Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecCoul_VdwCSTab_GeomW4W4_sse4_1_single.c
Location:line 1174, column 22
Description:Value stored to 'one_twelfth' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW4W4_VF_sse4_1_single
54 * Electrostatics interaction: Coulomb
55 * VdW interaction: CubicSplineTable
56 * Geometry: Water4-Water4
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecCoul_VdwCSTab_GeomW4W4_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwioffset3;
92 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95 int vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
96 __m128 jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
97 int vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
98 __m128 jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
99 int vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
100 __m128 jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
101 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
102 __m128 dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
103 __m128 dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
104 __m128 dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
105 __m128 dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
106 __m128 dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
107 __m128 dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
108 __m128 dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
109 __m128 dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
110 __m128 dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
111 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
112 real *charge;
113 int nvdwtype;
114 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
115 int *vdwtype;
116 real *vdwparam;
117 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
118 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
119 __m128i vfitab;
120 __m128i ifour = _mm_set1_epi32(4);
121 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
122 real *vftab;
123 __m128 dummy_mask,cutoff_mask;
124 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
125 __m128 one = _mm_set1_ps(1.0);
126 __m128 two = _mm_set1_ps(2.0);
127 x = xx[0];
128 f = ff[0];
129
130 nri = nlist->nri;
131 iinr = nlist->iinr;
132 jindex = nlist->jindex;
133 jjnr = nlist->jjnr;
134 shiftidx = nlist->shift;
135 gid = nlist->gid;
136 shiftvec = fr->shift_vec[0];
137 fshift = fr->fshift[0];
138 facel = _mm_set1_ps(fr->epsfac);
139 charge = mdatoms->chargeA;
140 nvdwtype = fr->ntype;
141 vdwparam = fr->nbfp;
142 vdwtype = mdatoms->typeA;
143
144 vftab = kernel_data->table_vdw->data;
145 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
146
147 /* Setup water-specific parameters */
148 inr = nlist->iinr[0];
149 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
150 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
151 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
152 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
153
154 jq1 = _mm_set1_ps(charge[inr+1]);
155 jq2 = _mm_set1_ps(charge[inr+2]);
156 jq3 = _mm_set1_ps(charge[inr+3]);
157 vdwjidx0A = 2*vdwtype[inr+0];
158 c6_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
159 c12_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
160 qq11 = _mm_mul_ps(iq1,jq1);
161 qq12 = _mm_mul_ps(iq1,jq2);
162 qq13 = _mm_mul_ps(iq1,jq3);
163 qq21 = _mm_mul_ps(iq2,jq1);
164 qq22 = _mm_mul_ps(iq2,jq2);
165 qq23 = _mm_mul_ps(iq2,jq3);
166 qq31 = _mm_mul_ps(iq3,jq1);
167 qq32 = _mm_mul_ps(iq3,jq2);
168 qq33 = _mm_mul_ps(iq3,jq3);
169
170 /* Avoid stupid compiler warnings */
171 jnrA = jnrB = jnrC = jnrD = 0;
172 j_coord_offsetA = 0;
173 j_coord_offsetB = 0;
174 j_coord_offsetC = 0;
175 j_coord_offsetD = 0;
176
177 outeriter = 0;
178 inneriter = 0;
179
180 for(iidx=0;iidx<4*DIM3;iidx++)
181 {
182 scratch[iidx] = 0.0;
183 }
184
185 /* Start outer loop over neighborlists */
186 for(iidx=0; iidx<nri; iidx++)
187 {
188 /* Load shift vector for this list */
189 i_shift_offset = DIM3*shiftidx[iidx];
190
191 /* Load limits for loop over neighbors */
192 j_index_start = jindex[iidx];
193 j_index_end = jindex[iidx+1];
194
195 /* Get outer coordinate index */
196 inr = iinr[iidx];
197 i_coord_offset = DIM3*inr;
198
199 /* Load i particle coords and add shift vector */
200 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
201 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
202
203 fix0 = _mm_setzero_ps();
204 fiy0 = _mm_setzero_ps();
205 fiz0 = _mm_setzero_ps();
206 fix1 = _mm_setzero_ps();
207 fiy1 = _mm_setzero_ps();
208 fiz1 = _mm_setzero_ps();
209 fix2 = _mm_setzero_ps();
210 fiy2 = _mm_setzero_ps();
211 fiz2 = _mm_setzero_ps();
212 fix3 = _mm_setzero_ps();
213 fiy3 = _mm_setzero_ps();
214 fiz3 = _mm_setzero_ps();
215
216 /* Reset potential sums */
217 velecsum = _mm_setzero_ps();
218 vvdwsum = _mm_setzero_ps();
219
220 /* Start inner kernel loop */
221 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
222 {
223
224 /* Get j neighbor index, and coordinate index */
225 jnrA = jjnr[jidx];
226 jnrB = jjnr[jidx+1];
227 jnrC = jjnr[jidx+2];
228 jnrD = jjnr[jidx+3];
229 j_coord_offsetA = DIM3*jnrA;
230 j_coord_offsetB = DIM3*jnrB;
231 j_coord_offsetC = DIM3*jnrC;
232 j_coord_offsetD = DIM3*jnrD;
233
234 /* load j atom coordinates */
235 gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
236 x+j_coord_offsetC,x+j_coord_offsetD,
237 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
238 &jy2,&jz2,&jx3,&jy3,&jz3);
239
240 /* Calculate displacement vector */
241 dx00 = _mm_sub_ps(ix0,jx0);
242 dy00 = _mm_sub_ps(iy0,jy0);
243 dz00 = _mm_sub_ps(iz0,jz0);
244 dx11 = _mm_sub_ps(ix1,jx1);
245 dy11 = _mm_sub_ps(iy1,jy1);
246 dz11 = _mm_sub_ps(iz1,jz1);
247 dx12 = _mm_sub_ps(ix1,jx2);
248 dy12 = _mm_sub_ps(iy1,jy2);
249 dz12 = _mm_sub_ps(iz1,jz2);
250 dx13 = _mm_sub_ps(ix1,jx3);
251 dy13 = _mm_sub_ps(iy1,jy3);
252 dz13 = _mm_sub_ps(iz1,jz3);
253 dx21 = _mm_sub_ps(ix2,jx1);
254 dy21 = _mm_sub_ps(iy2,jy1);
255 dz21 = _mm_sub_ps(iz2,jz1);
256 dx22 = _mm_sub_ps(ix2,jx2);
257 dy22 = _mm_sub_ps(iy2,jy2);
258 dz22 = _mm_sub_ps(iz2,jz2);
259 dx23 = _mm_sub_ps(ix2,jx3);
260 dy23 = _mm_sub_ps(iy2,jy3);
261 dz23 = _mm_sub_ps(iz2,jz3);
262 dx31 = _mm_sub_ps(ix3,jx1);
263 dy31 = _mm_sub_ps(iy3,jy1);
264 dz31 = _mm_sub_ps(iz3,jz1);
265 dx32 = _mm_sub_ps(ix3,jx2);
266 dy32 = _mm_sub_ps(iy3,jy2);
267 dz32 = _mm_sub_ps(iz3,jz2);
268 dx33 = _mm_sub_ps(ix3,jx3);
269 dy33 = _mm_sub_ps(iy3,jy3);
270 dz33 = _mm_sub_ps(iz3,jz3);
271
272 /* Calculate squared distance and things based on it */
273 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
274 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
275 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
276 rsq13 = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
277 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
278 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
