nlist->iinr;
115 jindex = nlist->jindex;
116 jjnr = nlist->jjnr;
117 shiftidx = nlist->shift;
118 gid = nlist->gid;
119 shiftvec = fr->shift_vec[0];
120 fshift = fr->fshift[0];
121 facel = _mm_set1_ps(fr->epsfac);
122 charge = mdatoms->chargeA;
123 nvdwtype = fr->ntype;
124 vdwparam = fr->nbfp;
125 vdwtype = mdatoms->typeA;
126
127 invsqrta = fr->invsqrta;
128 dvda = fr->dvda;
129 gbtabscale = _mm_set1_ps(fr->gbtab.scale);
130 gbtab = fr->gbtab.data;
131 gbinvepsdiff = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133 /* Avoid stupid compiler warnings */
134 jnrA = jnrB = jnrC = jnrD = 0;
Value stored to 'jnrA' is never read
135 j_coord_offsetA = 0;
136 j_coord_offsetB = 0;
137 j_coord_offsetC = 0;
138 j_coord_offsetD = 0;
139
140 outeriter = 0;
141 inneriter = 0;
142
143 for(iidx=0;iidx<4*DIM3;iidx++)
144 {
145 scratch[iidx] = 0.0;
146 }
147
148 /* Start outer loop over neighborlists */
149 for(iidx=0; iidx<nri; iidx++)
150 {
151 /* Load shift vector for this list */
152 i_shift_offset = DIM3*shiftidx[iidx];
153
154 /* Load limits for loop over neighbors */
155 j_index_start = jindex[iidx];
156 j_index_end = jindex[iidx+1];
157
158 /* Get outer coordinate index */
159 inr = iinr[iidx];
160 i_coord_offset = DIM3*inr;
161
162 /* Load i particle coords and add shift vector */
163 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165 fix0 = _mm_setzero_ps();
166 fiy0 = _mm_setzero_ps();
167 fiz0 = _mm_setzero_ps();
168
169 /* Load parameters for i particles */
170 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
171 isai0 = _mm_load1_ps(invsqrta+inr+0);
172 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
173
174 /* Reset potential sums */
175 velecsum = _mm_setzero_ps();
176 vgbsum = _mm_setzero_ps();
177 vvdwsum = _mm_setzero_ps();
178 dvdasum = _mm_setzero_ps();
179
180 /* Start inner kernel loop */
181 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182 {
183
184 /* Get j neighbor index, and coordinate index */
185 jnrA = jjnr[jidx];
186 jnrB = jjnr[jidx+1];
187 jnrC = jjnr[jidx+2];
188 jnrD = jjnr[jidx+3];
189 j_coord_offsetA = DIM3*jnrA;
190 j_coord_offsetB = DIM3*jnrB;
191 j_coord_offsetC = DIM3*jnrC;
192 j_coord_offsetD = DIM3*jnrD;
193
194 /* load j atom coordinates */
195 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196 x+j_coord_offsetC,x+j_coord_offsetD,
197 &jx0,&jy0,&jz0);
198
199 /* Calculate displacement vector */
200 dx00 = _mm_sub_ps(ix0,jx0);
201 dy00 = _mm_sub_ps(iy0,jy0);
202 dz00 = _mm_sub_ps(iz0,jz0);
203
204 /* Calculate squared distance and things based on it */
205 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
208
209 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
210
211 /* Load parameters for j particles */
212 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213 charge+jnrC+0,charge+jnrD+0);
214 isaj0 = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
215 invsqrta+jnrC+0,invsqrta+jnrD+0);
216 vdwjidx0A = 2*vdwtype[jnrA+0];
217 vdwjidx0B = 2*vdwtype[jnrB+0];
218 vdwjidx0C = 2*vdwtype[jnrC+0];
219 vdwjidx0D = 2*vdwtype[jnrD+0];
220
221 /**************************
222 * CALCULATE INTERACTIONS *
223 **************************/
224
225 r00 = _mm_mul_ps(rsq00,rinv00);
226
227 /* Compute parameters for interactions between i and j atoms */
228 qq00 = _mm_mul_ps(iq0,jq0);
229 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
230 vdwparam+vdwioffset0+vdwjidx0B,
231 vdwparam+vdwioffset0+vdwjidx0C,
232 vdwparam+vdwioffset0+vdwjidx0D,
233 &c6_00,&c12_00);
234
235 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
236 isaprod = _mm_mul_ps(isai0,isaj0);
237 gbqqfactor = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
238 gbscale = _mm_mul_ps(isaprod,gbtabscale);
239
240 /* Calculate generalized born table index - this is a separate table from the normal one,
241 * but we use the same procedure by multiplying r with scale and truncating to integer.
