Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwLJ_GeomW3P1_c.c
Location:line 391, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 krf = fr->ic->k_rf;
104 krf2 = krf*2.0;
105 crf = fr->ic->c_rf;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 /* Setup water-specific parameters */
111 inr = nlist->iinr[0];
112 iq0 = facel*charge[inr+0];
113 iq1 = facel*charge[inr+1];
114 iq2 = facel*charge[inr+2];
115 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
116
117 outeriter = 0;
118 inneriter = 0;
119
120 /* Start outer loop over neighborlists */
121 for(iidx=0; iidx<nri; iidx++)
122 {
123 /* Load shift vector for this list */
124 i_shift_offset = DIM3*shiftidx[iidx];
125 shX = shiftvec[i_shift_offset+XX0];
126 shY = shiftvec[i_shift_offset+YY1];
127 shZ = shiftvec[i_shift_offset+ZZ2];
128
129 /* Load limits for loop over neighbors */
130 j_index_start = jindex[iidx];
131 j_index_end = jindex[iidx+1];
132
133 /* Get outer coordinate index */
134 inr = iinr[iidx];
135 i_coord_offset = DIM3*inr;
136
137 /* Load i particle coords and add shift vector */
138 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
139 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
140 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
141 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
142 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
143 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
144 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
145 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
146 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
147
148 fix0 = 0.0;
149 fiy0 = 0.0;
150 fiz0 = 0.0;
151 fix1 = 0.0;
152 fiy1 = 0.0;
153 fiz1 = 0.0;
154 fix2 = 0.0;
155 fiy2 = 0.0;
156 fiz2 = 0.0;
157
158 /* Reset potential sums */
159 velecsum = 0.0;
160 vvdwsum = 0.0;
161
162 /* Start inner kernel loop */
163 for(jidx=j_index_start; jidx<j_index_end; jidx++)
164 {
165 /* Get j neighbor index, and coordinate index */
166 jnr = jjnr[jidx];
167 j_coord_offset = DIM3*jnr;
168
169 /* load j atom coordinates */
170 jx0 = x[j_coord_offset+DIM3*0+XX0];
171 jy0 = x[j_coord_offset+DIM3*0+YY1];
172 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
173
174 /* Calculate displacement vector */
175 dx00 = ix0 - jx0;
176 dy00 = iy0 - jy0;
177 dz00 = iz0 - jz0;
178 dx10 = ix1 - jx0;
179 dy10 = iy1 - jy0;
180 dz10 = iz1 - jz0;
181 dx20 = ix2 - jx0;
182 dy20 = iy2 - jy0;
183 dz20 = iz2 - jz0;
184
185 /* Calculate squared distance and things based on it */
186 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
187 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
188 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
189
190 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
191 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
192 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
193
194 rinvsq00 = rinv00*rinv00;
195 rinvsq10 = rinv10*rinv10;
196 rinvsq20 = rinv20*rinv20;
197
198 /* Load parameters for j particles */
199 jq0 = charge[jnr+0];
200 vdwjidx0 = 2*vdwtype[jnr+0];
201
202 /**************************
203 * CALCULATE INTERACTIONS *
204 **************************/
205
206 qq00 = iq0*jq0;
207 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
208 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
209
210 /* REACTION-FIELD ELECTROSTATICS */
211 velec = qq00*(rinv00+krf*rsq00-crf);
212 felec = qq00*(rinv00*rinvsq00-krf2);
213
214 /* LENNARD-JONES DISPERSION/REPULSION */
215
216 rinvsix = rinvsq00*rinvsq00*rinvsq00;
217 vvdw6 = c6_00*rinvsix;
218 vvdw12 = c12_00*rinvsix*rinvsix;
219 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
220 fvdw = (vvdw12-vvdw6)*rinvsq00;
221