279 rsq23 = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
280 rsq31 = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
281 rsq32 = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
282 rsq33 = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
283
284 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
285 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
286 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
287 rinv13 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq13);
288 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
289 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
290 rinv23 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq23);
291 rinv31 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq31);
292 rinv32 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq32);
293 rinv33 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq33);
294
295 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
296 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
297 rinvsq13 = _mm_mul_ps(rinv13,rinv13);
298 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
299 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
300 rinvsq23 = _mm_mul_ps(rinv23,rinv23);
301 rinvsq31 = _mm_mul_ps(rinv31,rinv31);
302 rinvsq32 = _mm_mul_ps(rinv32,rinv32);
303 rinvsq33 = _mm_mul_ps(rinv33,rinv33);
304
305 fjx0 = _mm_setzero_ps();
306 fjy0 = _mm_setzero_ps();
307 fjz0 = _mm_setzero_ps();
308 fjx1 = _mm_setzero_ps();
309 fjy1 = _mm_setzero_ps();
310 fjz1 = _mm_setzero_ps();
311 fjx2 = _mm_setzero_ps();
312 fjy2 = _mm_setzero_ps();
313 fjz2 = _mm_setzero_ps();
314 fjx3 = _mm_setzero_ps();
315 fjy3 = _mm_setzero_ps();
316 fjz3 = _mm_setzero_ps();
317
318 /**************************
319 * CALCULATE INTERACTIONS *
320 **************************/
321
322 r00 = _mm_mul_ps(rsq00,rinv00);
323
324 /* Calculate table index by multiplying r with table scale and truncate to integer */
325 rt = _mm_mul_ps(r00,vftabscale);
326 vfitab = _mm_cvttps_epi32(rt);
327 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
328 vfitab = _mm_slli_epi32(vfitab,3);
329
330 /* CUBIC SPLINE TABLE DISPERSION */
331 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
332 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
333 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
334 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
335 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
336 Heps = _mm_mul_ps(vfeps,H);
337 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
338 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
339 vvdw6 = _mm_mul_ps(c6_00,VV);
340 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
341 fvdw6 = _mm_mul_ps(c6_00,FF);
342
343 /* CUBIC SPLINE TABLE REPULSION */
344 vfitab = _mm_add_epi32(vfitab,ifour);
345 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
346 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
347 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
348 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
349 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
350 Heps = _mm_mul_ps(vfeps,H);
351 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
352 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
353 vvdw12 = _mm_mul_ps(c12_00,VV);
354 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
355 fvdw12 = _mm_mul_ps(c12_00,FF);
356 vvdw = _mm_add_ps(vvdw12,vvdw6);
357 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
358
359 /* Update potential sum for this i atom from the interaction with this j atom. */
360 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
361
362 fscal = fvdw;
363
364 /* Calculate temporary vectorial force */
365 tx = _mm_mul_ps(fscal,dx00);
366 ty = _mm_mul_ps(fscal,dy00);
367 tz = _mm_mul_ps(fscal,dz00);
368
369 /* Update vectorial force */
370 fix0 = _mm_add_ps(fix0,tx);
371 fiy0 = _mm_add_ps(fiy0,ty);
372 fiz0 = _mm_add_ps(fiz0,tz);
373
374 fjx0 = _mm_add_ps(fjx0,tx);
375 fjy0 = _mm_add_ps(fjy0,ty);
376 fjz0 = _mm_add_ps(fjz0,tz);
377
378 /**************************
379 * CALCULATE INTERACTIONS *
380 **************************/
381
382 /* COULOMB ELECTROSTATICS */
383 velec = _mm_mul_ps(qq11,rinv11);
384 felec = _mm_mul_ps(velec,rinvsq11);
385
386 /* Update potential sum for this i atom from the interaction with this j atom. */
387 velecsum = _mm_add_ps(velecsum,velec);
388
389 fscal = felec;
390
391 /* Calculate temporary vectorial force */
392 tx = _mm_mul_ps(fscal,dx11);
393 ty = _mm_mul_ps(fscal,dy11);
394 tz = _mm_mul_ps(fscal,dz11);
395
396 /* Update vectorial force */
397 fix1 = _mm_add_ps(fix1,tx);
398 fiy1 = _mm_add_ps(fiy1,ty);
399 fiz1 = _mm_add_ps(fiz1,tz);
400
401 fjx1 = _mm_add_ps(fjx1,tx);
402 fjy1 = _mm_add_ps(fjy1,ty);
403 fjz1 = _mm_add_ps(fjz1,tz);
404
405 /**************************
406 * CALCULATE INTERACTIONS *
407 **************************/
408
409 /* COULOMB ELECTROSTATICS */
410 velec = _mm_mul_ps(qq12,rinv12);
411 felec = _mm_mul_ps(velec,rinvsq12);
412
413 /* Update potential sum for this i atom from the interaction with this j atom. */
414 velecsum = _mm_add_ps(velecsum,velec);
415
416 fscal = felec;
417
418 /* Calculate temporary vectorial force */
419 tx = _mm_mul_ps(fscal,dx12);
420 ty = _mm_mul_ps(fscal,dy12);
421 tz = _mm_mul_ps(fscal,dz12);
422
423 /* Update vectorial force */
424 fix1 = _mm_add_ps(fix1,tx);
425 fiy1 = _mm_add_ps(fiy1,ty);
426 fiz1 = _mm_add_ps(fiz1,tz);
427
428 fjx2 = _mm_add_ps(fjx2,tx);
429 fjy2 = _mm_add_ps(fjy2,ty);
430 fjz2 = _mm_add_ps(fjz2,tz);
431
432 /**************************
433 * CALCULATE INTERACTIONS *
434 **************************/
435
436 /* COULOMB ELECTROSTATICS */
437 velec = _mm_mul_ps(qq13,rinv13);
438 felec = _mm_mul_ps(velec,rinvsq13);
439
440 /* Update potential sum for this i atom from the interaction with this j atom. */
441 velecsum = _mm_add_ps(velecsum,velec);
442
443 fscal = felec;
444
445 /* Calculate temporary vectorial force */
446 tx = _mm_mul_ps(fscal,dx13);
447 ty = _mm_mul_ps(fscal,dy13);
448 tz = _mm_mul_ps(fscal,dz13);
449
450 /* Update vectorial force */
451 fix1 = _mm_add_ps(fix1,tx);
452 fiy1 = _mm_add_ps(fiy1,ty);
453 fiz1 = _mm_add_ps(fiz1,tz);
454
455 fjx3 = _mm_add_ps(fjx3,tx);
456 fjy3 = _mm_add_ps(fjy3,ty);
457 fjz3 = _mm_add_ps(fjz3,tz);
458
459 /**************************
460 * CALCULATE INTERACTIONS *
461 **************************/
462
463 /* COULOMB ELECTROSTATICS */
464 velec = _mm_mul_ps(qq21,rinv21);
465 felec = _mm_mul_ps(velec,rinvsq21);
466
467 /* Update potential sum for this i atom from the interaction with this j atom. */
468 velecsum = _mm_add_ps(velecsum,velec);
469
470 fscal = felec;
471
472 /* Calculate temporary vectorial force */
473 tx = _mm_mul_ps(fscal,dx21);
474 ty = _mm_mul_ps(fscal,dy21);
475 tz = _mm_mul_ps(fscal,dz21);
476
477 /* Update vectorial force */
478 fix2 = _mm_add_ps(fix2,tx);