242 */
243 rt = _mm_mul_ps(r00,gbscale);
244 gbitab = _mm_cvttps_epi32(rt);
245 gbeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
246 gbitab = _mm_slli_epi32(gbitab,2);
247 Y = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(0) &
3];}))
);
248 F = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(1) &
3];}))
);
249 G = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(2) &
3];}))
);
250 H = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(3) &
3];}))
);
251 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
252 Heps = _mm_mul_ps(gbeps,H);
253 Fp = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
254 VV = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
255 vgb = _mm_mul_ps(gbqqfactor,VV);
256
257 FF = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
258 fgb = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
259 dvdatmp = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
260 dvdasum = _mm_add_ps(dvdasum,dvdatmp);
261 fjptrA = dvda+jnrA;
262 fjptrB = dvda+jnrB;
263 fjptrC = dvda+jnrC;
264 fjptrD = dvda+jnrD;
265 gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
266 velec = _mm_mul_ps(qq00,rinv00);
267 felec = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
268
269 /* LENNARD-JONES DISPERSION/REPULSION */
270
271 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
272 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
273 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
274 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
275 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
276
277 /* Update potential sum for this i atom from the interaction with this j atom. */
278 velecsum = _mm_add_ps(velecsum,velec);
279 vgbsum = _mm_add_ps(vgbsum,vgb);
280 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
281
282 fscal = _mm_add_ps(felec,fvdw);
283
284 /* Calculate temporary vectorial force */
285 tx = _mm_mul_ps(fscal,dx00);
286 ty = _mm_mul_ps(fscal,dy00);
287 tz = _mm_mul_ps(fscal,dz00);
288
289 /* Update vectorial force */
290 fix0 = _mm_add_ps(fix0,tx);
291 fiy0 = _mm_add_ps(fiy0,ty);
292 fiz0 = _mm_add_ps(fiz0,tz);
293
294 fjptrA = f+j_coord_offsetA;
295 fjptrB = f+j_coord_offsetB;
296 fjptrC = f+j_coord_offsetC;
297 fjptrD = f+j_coord_offsetD;
298 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
299
300 /* Inner loop uses 71 flops */
301 }
302
303 if(jidx<j_index_end)
304 {
305
306 /* Get j neighbor index, and coordinate index */
307 jnrlistA = jjnr[jidx];
308 jnrlistB = jjnr[jidx+1];
309 jnrlistC = jjnr[jidx+2];
310 jnrlistD = jjnr[jidx+3];
311 /* Sign of each element will be negative for non-real atoms.
312 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
313 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
314 */
315 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
316 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
317 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
318 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
319 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
320 j_coord_offsetA = DIM3*jnrA;
321 j_coord_offsetB = DIM3*jnrB;
322 j_coord_offsetC = DIM3*jnrC;
323 j_coord_offsetD = DIM3*jnrD;
324
325 /* load j atom coordinates */
326 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
327 x+j_coord_offsetC,x+j_coord_offsetD,
328 &jx0,&jy0,&jz0);
329
330 /* Calculate displacement vector */
331 dx00 = _mm_sub_ps(ix0,jx0);
332 dy00 = _mm_sub_ps(iy0,jy0);
333 dz00 = _mm_sub_ps(iz0,jz0);
334
335 /* Calculate squared distance and things based on it */
336 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
337
338 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
339
340 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
341
342 /* Load parameters for j particles */
343 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
344 charge+jnrC+0,charge+jnrD+0);
345 isaj0 = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
346 invsqrta+jnrC+0,invsqrta+jnrD+0);
347 vdwjidx0A = 2*vdwtype[jnrA+0];
348 vdwjidx0B = 2*vdwtype[jnrB+0];
349 vdwjidx0C = 2*vdwtype[jnrC+0];
350 vdwjidx0D = 2*vdwtype[jnrD+0];
351
352 /**************************
353 * CALCULATE INTERACTIONS *
354 **************************/
355
356 r00 = _mm_mul_ps(rsq00,rinv00);
357 r00 = _mm_andnot_ps(dummy_mask,r00);
358
359 /* Compute parameters for interactions between i and j atoms */
360 qq00 = _mm_mul_ps(iq0,jq0);
361 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
362 vdwparam+vdwioffset0+vdwjidx0B,
363 vdwparam+vdwioffset0+vdwjidx0C,
364 vdwparam+vdwioffset0+vdwjidx0D,
365 &c6_00,&c12_00);
366
367 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
368 isaprod = _mm_mul_ps(isai0,isaj0);
369 gbqqfactor = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
370 gbscale = _mm_mul_ps(isaprod,gbtabscale);
371
372 /* Calculate generalized born table index - this is a separate table from the normal one,
373 * but we use the same procedure by multiplying r with scale and truncating to integer.