222 /* Update potential sums from outer loop */
223 velecsum += velec;
224 vvdwsum += vvdw;
225
226 fscal = felec+fvdw;
227
228 /* Calculate temporary vectorial force */
229 tx = fscal*dx00;
230 ty = fscal*dy00;
231 tz = fscal*dz00;
232
233 /* Update vectorial force */
234 fix0 += tx;
235 fiy0 += ty;
236 fiz0 += tz;
237 f[j_coord_offset+DIM3*0+XX0] -= tx;
238 f[j_coord_offset+DIM3*0+YY1] -= ty;
239 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
240
241 /**************************
242 * CALCULATE INTERACTIONS *
243 **************************/
244
245 qq10 = iq1*jq0;
246
247 /* REACTION-FIELD ELECTROSTATICS */
248 velec = qq10*(rinv10+krf*rsq10-crf);
249 felec = qq10*(rinv10*rinvsq10-krf2);
250
251 /* Update potential sums from outer loop */
252 velecsum += velec;
253
254 fscal = felec;
255
256 /* Calculate temporary vectorial force */
257 tx = fscal*dx10;
258 ty = fscal*dy10;
259 tz = fscal*dz10;
260
261 /* Update vectorial force */
262 fix1 += tx;
263 fiy1 += ty;
264 fiz1 += tz;
265 f[j_coord_offset+DIM3*0+XX0] -= tx;
266 f[j_coord_offset+DIM3*0+YY1] -= ty;
267 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
268
269 /**************************
270 * CALCULATE INTERACTIONS *
271 **************************/
272
273 qq20 = iq2*jq0;
274
275 /* REACTION-FIELD ELECTROSTATICS */
276 velec = qq20*(rinv20+krf*rsq20-crf);
277 felec = qq20*(rinv20*rinvsq20-krf2);
278
279 /* Update potential sums from outer loop */
280 velecsum += velec;
281
282 fscal = felec;
283
284 /* Calculate temporary vectorial force */
285 tx = fscal*dx20;
286 ty = fscal*dy20;
287 tz = fscal*dz20;
288
289 /* Update vectorial force */
290 fix2 += tx;
291 fiy2 += ty;
292 fiz2 += tz;
293 f[j_coord_offset+DIM3*0+XX0] -= tx;
294 f[j_coord_offset+DIM3*0+YY1] -= ty;
295 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
296
297 /* Inner loop uses 108 flops */
298 }
299 /* End of innermost loop */
300
301 tx = ty = tz = 0;
302 f[i_coord_offset+DIM3*0+XX0] += fix0;
303 f[i_coord_offset+DIM3*0+YY1] += fiy0;
304 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
305 tx += fix0;
306 ty += fiy0;
307 tz += fiz0;
308 f[i_coord_offset+DIM3*1+XX0] += fix1;
309 f[i_coord_offset+DIM3*1+YY1] += fiy1;
310 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
311 tx += fix1;
312 ty += fiy1;
313 tz += fiz1;
314 f[i_coord_offset+DIM3*2+XX0] += fix2;
315 f[i_coord_offset+DIM3*2+YY1] += fiy2;
316 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
317 tx += fix2;
318 ty += fiy2;
319 tz += fiz2;
320 fshift[i_shift_offset+XX0] += tx;
321 fshift[i_shift_offset+YY1] += ty;
322 fshift[i_shift_offset+ZZ2] += tz;
323
324 ggid = gid[iidx];
325 /* Update potential energies */
326 kernel_data->energygrp_elec[ggid] += velecsum;
327 kernel_data->energygrp_vdw[ggid] += vvdwsum;
328
329 /* Increment number of inner iterations */
330 inneriter += j_index_end - j_index_start;
331
332 /* Outer loop uses 32 flops */
333 }
334
335 /* Increment number of outer iterations */
336 outeriter += nri;
337
338 /* Update outer/inner flops */
339
340 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*108)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*108
;
341}
342/*
343 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_c
344 * Electrostatics interaction: ReactionField
345 * VdW interaction: LennardJones
346 * Geometry: Water3-Particle
347 * Calculate force/pot: Force
348 */
349void
350nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_c
351 (t_nblist * gmx_restrict__restrict nlist,
352 rvec * gmx_restrict__restrict xx,
353 rvec * gmx_restrict__restrict ff,
354 t_forcerec * gmx_restrict__restrict fr,
355 t_mdatoms * gmx_restrict__restrict mdatoms,
356 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