479 fiy2 = _mm_add_ps(fiy2,ty);
480 fiz2 = _mm_add_ps(fiz2,tz);
481
482 fjx1 = _mm_add_ps(fjx1,tx);
483 fjy1 = _mm_add_ps(fjy1,ty);
484 fjz1 = _mm_add_ps(fjz1,tz);
485
486 /**************************
487 * CALCULATE INTERACTIONS *
488 **************************/
489
490 /* COULOMB ELECTROSTATICS */
491 velec = _mm_mul_ps(qq22,rinv22);
492 felec = _mm_mul_ps(velec,rinvsq22);
493
494 /* Update potential sum for this i atom from the interaction with this j atom. */
495 velecsum = _mm_add_ps(velecsum,velec);
496
497 fscal = felec;
498
499 /* Calculate temporary vectorial force */
500 tx = _mm_mul_ps(fscal,dx22);
501 ty = _mm_mul_ps(fscal,dy22);
502 tz = _mm_mul_ps(fscal,dz22);
503
504 /* Update vectorial force */
505 fix2 = _mm_add_ps(fix2,tx);
506 fiy2 = _mm_add_ps(fiy2,ty);
507 fiz2 = _mm_add_ps(fiz2,tz);
508
509 fjx2 = _mm_add_ps(fjx2,tx);
510 fjy2 = _mm_add_ps(fjy2,ty);
511 fjz2 = _mm_add_ps(fjz2,tz);
512
513 /**************************
514 * CALCULATE INTERACTIONS *
515 **************************/
516
517 /* COULOMB ELECTROSTATICS */
518 velec = _mm_mul_ps(qq23,rinv23);
519 felec = _mm_mul_ps(velec,rinvsq23);
520
521 /* Update potential sum for this i atom from the interaction with this j atom. */
522 velecsum = _mm_add_ps(velecsum,velec);
523
524 fscal = felec;
525
526 /* Calculate temporary vectorial force */
527 tx = _mm_mul_ps(fscal,dx23);
528 ty = _mm_mul_ps(fscal,dy23);
529 tz = _mm_mul_ps(fscal,dz23);
530
531 /* Update vectorial force */
532 fix2 = _mm_add_ps(fix2,tx);
533 fiy2 = _mm_add_ps(fiy2,ty);
534 fiz2 = _mm_add_ps(fiz2,tz);
535
536 fjx3 = _mm_add_ps(fjx3,tx);
537 fjy3 = _mm_add_ps(fjy3,ty);
538 fjz3 = _mm_add_ps(fjz3,tz);
539
540 /**************************
541 * CALCULATE INTERACTIONS *
542 **************************/
543
544 /* COULOMB ELECTROSTATICS */
545 velec = _mm_mul_ps(qq31,rinv31);
546 felec = _mm_mul_ps(velec,rinvsq31);
547
548 /* Update potential sum for this i atom from the interaction with this j atom. */
549 velecsum = _mm_add_ps(velecsum,velec);
550
551 fscal = felec;
552
553 /* Calculate temporary vectorial force */
554 tx = _mm_mul_ps(fscal,dx31);
555 ty = _mm_mul_ps(fscal,dy31);
556 tz = _mm_mul_ps(fscal,dz31);
557
558 /* Update vectorial force */
559 fix3 = _mm_add_ps(fix3,tx);
560 fiy3 = _mm_add_ps(fiy3,ty);
561 fiz3 = _mm_add_ps(fiz3,tz);
562
563 fjx1 = _mm_add_ps(fjx1,tx);
564 fjy1 = _mm_add_ps(fjy1,ty);
565 fjz1 = _mm_add_ps(fjz1,tz);
566
567 /**************************
568 * CALCULATE INTERACTIONS *
569 **************************/
570
571 /* COULOMB ELECTROSTATICS */
572 velec = _mm_mul_ps(qq32,rinv32);
573 felec = _mm_mul_ps(velec,rinvsq32);
574
575 /* Update potential sum for this i atom from the interaction with this j atom. */
576 velecsum = _mm_add_ps(velecsum,velec);
577
578 fscal = felec;
579
580 /* Calculate temporary vectorial force */
581 tx = _mm_mul_ps(fscal,dx32);
582 ty = _mm_mul_ps(fscal,dy32);
583 tz = _mm_mul_ps(fscal,dz32);
584
585 /* Update vectorial force */
586 fix3 = _mm_add_ps(fix3,tx);
587 fiy3 = _mm_add_ps(fiy3,ty);
588 fiz3 = _mm_add_ps(fiz3,tz);
589
590 fjx2 = _mm_add_ps(fjx2,tx);
591 fjy2 = _mm_add_ps(fjy2,ty);
592 fjz2 = _mm_add_ps(fjz2,tz);
593
594 /**************************
595 * CALCULATE INTERACTIONS *
596 **************************/
597
598 /* COULOMB ELECTROSTATICS */
599 velec = _mm_mul_ps(qq33,rinv33);
600 felec = _mm_mul_ps(velec,rinvsq33);
601
602 /* Update potential sum for this i atom from the interaction with this j atom. */
603 velecsum = _mm_add_ps(velecsum,velec);
604
605 fscal = felec;
606
607 /* Calculate temporary vectorial force */
608 tx = _mm_mul_ps(fscal,dx33);
609 ty = _mm_mul_ps(fscal,dy33);
610 tz = _mm_mul_ps(fscal,dz33);
611
612 /* Update vectorial force */
613 fix3 = _mm_add_ps(fix3,tx);
614 fiy3 = _mm_add_ps(fiy3,ty);
615 fiz3 = _mm_add_ps(fiz3,tz);
616
617 fjx3 = _mm_add_ps(fjx3,tx);
618 fjy3 = _mm_add_ps(fjy3,ty);
619 fjz3 = _mm_add_ps(fjz3,tz);
620
621 fjptrA = f+j_coord_offsetA;
622 fjptrB = f+j_coord_offsetB;
623 fjptrC = f+j_coord_offsetC;
624 fjptrD = f+j_coord_offsetD;
625
626 gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
627 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
628 fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
629
630 /* Inner loop uses 311 flops */
631 }
632
633 if(jidx<j_index_end)
634 {
635
636 /* Get j neighbor index, and coordinate index */
637 jnrlistA = jjnr[jidx];
638 jnrlistB = jjnr[jidx+1];
639 jnrlistC = jjnr[jidx+2];
640 jnrlistD = jjnr[jidx+3];
641 /* Sign of each element will be negative for non-real atoms.
642 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
643 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
644 */
645 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
646 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
647 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
648 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
649 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
650 j_coord_offsetA = DIM3*jnrA;
651 j_coord_offsetB = DIM3*jnrB;
652 j_coord_offsetC = DIM3*jnrC;
653 j_coord_offsetD = DIM3*jnrD;
654
655 /* load j atom coordinates */
656 gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
657 x+j_coord_offsetC,x+j_coord_offsetD,
658 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
659 &jy2,&jz2,&jx3,&jy3,&jz3);
660
661 /* Calculate displacement vector */
662 dx00 = _mm_sub_ps(ix0,jx0);
663 dy00 = _mm_sub_ps(iy0,jy0);
664 dz00 = _mm_sub_ps(iz0,jz0);
665 dx11 = _mm_sub_ps(ix1,jx1);
666 dy11 = _mm_sub_ps(iy1,jy1);
667 dz11 = _mm_sub_ps(iz1,jz1);
668 dx12 = _mm_sub_ps(ix1,jx2);
669 dy12 = _mm_sub_ps(iy1,jy2);
670 dz12 = _mm_sub_ps(iz1,jz2);
671 dx13 = _mm_sub_ps(ix1,jx3);
672 dy13 = _mm_sub_ps(iy1,jy3);
673 dz13 = _mm_sub_ps(iz1,jz3);
674 dx21 = _mm_sub_ps(ix2,jx1);
675 dy21 = _mm_sub_ps(iy2,jy1);
676 dz21 = _mm_sub_ps(iz2,jz1);
677 dx22 = _mm_sub_ps(ix2,jx2);
678 dy22 = _mm_sub_ps(iy2,jy2);
679 dz22 = _mm_sub_ps(iz2,jz2);
680 dx23 = _mm_sub_ps(ix2,jx3);
681 dy23 = _mm_sub_ps(iy2,jy3);
682 dz23 = _mm_sub_ps(iz2,jz3);
683 dx31 = _mm_sub_ps(ix3,jx1);
684 dy31 = _mm_sub_ps(iy3,jy1);
685 dz31 = _mm_sub_ps(iz3,jz1);
686 dx32 = _mm_sub_ps(ix3,jx2);
687 dy32 = _mm_sub_ps(iy3,jy2);
688 dz32 = _mm_sub_ps(iz3,jz2);
689 dx33 = _mm_sub_ps(ix3,jx3);
690 dy33 = _mm_sub_ps(iy3,jy3);
691 dz33 = _mm_sub_ps(iz3,jz3);
692
693 /* Calculate squared distance and things based on it */
694 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
695 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
696 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
697 rsq13 = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
698 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
699 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
700 rsq23 = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
701 rsq31 = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