374 */
375 rt = _mm_mul_ps(r00,gbscale);
376 gbitab = _mm_cvttps_epi32(rt);
377 gbeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
378 gbitab = _mm_slli_epi32(gbitab,2);
379 Y = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(0) &
3];}))
);
380 F = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(1) &
3];}))
);
381 G = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(2) &
3];}))
);
382 H = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(3) &
3];}))
);
383 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
384 Heps = _mm_mul_ps(gbeps,H);
385 Fp = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
386 VV = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
387 vgb = _mm_mul_ps(gbqqfactor,VV);
388
389 FF = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
390 fgb = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
391 dvdatmp = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
392 dvdatmp = _mm_andnot_ps(dummy_mask,dvdatmp);
393 dvdasum = _mm_add_ps(dvdasum,dvdatmp);
394 /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
395 fjptrA = (jnrlistA>=0) ? dvda+jnrA : scratch;
396 fjptrB = (jnrlistB>=0) ? dvda+jnrB : scratch;
397 fjptrC = (jnrlistC>=0) ? dvda+jnrC : scratch;
398 fjptrD = (jnrlistD>=0) ? dvda+jnrD : scratch;
399 gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
400 velec = _mm_mul_ps(qq00,rinv00);
401 felec = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
402
403 /* LENNARD-JONES DISPERSION/REPULSION */
404
405 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
406 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
407 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
408 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
409 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
410
411 /* Update potential sum for this i atom from the interaction with this j atom. */
412 velec = _mm_andnot_ps(dummy_mask,velec);
413 velecsum = _mm_add_ps(velecsum,velec);
414 vgb = _mm_andnot_ps(dummy_mask,vgb);
415 vgbsum = _mm_add_ps(vgbsum,vgb);
416 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
417 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
418
419 fscal = _mm_add_ps(felec,fvdw);
420
421 fscal = _mm_andnot_ps(dummy_mask,fscal);
422
423 /* Calculate temporary vectorial force */
424 tx = _mm_mul_ps(fscal,dx00);
425 ty = _mm_mul_ps(fscal,dy00);
426 tz = _mm_mul_ps(fscal,dz00);
427
428 /* Update vectorial force */
429 fix0 = _mm_add_ps(fix0,tx);
430 fiy0 = _mm_add_ps(fiy0,ty);
431 fiz0 = _mm_add_ps(fiz0,tz);
432
433 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
434 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
435 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
436 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
437 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
438
439 /* Inner loop uses 72 flops */
440 }
441
442 /* End of innermost loop */
443
444 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
445 f+i_coord_offset,fshift+i_shift_offset);
446
447 ggid = gid[iidx];
448 /* Update potential energies */
449 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
450 gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
451 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
452 dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
453 gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
454
455 /* Increment number of inner iterations */
456 inneriter += j_index_end - j_index_start;
457
458 /* Outer loop uses 10 flops */
459 }
460
461 /* Increment number of outer iterations */
462 outeriter += nri;
463
464 /* Update outer/inner flops */
465
466 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*72)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*10 + inneriter
*72
;
467}
468/*
469 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_single
470 * Electrostatics interaction: GeneralizedBorn
471 * VdW interaction: LennardJones
472 * Geometry: Particle-Particle
473 * Calculate force/pot: Force
474 */
475void
476nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_single
477 (t_nblist * gmx_restrict nlist,
478 rvec * gmx_restrict xx,
479 rvec * gmx_restrict ff,
480 t_forcerec * gmx_restrict fr,
481 t_mdatoms * gmx_restrict mdatoms,
482 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
483 t_nrnb * gmx_restrict nrnb)
484{
485 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
486 * just 0 for non-waters.