357 t_nrnb * gmx_restrict__restrict nrnb)
358{
359 int i_shift_offset,i_coord_offset,j_coord_offset;
360 int j_index_start,j_index_end;
361 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
362 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
363 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
364 real *shiftvec,*fshift,*x,*f;
365 int vdwioffset0;
366 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
367 int vdwioffset1;
368 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
369 int vdwioffset2;
370 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
371 int vdwjidx0;
372 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
373 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
374 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
375 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
376 real velec,felec,velecsum,facel,crf,krf,krf2;
377 real *charge;
378 int nvdwtype;
379 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
380 int *vdwtype;
381 real *vdwparam;
382
383 x = xx[0];
384 f = ff[0];
385
386 nri = nlist->nri;
387 iinr = nlist->iinr;
388 jindex = nlist->jindex;
389 jjnr = nlist->jjnr;
390 shiftidx = nlist->shift;
391 gid = nlist->gid;
Value stored to 'gid' is never read
392 shiftvec = fr->shift_vec[0];
393 fshift = fr->fshift[0];
394 facel = fr->epsfac;
395 charge = mdatoms->chargeA;
396 krf = fr->ic->k_rf;
397 krf2 = krf*2.0;
398 crf = fr->ic->c_rf;
399 nvdwtype = fr->ntype;
400 vdwparam = fr->nbfp;
401 vdwtype = mdatoms->typeA;
402
403 /* Setup water-specific parameters */
404 inr = nlist->iinr[0];
405 iq0 = facel*charge[inr+0];
406 iq1 = facel*charge[inr+1];
407 iq2 = facel*charge[inr+2];
408 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
409
410 outeriter = 0;
411 inneriter = 0;
412
413 /* Start outer loop over neighborlists */
414 for(iidx=0; iidx<nri; iidx++)
415 {
416 /* Load shift vector for this list */
417 i_shift_offset = DIM3*shiftidx[iidx];
418 shX = shiftvec[i_shift_offset+XX0];
419 shY = shiftvec[i_shift_offset+YY1];
420 shZ = shiftvec[i_shift_offset+ZZ2];
421
422 /* Load limits for loop over neighbors */
423 j_index_start = jindex[iidx];
424 j_index_end = jindex[iidx+1];
425
426 /* Get outer coordinate index */
427 inr = iinr[iidx];
428 i_coord_offset = DIM3*inr;
429
430 /* Load i particle coords and add shift vector */
431 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
432 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
433 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
434 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
435 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
436 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
437 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
438 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
439 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
440
441 fix0 = 0.0;
442 fiy0 = 0.0;
443 fiz0 = 0.0;
444 fix1 = 0.0;
445 fiy1 = 0.0;
446 fiz1 = 0.0;
447 fix2 = 0.0;
448 fiy2 = 0.0;
449 fiz2 = 0.0;
450
451 /* Start inner kernel loop */
452 for(jidx=j_index_start; jidx<j_index_end; jidx++)
453 {
454 /* Get j neighbor index, and coordinate index */
455 jnr = jjnr[jidx];
456 j_coord_offset = DIM3*jnr;
457
458 /* load j atom coordinates */
459 jx0 = x[j_coord_offset+DIM3*0+XX0];
460 jy0 = x[j_coord_offset+DIM3*0+YY1];
461 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
462
463 /* Calculate displacement vector */
464 dx00 = ix0 - jx0;
465 dy00 = iy0 - jy0;
466 dz00 = iz0 - jz0;
467 dx10 = ix1 - jx0;
468 dy10 = iy1 - jy0;
469 dz10 = iz1 - jz0;
470 dx20 = ix2 - jx0;
471 dy20 = iy2 - jy0;
472 dz20 = iz2 - jz0;
473
474 /* Calculate squared distance and things based on it */