702 rsq32 = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
703 rsq33 = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
704
705 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
706 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
707 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
708 rinv13 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq13);
709 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
710 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
711 rinv23 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq23);
712 rinv31 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq31);
713 rinv32 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq32);
714 rinv33 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq33);
715
716 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
717 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
718 rinvsq13 = _mm_mul_ps(rinv13,rinv13);
719 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
720 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
721 rinvsq23 = _mm_mul_ps(rinv23,rinv23);
722 rinvsq31 = _mm_mul_ps(rinv31,rinv31);
723 rinvsq32 = _mm_mul_ps(rinv32,rinv32);
724 rinvsq33 = _mm_mul_ps(rinv33,rinv33);
725
726 fjx0 = _mm_setzero_ps();
727 fjy0 = _mm_setzero_ps();
728 fjz0 = _mm_setzero_ps();
729 fjx1 = _mm_setzero_ps();
730 fjy1 = _mm_setzero_ps();
731 fjz1 = _mm_setzero_ps();
732 fjx2 = _mm_setzero_ps();
733 fjy2 = _mm_setzero_ps();
734 fjz2 = _mm_setzero_ps();
735 fjx3 = _mm_setzero_ps();
736 fjy3 = _mm_setzero_ps();
737 fjz3 = _mm_setzero_ps();
738
739 /**************************
740 * CALCULATE INTERACTIONS *
741 **************************/
742
743 r00 = _mm_mul_ps(rsq00,rinv00);
744 r00 = _mm_andnot_ps(dummy_mask,r00);
745
746 /* Calculate table index by multiplying r with table scale and truncate to integer */
747 rt = _mm_mul_ps(r00,vftabscale);
748 vfitab = _mm_cvttps_epi32(rt);
749 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
750 vfitab = _mm_slli_epi32(vfitab,3);
751
752 /* CUBIC SPLINE TABLE DISPERSION */
753 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
754 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
755 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
756 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
757 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
758 Heps = _mm_mul_ps(vfeps,H);
759 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
760 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
761 vvdw6 = _mm_mul_ps(c6_00,VV);
762 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
763 fvdw6 = _mm_mul_ps(c6_00,FF);
764
765 /* CUBIC SPLINE TABLE REPULSION */
766 vfitab = _mm_add_epi32(vfitab,ifour);
767 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
768 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
769 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
770 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
771 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
772 Heps = _mm_mul_ps(vfeps,H);
773 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
774 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
775 vvdw12 = _mm_mul_ps(c12_00,VV);
776 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
777 fvdw12 = _mm_mul_ps(c12_00,FF);
778 vvdw = _mm_add_ps(vvdw12,vvdw6);
779 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
780
781 /* Update potential sum for this i atom from the interaction with this j atom. */
782 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
783 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
784
785 fscal = fvdw;
786
787 fscal = _mm_andnot_ps(dummy_mask,fscal);
788
789 /* Calculate temporary vectorial force */
790 tx = _mm_mul_ps(fscal,dx00);
791 ty = _mm_mul_ps(fscal,dy00);
792 tz = _mm_mul_ps(fscal,dz00);
793
794 /* Update vectorial force */
795 fix0 = _mm_add_ps(fix0,tx);
796 fiy0 = _mm_add_ps(fiy0,ty);
797 fiz0 = _mm_add_ps(fiz0,tz);
798
799 fjx0 = _mm_add_ps(fjx0,tx);
800 fjy0 = _mm_add_ps(fjy0,ty);
801 fjz0 = _mm_add_ps(fjz0,tz);
802
803 /**************************
804 * CALCULATE INTERACTIONS *
805 **************************/
806
807 /* COULOMB ELECTROSTATICS */
808 velec = _mm_mul_ps(qq11,rinv11);
809 felec = _mm_mul_ps(velec,rinvsq11);
810
811 /* Update potential sum for this i atom from the interaction with this j atom. */
812 velec = _mm_andnot_ps(dummy_mask,velec);
813 velecsum = _mm_add_ps(velecsum,velec);
814
815 fscal = felec;
816
817 fscal = _mm_andnot_ps(dummy_mask,fscal);
818
819 /* Calculate temporary vectorial force */
820 tx = _mm_mul_ps(fscal,dx11);
821 ty = _mm_mul_ps(fscal,dy11);
822 tz = _mm_mul_ps(fscal,dz11);
823
824 /* Update vectorial force */
825 fix1 = _mm_add_ps(fix1,tx);
826 fiy1 = _mm_add_ps(fiy1,ty);
827 fiz1 = _mm_add_ps(fiz1,tz);
828
829 fjx1 = _mm_add_ps(fjx1,tx);
830 fjy1 = _mm_add_ps(fjy1,ty);
831 fjz1 = _mm_add_ps(fjz1,tz);
832
833 /**************************
834 * CALCULATE INTERACTIONS *
835 **************************/
836
837 /* COULOMB ELECTROSTATICS */
838 velec = _mm_mul_ps(qq12,rinv12);
839 felec = _mm_mul_ps(velec,rinvsq12);
840
841 /* Update potential sum for this i atom from the interaction with this j atom. */
842 velec = _mm_andnot_ps(dummy_mask,velec);
843 velecsum = _mm_add_ps(velecsum,velec);
844
845 fscal = felec;
846
847 fscal = _mm_andnot_ps(dummy_mask,fscal);
848
849 /* Calculate temporary vectorial force */
850 tx = _mm_mul_ps(fscal,dx12);
851 ty = _mm_mul_ps(fscal,dy12);
852 tz = _mm_mul_ps(fscal,dz12);
853
854 /* Update vectorial force */
855 fix1 = _mm_add_ps(fix1,tx);
856 fiy1 = _mm_add_ps(fiy1,ty);
857 fiz1 = _mm_add_ps(fiz1,tz);
858
859 fjx2 = _mm_add_ps(fjx2,tx);
860 fjy2 = _mm_add_ps(fjy2,ty);
861 fjz2 = _mm_add_ps(fjz2,tz);
862
863 /**************************
864 * CALCULATE INTERACTIONS *
865 **************************/
866
867 /* COULOMB ELECTROSTATICS */
868 velec = _mm_mul_ps(qq13,rinv13);
869 felec = _mm_mul_ps(velec,rinvsq13);
870
871 /* Update potential sum for this i atom from the interaction with this j atom. */
872 velec = _mm_andnot_ps(dummy_mask,velec);
873 velecsum = _mm_add_ps(velecsum,velec);
874
875 fscal = felec;
876
877 fscal = _mm_andnot_ps(dummy_mask,fscal);
878
879 /* Calculate temporary vectorial force */
880 tx = _mm_mul_ps(fscal,dx13);
881 ty = _mm_mul_ps(fscal,dy13);
882 tz = _mm_mul_ps(fscal,dz13);
883
884 /* Update vectorial force */
885 fix1 = _mm_add_ps(fix1,tx);
886 fiy1 = _mm_add_ps(fiy1,ty);
887 fiz1 = _mm_add_ps(fiz1,tz);
888
889 fjx3 = _mm_add_ps(fjx3,tx);
890 fjy3 = _mm_add_ps(fjy3,ty);
891 fjz3 = _mm_add_ps(fjz3,tz);
892
893 /**************************
894 * CALCULATE INTERACTIONS *
895 **************************/
896
897 /* COULOMB ELECTROSTATICS */
898 velec = _mm_mul_ps(qq21,rinv21);
899 felec = _mm_mul_ps(velec,rinvsq21);
900
901 /* Update potential sum for this i atom from the interaction with this j atom. */