487 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
488 * jnr indices corresponding to data put in the four positions in the SIMD register.
489 */
490 int i_shift_offset,i_coord_offset,outeriter,inneriter;
491 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
492 int jnrA,jnrB,jnrC,jnrD;
493 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
494 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
495 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
496 real rcutoff_scalar;
497 real *shiftvec,*fshift,*x,*f;
498 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
499 real scratch[4*DIM3];
500 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
501 int vdwioffset0;
502 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
503 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
504 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
505 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
506 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
507 real *charge;
508 __m128i gbitab;
509 __m128 vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
510 __m128 minushalf = _mm_set1_ps(-0.5);
511 real *invsqrta,*dvda,*gbtab;
512 int nvdwtype;
513 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
514 int *vdwtype;
515 real *vdwparam;
516 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
517 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
518 __m128i vfitab;
519 __m128i ifour = _mm_set1_epi32(4);
520 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
521 real *vftab;
522 __m128 dummy_mask,cutoff_mask;
523 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
524 __m128 one = _mm_set1_ps(1.0);
525 __m128 two = _mm_set1_ps(2.0);
526 x = xx[0];
527 f = ff[0];
528
529 nri = nlist->nri;
530 iinr = nlist->iinr;
531 jindex = nlist->jindex;
532 jjnr = nlist->jjnr;
533 shiftidx = nlist->shift;
534 gid = nlist->gid;
535 shiftvec = fr->shift_vec[0];
536 fshift = fr->fshift[0];
537 facel = _mm_set1_ps(fr->epsfac);
538 charge = mdatoms->chargeA;
539 nvdwtype = fr->ntype;
540 vdwparam = fr->nbfp;
541 vdwtype = mdatoms->typeA;
542
543 invsqrta = fr->invsqrta;
544 dvda = fr->dvda;
545 gbtabscale = _mm_set1_ps(fr->gbtab.scale);
546 gbtab = fr->gbtab.data;
547 gbinvepsdiff = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
548
549 /* Avoid stupid compiler warnings */
550 jnrA = jnrB = jnrC = jnrD = 0;
551 j_coord_offsetA = 0;
552 j_coord_offsetB = 0;
553 j_coord_offsetC = 0;
554 j_coord_offsetD = 0;
555
556 outeriter = 0;
557 inneriter = 0;
558
559 for(iidx=0;iidx<4*DIM3;iidx++)
560 {
561 scratch[iidx] = 0.0;
562 }
563
564 /* Start outer loop over neighborlists */
565 for(iidx=0; iidx<nri; iidx++)
566 {
567 /* Load shift vector for this list */
568 i_shift_offset = DIM3*shiftidx[iidx];
569
570 /* Load limits for loop over neighbors */
571 j_index_start = jindex[iidx];
572 j_index_end = jindex[iidx+1];
573
574 /* Get outer coordinate index */
575 inr = iinr[iidx];
576 i_coord_offset = DIM3*inr;
577
578 /* Load i particle coords and add shift vector */
579 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
580
581 fix0 = _mm_setzero_ps();
582 fiy0 = _mm_setzero_ps();
583 fiz0 = _mm_setzero_ps();
584
585 /* Load parameters for i particles */
586 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
587 isai0 = _mm_load1_ps(invsqrta+inr+0);
588 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
589
590 dvdasum = _mm_setzero_ps();
591
592 /* Start inner kernel loop */
593 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
594 {
595
596 /* Get j neighbor index, and coordinate index */
597 jnrA = jjnr[jidx];
598 jnrB = jjnr[jidx+1];
599 jnrC = jjnr[jidx+2];
600 jnrD = jjnr[jidx+3];
601 j_coord_offsetA = DIM3*jnrA;
602 j_coord_offsetB = DIM3*jnrB;
603 j_coord_offsetC = DIM3*jnrC;
604 j_coord_offsetD = DIM3*jnrD;
605
606 /* load j atom coordinates */
607 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