475 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
476 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
477 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
478
479 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
480 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
481 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
482
483 rinvsq00 = rinv00*rinv00;
484 rinvsq10 = rinv10*rinv10;
485 rinvsq20 = rinv20*rinv20;
486
487 /* Load parameters for j particles */
488 jq0 = charge[jnr+0];
489 vdwjidx0 = 2*vdwtype[jnr+0];
490
491 /**************************
492 * CALCULATE INTERACTIONS *
493 **************************/
494
495 qq00 = iq0*jq0;
496 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
497 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
498
499 /* REACTION-FIELD ELECTROSTATICS */
500 felec = qq00*(rinv00*rinvsq00-krf2);
501
502 /* LENNARD-JONES DISPERSION/REPULSION */
503
504 rinvsix = rinvsq00*rinvsq00*rinvsq00;
505 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
506
507 fscal = felec+fvdw;
508
509 /* Calculate temporary vectorial force */
510 tx = fscal*dx00;
511 ty = fscal*dy00;
512 tz = fscal*dz00;
513
514 /* Update vectorial force */
515 fix0 += tx;
516 fiy0 += ty;
517 fiz0 += tz;
518 f[j_coord_offset+DIM3*0+XX0] -= tx;
519 f[j_coord_offset+DIM3*0+YY1] -= ty;
520 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
521
522 /**************************
523 * CALCULATE INTERACTIONS *
524 **************************/
525
526 qq10 = iq1*jq0;
527
528 /* REACTION-FIELD ELECTROSTATICS */
529 felec = qq10*(rinv10*rinvsq10-krf2);
530
531 fscal = felec;
532
533 /* Calculate temporary vectorial force */
534 tx = fscal*dx10;
535 ty = fscal*dy10;
536 tz = fscal*dz10;
537
538 /* Update vectorial force */
539 fix1 += tx;
540 fiy1 += ty;
541 fiz1 += tz;
542 f[j_coord_offset+DIM3*0+XX0] -= tx;
543 f[j_coord_offset+DIM3*0+YY1] -= ty;
544 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
545
546 /**************************
547 * CALCULATE INTERACTIONS *
548 **************************/
549
550 qq20 = iq2*jq0;
551
552 /* REACTION-FIELD ELECTROSTATICS */
553 felec = qq20*(rinv20*rinvsq20-krf2);
554
555 fscal = felec;
556
557 /* Calculate temporary vectorial force */
558 tx = fscal*dx20;
559 ty = fscal*dy20;
560 tz = fscal*dz20;
561
562 /* Update vectorial force */
563 fix2 += tx;
564 fiy2 += ty;
565 fiz2 += tz;
566 f[j_coord_offset+DIM3*0+XX0] -= tx;
567 f[j_coord_offset+DIM3*0+YY1] -= ty;
568 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
569
570 /* Inner loop uses 88 flops */
571 }
572 /* End of innermost loop */
573
574 tx = ty = tz = 0;
575 f[i_coord_offset+DIM3*0+XX0] += fix0;
576 f[i_coord_offset+DIM3*0+YY1] += fiy0;
577 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
578 tx += fix0;
579 ty += fiy0;
580 tz += fiz0;
581 f[i_coord_offset+DIM3*1+XX0] += fix1;
582 f[i_coord_offset+DIM3*1+YY1] += fiy1;
583 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
584 tx += fix1;
585 ty += fiy1;
586 tz += fiz1;
587 f[i_coord_offset+DIM3*2+XX0] += fix2;
588 f[i_coord_offset+DIM3*2+YY1] += fiy2;
589 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
590 tx += fix2;
591 ty += fiy2;
592 tz += fiz2;
593 fshift[i_shift_offset+XX0] += tx;
594 fshift[i_shift_offset+YY1] += ty;
595 fshift[i_shift_offset+ZZ2] += tz;
596
597 /* Increment number of inner iterations */
598 inneriter += j_index_end - j_index_start;
599
600 /* Outer loop uses 30 flops */
601 }
602
603 /* Increment number of outer iterations */
604 outeriter += nri;
605
606 /* Update outer/inner flops */
607
608 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*88)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*88
;
609}