902 velec = _mm_andnot_ps(dummy_mask,velec);
903 velecsum = _mm_add_ps(velecsum,velec);
904
905 fscal = felec;
906
907 fscal = _mm_andnot_ps(dummy_mask,fscal);
908
909 /* Calculate temporary vectorial force */
910 tx = _mm_mul_ps(fscal,dx21);
911 ty = _mm_mul_ps(fscal,dy21);
912 tz = _mm_mul_ps(fscal,dz21);
913
914 /* Update vectorial force */
915 fix2 = _mm_add_ps(fix2,tx);
916 fiy2 = _mm_add_ps(fiy2,ty);
917 fiz2 = _mm_add_ps(fiz2,tz);
918
919 fjx1 = _mm_add_ps(fjx1,tx);
920 fjy1 = _mm_add_ps(fjy1,ty);
921 fjz1 = _mm_add_ps(fjz1,tz);
922
923 /**************************
924 * CALCULATE INTERACTIONS *
925 **************************/
926
927 /* COULOMB ELECTROSTATICS */
928 velec = _mm_mul_ps(qq22,rinv22);
929 felec = _mm_mul_ps(velec,rinvsq22);
930
931 /* Update potential sum for this i atom from the interaction with this j atom. */
932 velec = _mm_andnot_ps(dummy_mask,velec);
933 velecsum = _mm_add_ps(velecsum,velec);
934
935 fscal = felec;
936
937 fscal = _mm_andnot_ps(dummy_mask,fscal);
938
939 /* Calculate temporary vectorial force */
940 tx = _mm_mul_ps(fscal,dx22);
941 ty = _mm_mul_ps(fscal,dy22);
942 tz = _mm_mul_ps(fscal,dz22);
943
944 /* Update vectorial force */
945 fix2 = _mm_add_ps(fix2,tx);
946 fiy2 = _mm_add_ps(fiy2,ty);
947 fiz2 = _mm_add_ps(fiz2,tz);
948
949 fjx2 = _mm_add_ps(fjx2,tx);
950 fjy2 = _mm_add_ps(fjy2,ty);
951 fjz2 = _mm_add_ps(fjz2,tz);
952
953 /**************************
954 * CALCULATE INTERACTIONS *
955 **************************/
956
957 /* COULOMB ELECTROSTATICS */
958 velec = _mm_mul_ps(qq23,rinv23);
959 felec = _mm_mul_ps(velec,rinvsq23);
960
961 /* Update potential sum for this i atom from the interaction with this j atom. */
962 velec = _mm_andnot_ps(dummy_mask,velec);
963 velecsum = _mm_add_ps(velecsum,velec);
964
965 fscal = felec;
966
967 fscal = _mm_andnot_ps(dummy_mask,fscal);
968
969 /* Calculate temporary vectorial force */
970 tx = _mm_mul_ps(fscal,dx23);
971 ty = _mm_mul_ps(fscal,dy23);
972 tz = _mm_mul_ps(fscal,dz23);
973
974 /* Update vectorial force */
975 fix2 = _mm_add_ps(fix2,tx);
976 fiy2 = _mm_add_ps(fiy2,ty);
977 fiz2 = _mm_add_ps(fiz2,tz);
978
979 fjx3 = _mm_add_ps(fjx3,tx);
980 fjy3 = _mm_add_ps(fjy3,ty);
981 fjz3 = _mm_add_ps(fjz3,tz);
982
983 /**************************
984 * CALCULATE INTERACTIONS *
985 **************************/
986
987 /* COULOMB ELECTROSTATICS */
988 velec = _mm_mul_ps(qq31,rinv31);
989 felec = _mm_mul_ps(velec,rinvsq31);
990
991 /* Update potential sum for this i atom from the interaction with this j atom. */
992 velec = _mm_andnot_ps(dummy_mask,velec);
993 velecsum = _mm_add_ps(velecsum,velec);
994
995 fscal = felec;
996
997 fscal = _mm_andnot_ps(dummy_mask,fscal);
998
999 /* Calculate temporary vectorial force */
1000 tx = _mm_mul_ps(fscal,dx31);
1001 ty = _mm_mul_ps(fscal,dy31);
1002 tz = _mm_mul_ps(fscal,dz31);
1003
1004 /* Update vectorial force */
1005 fix3 = _mm_add_ps(fix3,tx);
1006 fiy3 = _mm_add_ps(fiy3,ty);
1007 fiz3 = _mm_add_ps(fiz3,tz);
1008
1009 fjx1 = _mm_add_ps(fjx1,tx);
1010 fjy1 = _mm_add_ps(fjy1,ty);
1011 fjz1 = _mm_add_ps(fjz1,tz);
1012
1013 /**************************
1014 * CALCULATE INTERACTIONS *
1015 **************************/
1016
1017 /* COULOMB ELECTROSTATICS */
1018 velec = _mm_mul_ps(qq32,rinv32);
1019 felec = _mm_mul_ps(velec,rinvsq32);
1020
1021 /* Update potential sum for this i atom from the interaction with this j atom. */
1022 velec = _mm_andnot_ps(dummy_mask,velec);
1023 velecsum = _mm_add_ps(velecsum,velec);
1024
1025 fscal = felec;
1026
1027 fscal = _mm_andnot_ps(dummy_mask,fscal);
1028
1029 /* Calculate temporary vectorial force */
1030 tx = _mm_mul_ps(fscal,dx32);
1031 ty = _mm_mul_ps(fscal,dy32);
1032 tz = _mm_mul_ps(fscal,dz32);
1033
1034 /* Update vectorial force */
1035 fix3 = _mm_add_ps(fix3,tx);
1036 fiy3 = _mm_add_ps(fiy3,ty);
1037 fiz3 = _mm_add_ps(fiz3,tz);
1038
1039 fjx2 = _mm_add_ps(fjx2,tx);
1040 fjy2 = _mm_add_ps(fjy2,ty);
1041 fjz2 = _mm_add_ps(fjz2,tz);
1042
1043 /**************************
1044 * CALCULATE INTERACTIONS *
1045 **************************/
1046
1047 /* COULOMB ELECTROSTATICS */
1048 velec = _mm_mul_ps(qq33,rinv33);
1049 felec = _mm_mul_ps(velec,rinvsq33);
1050
1051 /* Update potential sum for this i atom from the interaction with this j atom. */
1052 velec = _mm_andnot_ps(dummy_mask,velec);
1053 velecsum = _mm_add_ps(velecsum,velec);
1054
1055 fscal = felec;
1056
1057 fscal = _mm_andnot_ps(dummy_mask,fscal);
1058
1059 /* Calculate temporary vectorial force */
1060 tx = _mm_mul_ps(fscal,dx33);
1061 ty = _mm_mul_ps(fscal,dy33);
1062 tz = _mm_mul_ps(fscal,dz33);
1063
1064 /* Update vectorial force */
1065 fix3 = _mm_add_ps(fix3,tx);
1066 fiy3 = _mm_add_ps(fiy3,ty);
1067 fiz3 = _mm_add_ps(fiz3,tz);
1068
1069 fjx3 = _mm_add_ps(fjx3,tx);
1070 fjy3 = _mm_add_ps(fjy3,ty);
1071 fjz3 = _mm_add_ps(fjz3,tz);
1072
1073 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1074 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1075 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1076 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1077
1078 gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1079 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1080 fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1081
1082 /* Inner loop uses 312 flops */
1083 }
1084
1085 /* End of innermost loop */
1086
1087 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1088 f+i_coord_offset,fshift+i_shift_offset);
1089
1090 ggid = gid[iidx];
1091 /* Update potential energies */
1092 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1093 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1094
1095 /* Increment number of inner iterations */
1096 inneriter += j_index_end - j_index_start;
1097
1098 /* Outer loop uses 26 flops */
1099 }
1100
1101 /* Increment number of outer iterations */
1102 outeriter += nri;
1103
1104 /* Update outer/inner flops */
1105
1106 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*312)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*26 +
inneriter*312
;
1107}
1108/*
1109 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW4W4_F_sse4_1_single
1110 * Electrostatics interaction: Coulomb
1111 * VdW interaction: CubicSplineTable
1112 * Geometry: Water4-Water4
1113 * Calculate force/pot: Force
1114 */
1115void
1116nb_kernel_ElecCoul_VdwCSTab_GeomW4W4_F_sse4_1_single
1117 (t_nblist * gmx_restrict nlist,
1118 rvec * gmx_restrict xx,
1119 rvec * gmx_restrict ff,
1120 t_forcerec * gmx_restrict fr,
1121 t_mdatoms * gmx_restrict mdatoms,
1122 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
1123 t_nrnb * gmx_restrict nrnb)
1124{
1125 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1126 * just 0 for non-waters.
1127 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1128 * jnr indices corresponding to data put in the four positions in the SIMD register.