608 x+j_coord_offsetC,x+j_coord_offsetD,
609 &jx0,&jy0,&jz0);
610
611 /* Calculate displacement vector */
612 dx00 = _mm_sub_ps(ix0,jx0);
613 dy00 = _mm_sub_ps(iy0,jy0);
614 dz00 = _mm_sub_ps(iz0,jz0);
615
616 /* Calculate squared distance and things based on it */
617 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
618
619 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
620
621 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
622
623 /* Load parameters for j particles */
624 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
625 charge+jnrC+0,charge+jnrD+0);
626 isaj0 = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
627 invsqrta+jnrC+0,invsqrta+jnrD+0);
628 vdwjidx0A = 2*vdwtype[jnrA+0];
629 vdwjidx0B = 2*vdwtype[jnrB+0];
630 vdwjidx0C = 2*vdwtype[jnrC+0];
631 vdwjidx0D = 2*vdwtype[jnrD+0];
632
633 /**************************
634 * CALCULATE INTERACTIONS *
635 **************************/
636
637 r00 = _mm_mul_ps(rsq00,rinv00);
638
639 /* Compute parameters for interactions between i and j atoms */
640 qq00 = _mm_mul_ps(iq0,jq0);
641 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
642 vdwparam+vdwioffset0+vdwjidx0B,
643 vdwparam+vdwioffset0+vdwjidx0C,
644 vdwparam+vdwioffset0+vdwjidx0D,
645 &c6_00,&c12_00);
646
647 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
648 isaprod = _mm_mul_ps(isai0,isaj0);
649 gbqqfactor = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
650 gbscale = _mm_mul_ps(isaprod,gbtabscale);
651
652 /* Calculate generalized born table index - this is a separate table from the normal one,
653 * but we use the same procedure by multiplying r with scale and truncating to integer.
654 */
655 rt = _mm_mul_ps(r00,gbscale);
656 gbitab = _mm_cvttps_epi32(rt);
657 gbeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
658 gbitab = _mm_slli_epi32(gbitab,2);
659 Y = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(0) &
3];}))
);
660 F = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(1) &
3];}))
);
661 G = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(2) &
3];}))
);
662 H = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(3) &
3];}))
);
663 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
664 Heps = _mm_mul_ps(gbeps,H);
665 Fp = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
666 VV = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
667 vgb = _mm_mul_ps(gbqqfactor,VV);
668
669 FF = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
670 fgb = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
671 dvdatmp = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
672 dvdasum = _mm_add_ps(dvdasum,dvdatmp);
673 fjptrA = dvda+jnrA;
674 fjptrB = dvda+jnrB;
675 fjptrC = dvda+jnrC;
676 fjptrD = dvda+jnrD;
677 gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
678 velec = _mm_mul_ps(qq00,rinv00);
679 felec = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
680
681 /* LENNARD-JONES DISPERSION/REPULSION */
682
683 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
684 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
685
686 fscal = _mm_add_ps(felec,fvdw);
687
688 /* Calculate temporary vectorial force */
689 tx = _mm_mul_ps(fscal,dx00);
690 ty = _mm_mul_ps(fscal,dy00);
691 tz = _mm_mul_ps(fscal,dz00);
692
693 /* Update vectorial force */
694 fix0 = _mm_add_ps(fix0,tx);
695 fiy0 = _mm_add_ps(fiy0,ty);
696 fiz0 = _mm_add_ps(fiz0,tz);
697
698 fjptrA = f+j_coord_offsetA;
699 fjptrB = f+j_coord_offsetB;
700 fjptrC = f+j_coord_offsetC;
701 fjptrD = f+j_coord_offsetD;
702 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
703
704 /* Inner loop uses 64 flops */
705 }
706
707 if(jidx<j_index_end)
708 {
709
710 /* Get j neighbor index, and coordinate index */
711 jnrlistA = jjnr[jidx];
712 jnrlistB = jjnr[jidx+1];
713 jnrlistC = jjnr[jidx+2];
714 jnrlistD = jjnr[jidx+3];
715 /* Sign of each element will be negative for non-real atoms.