1129 */
1130 int i_shift_offset,i_coord_offset,outeriter,inneriter;
1131 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1132 int jnrA,jnrB,jnrC,jnrD;
1133 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1134 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1135 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
1136 real rcutoff_scalar;
1137 real *shiftvec,*fshift,*x,*f;
1138 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1139 real scratch[4*DIM3];
1140 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1141 int vdwioffset0;
1142 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1143 int vdwioffset1;
1144 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1145 int vdwioffset2;
1146 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1147 int vdwioffset3;
1148 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1149 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1150 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1151 int vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1152 __m128 jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1153 int vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1154 __m128 jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1155 int vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1156 __m128 jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1157 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1158 __m128 dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1159 __m128 dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1160 __m128 dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1161 __m128 dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1162 __m128 dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1163 __m128 dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1164 __m128 dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1165 __m128 dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1166 __m128 dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1167 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
1168 real *charge;
1169 int nvdwtype;
1170 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1171 int *vdwtype;
1172 real *vdwparam;
1173 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
1174 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
Value stored to 'one_twelfth' during its initialization is never read
1175 __m128i vfitab;
1176 __m128i ifour = _mm_set1_epi32(4);
1177 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
1178 real *vftab;
1179 __m128 dummy_mask,cutoff_mask;
1180 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1181 __m128 one = _mm_set1_ps(1.0);
1182 __m128 two = _mm_set1_ps(2.0);
1183 x = xx[0];
1184 f = ff[0];
1185
1186 nri = nlist->nri;
1187 iinr = nlist->iinr;
1188 jindex = nlist->jindex;
1189 jjnr = nlist->jjnr;
1190 shiftidx = nlist->shift;
1191 gid = nlist->gid;
1192 shiftvec = fr->shift_vec[0];
1193 fshift = fr->fshift[0];
1194 facel = _mm_set1_ps(fr->epsfac);
1195 charge = mdatoms->chargeA;
1196 nvdwtype = fr->ntype;
1197 vdwparam = fr->nbfp;
1198 vdwtype = mdatoms->typeA;
1199
1200 vftab = kernel_data->table_vdw->data;
1201 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
1202
1203 /* Setup water-specific parameters */
1204 inr = nlist->iinr[0];
1205 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1206 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1207 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
1208 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
1209
1210 jq1 = _mm_set1_ps(charge[inr+1]);
1211 jq2 = _mm_set1_ps(charge[inr+2]);
1212 jq3 = _mm_set1_ps(charge[inr+3]);
1213 vdwjidx0A = 2*vdwtype[inr+0];
1214 c6_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1215 c12_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1216 qq11 = _mm_mul_ps(iq1,jq1);
1217 qq12 = _mm_mul_ps(iq1,jq2);
1218 qq13 = _mm_mul_ps(iq1,jq3);
1219 qq21 = _mm_mul_ps(iq2,jq1);
1220 qq22 = _mm_mul_ps(iq2,jq2);
1221 qq23 = _mm_mul_ps(iq2,jq3);
1222 qq31 = _mm_mul_ps(iq3,jq1);
1223 qq32 = _mm_mul_ps(iq3,jq2);
1224 qq33 = _mm_mul_ps(iq3,jq3);
1225
1226 /* Avoid stupid compiler warnings */
1227 jnrA = jnrB = jnrC = jnrD = 0;
1228 j_coord_offsetA = 0;
1229 j_coord_offsetB = 0;
1230 j_coord_offsetC = 0;
1231 j_coord_offsetD = 0;
1232
1233 outeriter = 0;
1234 inneriter = 0;
1235
1236 for(iidx=0;iidx<4*DIM3;iidx++)
1237 {
1238 scratch[iidx] = 0.0;
1239 }
1240
1241 /* Start outer loop over neighborlists */
1242 for(iidx=0; iidx<nri; iidx++)
1243 {
1244 /* Load shift vector for this list */
1245 i_shift_offset = DIM3*shiftidx[iidx];
1246
1247 /* Load limits for loop over neighbors */
1248 j_index_start = jindex[iidx];
1249 j_index_end = jindex[iidx+1];
1250
1251 /* Get outer coordinate index */
1252 inr = iinr[iidx];
1253 i_coord_offset = DIM3*inr;
1254
1255 /* Load i particle coords and add shift vector */
1256 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1257 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1258
1259 fix0 = _mm_setzero_ps();
1260 fiy0 = _mm_setzero_ps();
1261 fiz0 = _mm_setzero_ps();
1262 fix1 = _mm_setzero_ps();
1263 fiy1 = _mm_setzero_ps();
1264 fiz1 = _mm_setzero_ps();
1265 fix2 = _mm_setzero_ps();
1266 fiy2 = _mm_setzero_ps();
1267 fiz2 = _mm_setzero_ps();
1268 fix3 = _mm_setzero_ps();
1269 fiy3 = _mm_setzero_ps();
1270 fiz3 = _mm_setzero_ps();
1271
1272 /* Start inner kernel loop */
1273 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1274 {
1275
1276 /* Get j neighbor index, and coordinate index */
1277 jnrA = jjnr[jidx];
1278 jnrB = jjnr[jidx+1];
1279 jnrC = jjnr[jidx+2];
1280 jnrD = jjnr[jidx+3];
1281 j_coord_offsetA = DIM3*jnrA;
1282 j_coord_offsetB = DIM3*jnrB;
1283 j_coord_offsetC = DIM3*jnrC;
1284 j_coord_offsetD = DIM3*jnrD;
1285
1286 /* load j atom coordinates */
1287 gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1288 x+j_coord_offsetC,x+j_coord_offsetD,
1289 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1290 &jy2,&jz2,&jx3,&jy3,&jz3);
1291
1292 /* Calculate displacement vector */
1293 dx00 = _mm_sub_ps(ix0,jx0);
1294 dy00 = _mm_sub_ps(iy0,jy0);
1295 dz00 = _mm_sub_ps(iz0,jz0);
1296 dx11 = _mm_sub_ps(ix1,jx1);
1297 dy11 = _mm_sub_ps(iy1,jy1);
1298 dz11 = _mm_sub_ps(iz1,jz1);
1299 dx12 = _mm_sub_ps(ix1,jx2);
1300 dy12 = _mm_sub_ps(iy1,jy2);
1301 dz12 = _mm_sub_ps(iz1,jz2);
1302 dx13 = _mm_sub_ps(ix1,jx3);
1303 dy13 = _mm_sub_ps(iy1,jy3);
1304 dz13 = _mm_sub_ps(iz1,jz3);
1305 dx21 = _mm_sub_ps(ix2,jx1);
1306 dy21 = _mm_sub_ps(iy2,jy1);
1307 dz21 = _mm_sub_ps(iz2,jz1);
1308 dx22 = _mm_sub_ps(ix2,jx2);
1309 dy22 = _mm_sub_ps(iy2,jy2);
1310 dz22 = _mm_sub_ps(iz2,jz2);
1311 dx23 = _mm_sub_ps(ix2,jx3);
1312 dy23 = _mm_sub_ps(iy2,jy3);
1313 dz23 = _mm_sub_ps(iz2,jz3);
1314 dx31 = _mm_sub_ps(ix3,jx1);
1315 dy31 = _mm_sub_ps(iy3,jy1);
1316 dz31 = _mm_sub_ps(iz3,jz1);
1317 dx32 = _mm_sub_ps(ix3,jx2);
1318 dy32 = _mm_sub_ps(iy3,jy2);
1319 dz32 = _mm_sub_ps(iz3,jz2);
1320 dx33 = _mm_sub_ps(ix3,jx3);
1321 dy33 = _mm_sub_ps(iy3,jy3);
1322 dz33 = _mm_sub_ps(iz3,jz3);
1323
1324 /* Calculate squared distance and things based on it */
1325 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1326 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1327 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1328 rsq13 = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
1329 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1330 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1331 rsq23 = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
1332 rsq31 = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
1333 rsq32 = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
1334 rsq33 = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
1335
1336 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1337 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
1338 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
1339 rinv13 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq13);
1340 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
1341 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
1342 rinv23 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq23);
1343 rinv31 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq31);
1344 rinv32 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq32);
1345 rinv33 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq33);
1346
1347 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
1348 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
1349 rinvsq13 = _mm_mul_ps(rinv13,rinv13);
1350 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
1351 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
1352 rinvsq23 = _mm_mul_ps(rinv23,rinv23);
1353 rinvsq31 = _mm_mul_ps(rinv31,rinv31);
1354 rinvsq32 = _mm_mul_ps(rinv32,rinv32);
1355 rinvsq33 = _mm_mul_ps(rinv33,rinv33);
1356
1357 fjx0 = _mm_setzero_ps();
1358 fjy0 = _mm_setzero_ps();
1359 fjz0 = _mm_setzero_ps();
1360 fjx1 = _mm_setzero_ps();
1361 fjy1 = _mm_setzero_ps();
1362 fjz1 = _mm_setzero_ps();
1363 fjx2 = _mm_setzero_ps();
1364 fjy2 = _mm_setzero_ps();
1365 fjz2 = _mm_setzero_ps();
1366 fjx3 = _mm_setzero_ps();
1367 fjy3 = _mm_setzero_ps();
1368 fjz3 = _mm_setzero_ps();
1369
1370 /**************************
1371 * CALCULATE INTERACTIONS *
1372 **************************/
1373
1374 r00 = _mm_mul_ps(rsq00,rinv00);
1375
1376 /* Calculate table index by multiplying r with table scale and truncate to integer */
1377 rt = _mm_mul_ps(r00,vftabscale);
1378 vfitab = _mm_cvttps_epi32(rt);
1379 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1380 vfitab = _mm_slli_epi32(vfitab,3);
1381
1382 /* CUBIC SPLINE TABLE DISPERSION */
1383 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1384 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1385 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1386 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1387 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1388 Heps = _mm_mul_ps(vfeps,H);
1389 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1390 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1391 fvdw6 = _mm_mul_ps(c6_00,FF);
1392
1393 /* CUBIC SPLINE TABLE REPULSION */
1394 vfitab = _mm_add_epi32(vfitab,ifour);
1395 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1396 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1397 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1398 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1399 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1400 Heps = _mm_mul_ps(vfeps,H);
1401 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1402 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1403 fvdw12 = _mm_mul_ps(c12_00,FF);
1404 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1405
1406 fscal = fvdw;
1407
1408 /* Calculate temporary vectorial force */
1409 tx = _mm_mul_ps(fscal,dx00);
1410 ty = _mm_mul_ps(fscal,dy00);
1411 tz = _mm_mul_ps(fscal,dz00);
1412
1413 /* Update vectorial force */
1414 fix0 = _mm_add_ps(fix0,tx);
1415 fiy0 = _mm_add_ps(fiy0,ty);
1416 fiz0 = _mm_add_ps(fiz0,tz);
1417
1418 fjx0 = _mm_add_ps(fjx0,tx);
1419 fjy0 = _mm_add_ps(fjy0,ty);
1420 fjz0 = _mm_add_ps(fjz0,tz);
1421
1422 /**************************
1423 * CALCULATE INTERACTIONS *
1424 **************************/
1425
1426 /* COULOMB ELECTROSTATICS */
1427 velec = _mm_mul_ps(qq11,rinv11);
1428 felec = _mm_mul_ps(velec,rinvsq11);
1429
1430 fscal = felec;
1431
1432 /* Calculate temporary vectorial force */
1433 tx = _mm_mul_ps(fscal,dx11);
1434 ty = _mm_mul_ps(fscal,dy11);
1435 tz = _mm_mul_ps(fscal,dz11);
1436
1437 /* Update vectorial force */
1438 fix1 = _mm_add_ps(fix1,tx);
1439 fiy1 = _mm_add_ps(fiy1,ty);
1440 fiz1 = _mm_add_ps(fiz1,tz);
1441
1442 fjx1 = _mm_add_ps(fjx1,tx);
1443 fjy1 = _mm_add_ps(fjy1,ty);
1444 fjz1 = _mm_add_ps(fjz1,tz);
1445
1446 /**************************
1447 * CALCULATE INTERACTIONS *
1448 **************************/
1449
1450 /* COULOMB ELECTROSTATICS */
1451 velec = _mm_mul_ps(qq12,rinv12);
1452 felec = _mm_mul_ps(velec,rinvsq12);
1453
1454 fscal = felec;
1455
1456 /* Calculate temporary vectorial force */
1457 tx = _mm_mul_ps(fscal,dx12);
1458 ty = _mm_mul_ps(fscal,dy12);
1459 tz = _mm_mul_ps(fscal,dz12);
1460
1461 /* Update vectorial force */
1462 fix1 = _mm_add_ps(fix1,tx);
1463 fiy1 = _mm_add_ps(fiy1,ty);
1464 fiz1 = _mm_add_ps(fiz1,tz);
1465
1466 fjx2 = _mm_add_ps(fjx2,tx);
1467 fjy2 = _mm_add_ps(fjy2,ty);
1468 fjz2 = _mm_add_ps(fjz2,tz);
1469
1470 /**************************
1471 * CALCULATE INTERACTIONS *
1472 **************************/
1473
1474 /* COULOMB ELECTROSTATICS */
1475 velec = _mm_mul_ps(qq13,rinv13);
1476 felec = _mm_mul_ps(velec,rinvsq13);
1477
1478 fscal = felec;
1479
1480 /* Calculate temporary vectorial force */
1481 tx = _mm_mul_ps(fscal,dx13);
1482 ty = _mm_mul_ps(fscal,dy13);
1483 tz = _mm_mul_ps(fscal,dz13);
1484
1485 /* Update vectorial force */
1486 fix1 = _mm_add_ps(fix1,tx);
1487 fiy1 = _mm_add_ps(fiy1,ty);
1488 fiz1 = _mm_add_ps(fiz1,tz);
1489
1490 fjx3 = _mm_add_ps(fjx3,tx);
1491 fjy3 = _mm_add_ps(fjy3,ty);
1492 fjz3 = _mm_add_ps(fjz3,tz);
1493
1494 /**************************
1495 * CALCULATE INTERACTIONS *
1496 **************************/
1497
1498 /* COULOMB ELECTROSTATICS */
1499 velec = _mm_mul_ps(qq21,rinv21);
1500 felec = _mm_mul_ps(velec,rinvsq21);
1501
1502 fscal = felec;
1503
1504 /* Calculate temporary vectorial force */
1505 tx = _mm_mul_ps(fscal,dx21);
1506 ty = _mm_mul_ps(fscal,dy21);
1507 tz = _mm_mul_ps(fscal,dz21);
1508
1509 /* Update vectorial force */
1510 fix2 = _mm_add_ps(fix2,tx);
1511 fiy2 = _mm_add_ps(fiy2,ty);
1512 fiz2 = _mm_add_ps(fiz2,tz);
1513
1514 fjx1 = _mm_add_ps(fjx1,tx);
1515 fjy1 = _mm_add_ps(fjy1,ty);
1516 fjz1 = _mm_add_ps(fjz1,tz);
1517
1518 /**************************
1519 * CALCULATE INTERACTIONS *
1520 **************************/
1521
1522 /* COULOMB ELECTROSTATICS */
1523 velec = _mm_mul_ps(qq22,rinv22);
1524 felec = _mm_mul_ps(velec,rinvsq22);
1525
1526 fscal = felec;
1527
1528 /* Calculate temporary vectorial force */
1529 tx = _mm_mul_ps(fscal,dx22);
1530 ty = _mm_mul_ps(fscal,dy22);
1531 tz = _mm_mul_ps(fscal,dz22);
1532
1533 /* Update vectorial force */
1534 fix2 = _mm_add_ps(fix2,tx);
1535 fiy2 = _mm_add_ps(fiy2,ty);
1536 fiz2 = _mm_add_ps(fiz2,tz);
1537
1538 fjx2 = _mm_add_ps(fjx2,tx);
1539 fjy2 = _mm_add_ps(fjy2,ty);
1540 fjz2 = _mm_add_ps(fjz2,tz);
1541
1542 /**************************
1543 * CALCULATE INTERACTIONS *
1544 **************************/
1545
1546 /* COULOMB ELECTROSTATICS */
1547 velec = _mm_mul_ps(qq23,rinv23);
1548 felec = _mm_mul_ps(velec,rinvsq23);
1549
1550 fscal = felec;
1551
1552 /* Calculate temporary vectorial force */
1553 tx = _mm_mul_ps(fscal,dx23);
1554 ty = _mm_mul_ps(fscal,dy23);
1555 tz = _mm_mul_ps(fscal,dz23);
1556
1557 /* Update vectorial force */
1558 fix2 = _mm_add_ps(fix2,tx);
1559 fiy2 = _mm_add_ps(fiy2,ty);
1560 fiz2 = _mm_add_ps(fiz2,tz);
1561
1562 fjx3 = _mm_add_ps(fjx3,tx);
1563 fjy3 = _mm_add_ps(fjy3,ty);
1564 fjz3 = _mm_add_ps(fjz3,tz);
1565
1566 /**************************
1567 * CALCULATE INTERACTIONS *
1568 **************************/
1569
1570 /* COULOMB ELECTROSTATICS */
1571 velec = _mm_mul_ps(qq31,rinv31);
1572 felec = _mm_mul_ps(velec,rinvsq31);
1573
1574 fscal = felec;
1575
1576 /* Calculate temporary vectorial force */
1577 tx = _mm_mul_ps(fscal,dx31);
1578 ty = _mm_mul_ps(fscal,dy31);
1579 tz = _mm_mul_ps(fscal,dz31);
1580
1581 /* Update vectorial force */
1582 fix3 = _mm_add_ps(fix3,tx);
1583 fiy3 = _mm_add_ps(fiy3,ty);
1584 fiz3 = _mm_add_ps(fiz3,tz);
1585
1586 fjx1 = _mm_add_ps(fjx1,tx);
1587 fjy1 = _mm_add_ps(fjy1,ty);
1588 fjz1 = _mm_add_ps(fjz1,tz);
1589
1590 /**************************
1591 * CALCULATE INTERACTIONS *
1592 **************************/
1593
1594 /* COULOMB ELECTROSTATICS */
1595 velec = _mm_mul_ps(qq32,rinv32);
1596 felec = _mm_mul_ps(velec,rinvsq32);
1597
1598 fscal = felec;
1599
1600 /* Calculate temporary vectorial force */
1601 tx = _mm_mul_ps(fscal,dx32);
1602 ty = _mm_mul_ps(fscal,dy32);
1603 tz = _mm_mul_ps(fscal,dz32);
1604
1605 /* Update vectorial force */
1606 fix3 = _mm_add_ps(fix3,tx);
1607 fiy3 = _mm_add_ps(fiy3,ty);
1608 fiz3 = _mm_add_ps(fiz3,tz);
1609
1610 fjx2 = _mm_add_ps(fjx2,tx);
1611 fjy2 = _mm_add_ps(fjy2,ty);
1612 fjz2 = _mm_add_ps(fjz2,tz);
1613
1614 /**************************
1615 * CALCULATE INTERACTIONS *
1616 **************************/
1617
1618 /* COULOMB ELECTROSTATICS */
1619 velec = _mm_mul_ps(qq33,rinv33);
1620 felec = _mm_mul_ps(velec,rinvsq33);
1621
1622 fscal = felec;
1623
1624 /* Calculate temporary vectorial force */
1625 tx = _mm_mul_ps(fscal,dx33);
1626 ty = _mm_mul_ps(fscal,dy33);
1627 tz = _mm_mul_ps(fscal,dz33);
1628
1629 /* Update vectorial force */
1630 fix3 = _mm_add_ps(fix3,tx);
1631 fiy3 = _mm_add_ps(fiy3,ty);
1632 fiz3 = _mm_add_ps(fiz3,tz);
1633
1634 fjx3 = _mm_add_ps(fjx3,tx);
1635 fjy3 = _mm_add_ps(fjy3,ty);
1636 fjz3 = _mm_add_ps(fjz3,tz);
1637
1638 fjptrA = f+j_coord_offsetA;
1639 fjptrB = f+j_coord_offsetB;
1640 fjptrC = f+j_coord_offsetC;
1641 fjptrD = f+j_coord_offsetD;
1642
1643 gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1644 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1645 fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1646
1647 /* Inner loop uses 294 flops */
1648 }
1649
1650 if(jidx<j_index_end)
1651 {
1652
1653 /* Get j neighbor index, and coordinate index */
1654 jnrlistA = jjnr[jidx];
1655 jnrlistB = jjnr[jidx+1];
1656 jnrlistC = jjnr[jidx+2];
1657 jnrlistD = jjnr[jidx+3];
1658 /* Sign of each element will be negative for non-real atoms.