716 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
717 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
718 */
719 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
720 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
721 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
722 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
723 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
724 j_coord_offsetA = DIM3*jnrA;
725 j_coord_offsetB = DIM3*jnrB;
726 j_coord_offsetC = DIM3*jnrC;
727 j_coord_offsetD = DIM3*jnrD;
728
729 /* load j atom coordinates */
730 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
731 x+j_coord_offsetC,x+j_coord_offsetD,
732 &jx0,&jy0,&jz0);
733
734 /* Calculate displacement vector */
735 dx00 = _mm_sub_ps(ix0,jx0);
736 dy00 = _mm_sub_ps(iy0,jy0);
737 dz00 = _mm_sub_ps(iz0,jz0);
738
739 /* Calculate squared distance and things based on it */
740 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
741
742 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
743
744 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
745
746 /* Load parameters for j particles */
747 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
748 charge+jnrC+0,charge+jnrD+0);
749 isaj0 = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
750 invsqrta+jnrC+0,invsqrta+jnrD+0);
751 vdwjidx0A = 2*vdwtype[jnrA+0];
752 vdwjidx0B = 2*vdwtype[jnrB+0];
753 vdwjidx0C = 2*vdwtype[jnrC+0];
754 vdwjidx0D = 2*vdwtype[jnrD+0];
755
756 /**************************
757 * CALCULATE INTERACTIONS *
758 **************************/
759
760 r00 = _mm_mul_ps(rsq00,rinv00);
761 r00 = _mm_andnot_ps(dummy_mask,r00);
762
763 /* Compute parameters for interactions between i and j atoms */
764 qq00 = _mm_mul_ps(iq0,jq0);
765 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
766 vdwparam+vdwioffset0+vdwjidx0B,
767 vdwparam+vdwioffset0+vdwjidx0C,
768 vdwparam+vdwioffset0+vdwjidx0D,
769 &c6_00,&c12_00);
770
771 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
772 isaprod = _mm_mul_ps(isai0,isaj0);
773 gbqqfactor = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
774 gbscale = _mm_mul_ps(isaprod,gbtabscale);
775
776 /* Calculate generalized born table index - this is a separate table from the normal one,
777 * but we use the same procedure by multiplying r with scale and truncating to integer.
778 */
779 rt = _mm_mul_ps(r00,gbscale);
780 gbitab = _mm_cvttps_epi32(rt);
781 gbeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
782 gbitab = _mm_slli_epi32(gbitab,2);
783 Y = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(0) &
3];}))
);
784 F = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(1) &
3];}))
);
785 G = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(2) &
3];}))
);
786 H = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3)(__extension__ ({ __v4si __a = (__v4si)(gbitab); __a[(3) &
3];}))
);
787 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
788 Heps = _mm_mul_ps(gbeps,H);
789 Fp = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
790 VV = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
791 vgb = _mm_mul_ps(gbqqfactor,VV);
792
793 FF = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
794 fgb = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
795 dvdatmp = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
796 dvdatmp = _mm_andnot_ps(dummy_mask,dvdatmp);
797 dvdasum = _mm_add_ps(dvdasum,dvdatmp);
798 /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
799 fjptrA = (jnrlistA>=0) ? dvda+jnrA : scratch;
800 fjptrB = (jnrlistB>=0) ? dvda+jnrB : scratch;
801 fjptrC = (jnrlistC>=0) ? dvda+jnrC : scratch;
802 fjptrD = (jnrlistD>=0) ? dvda+jnrD : scratch;
803 gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
804 velec = _mm_mul_ps(qq00,rinv00);
805 felec = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
806
807 /* LENNARD-JONES DISPERSION/REPULSION */
808
809 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
810 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
811
812 fscal = _mm_add_ps(felec,fvdw);
813
814 fscal = _mm_andnot_ps(dummy_mask,fscal);
815
816 /* Calculate temporary vectorial force */
817 tx = _mm_mul_ps(fscal,dx00);
818 ty = _mm_mul_ps(fscal,dy00);
819 tz = _mm_mul_ps(fscal,dz00);
820
821 /* Update vectorial force */
822 fix0 = _mm_add_ps(fix0,tx);
823 fiy0 = _mm_add_ps(fiy0,ty);
824 fiz0 = _mm_add_ps(fiz0,tz);
825
826 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
827 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
828 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
829 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
830 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
831
832 /* Inner loop uses 65 flops */
833 }
834
835 /* End of innermost loop */
836
837 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
838 f+i_coord_offset,fshift+i_shift_offset);
839
840 dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
841 gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
842
843 /* Increment number of inner iterations */
844 inneriter += j_index_end - j_index_start;
845
846 /* Outer loop uses 7 flops */
847 }
848
849 /* Increment number of outer iterations */
850 outeriter += nri;
851
852 /* Update outer/inner flops */
853
854 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*65
;
855}