1659 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1660 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1661 */
1662 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1663 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1664 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1665 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1666 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1667 j_coord_offsetA = DIM3*jnrA;
1668 j_coord_offsetB = DIM3*jnrB;
1669 j_coord_offsetC = DIM3*jnrC;
1670 j_coord_offsetD = DIM3*jnrD;
1671
1672 /* load j atom coordinates */
1673 gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1674 x+j_coord_offsetC,x+j_coord_offsetD,
1675 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1676 &jy2,&jz2,&jx3,&jy3,&jz3);
1677
1678 /* Calculate displacement vector */
1679 dx00 = _mm_sub_ps(ix0,jx0);
1680 dy00 = _mm_sub_ps(iy0,jy0);
1681 dz00 = _mm_sub_ps(iz0,jz0);
1682 dx11 = _mm_sub_ps(ix1,jx1);
1683 dy11 = _mm_sub_ps(iy1,jy1);
1684 dz11 = _mm_sub_ps(iz1,jz1);
1685 dx12 = _mm_sub_ps(ix1,jx2);
1686 dy12 = _mm_sub_ps(iy1,jy2);
1687 dz12 = _mm_sub_ps(iz1,jz2);
1688 dx13 = _mm_sub_ps(ix1,jx3);
1689 dy13 = _mm_sub_ps(iy1,jy3);
1690 dz13 = _mm_sub_ps(iz1,jz3);
1691 dx21 = _mm_sub_ps(ix2,jx1);
1692 dy21 = _mm_sub_ps(iy2,jy1);
1693 dz21 = _mm_sub_ps(iz2,jz1);
1694 dx22 = _mm_sub_ps(ix2,jx2);
1695 dy22 = _mm_sub_ps(iy2,jy2);
1696 dz22 = _mm_sub_ps(iz2,jz2);
1697 dx23 = _mm_sub_ps(ix2,jx3);
1698 dy23 = _mm_sub_ps(iy2,jy3);
1699 dz23 = _mm_sub_ps(iz2,jz3);
1700 dx31 = _mm_sub_ps(ix3,jx1);
1701 dy31 = _mm_sub_ps(iy3,jy1);
1702 dz31 = _mm_sub_ps(iz3,jz1);
1703 dx32 = _mm_sub_ps(ix3,jx2);
1704 dy32 = _mm_sub_ps(iy3,jy2);
1705 dz32 = _mm_sub_ps(iz3,jz2);
1706 dx33 = _mm_sub_ps(ix3,jx3);
1707 dy33 = _mm_sub_ps(iy3,jy3);
1708 dz33 = _mm_sub_ps(iz3,jz3);
1709
1710 /* Calculate squared distance and things based on it */
1711 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1712 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1713 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1714 rsq13 = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
1715 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1716 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1717 rsq23 = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
1718 rsq31 = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
1719 rsq32 = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
1720 rsq33 = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
1721
1722 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1723 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
1724 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
1725 rinv13 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq13);
1726 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
1727 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
1728 rinv23 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq23);
1729 rinv31 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq31);
1730 rinv32 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq32);
1731 rinv33 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq33);
1732
1733 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
1734 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
1735 rinvsq13 = _mm_mul_ps(rinv13,rinv13);
1736 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
1737 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
1738 rinvsq23 = _mm_mul_ps(rinv23,rinv23);
1739 rinvsq31 = _mm_mul_ps(rinv31,rinv31);
1740 rinvsq32 = _mm_mul_ps(rinv32,rinv32);
1741 rinvsq33 = _mm_mul_ps(rinv33,rinv33);
1742
1743 fjx0 = _mm_setzero_ps();
1744 fjy0 = _mm_setzero_ps();
1745 fjz0 = _mm_setzero_ps();
1746 fjx1 = _mm_setzero_ps();
1747 fjy1 = _mm_setzero_ps();
1748 fjz1 = _mm_setzero_ps();
1749 fjx2 = _mm_setzero_ps();
1750 fjy2 = _mm_setzero_ps();
1751 fjz2 = _mm_setzero_ps();
1752 fjx3 = _mm_setzero_ps();
1753 fjy3 = _mm_setzero_ps();
1754 fjz3 = _mm_setzero_ps();
1755
1756 /**************************
1757 * CALCULATE INTERACTIONS *
1758 **************************/
1759
1760 r00 = _mm_mul_ps(rsq00,rinv00);
1761 r00 = _mm_andnot_ps(dummy_mask,r00);
1762
1763 /* Calculate table index by multiplying r with table scale and truncate to integer */
1764 rt = _mm_mul_ps(r00,vftabscale);
1765 vfitab = _mm_cvttps_epi32(rt);
1766 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1767 vfitab = _mm_slli_epi32(vfitab,3);
1768
1769 /* CUBIC SPLINE TABLE DISPERSION */
1770 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1771 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1772 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1773 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1774 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1775 Heps = _mm_mul_ps(vfeps,H);
1776 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1777 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1778 fvdw6 = _mm_mul_ps(c6_00,FF);
1779
1780 /* CUBIC SPLINE TABLE REPULSION */
1781 vfitab = _mm_add_epi32(vfitab,ifour);
1782 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1783 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1784 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1785 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1786 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1787 Heps = _mm_mul_ps(vfeps,H);
1788 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1789 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1790 fvdw12 = _mm_mul_ps(c12_00,FF);
1791 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1792
1793 fscal = fvdw;
1794
1795 fscal = _mm_andnot_ps(dummy_mask,fscal);
1796
1797 /* Calculate temporary vectorial force */
1798 tx = _mm_mul_ps(fscal,dx00);
1799 ty = _mm_mul_ps(fscal,dy00);
1800 tz = _mm_mul_ps(fscal,dz00);
1801
1802 /* Update vectorial force */
1803 fix0 = _mm_add_ps(fix0,tx);
1804 fiy0 = _mm_add_ps(fiy0,ty);
1805 fiz0 = _mm_add_ps(fiz0,tz);
1806
1807 fjx0 = _mm_add_ps(fjx0,tx);
1808 fjy0 = _mm_add_ps(fjy0,ty);
1809 fjz0 = _mm_add_ps(fjz0,tz);
1810
1811 /**************************
1812 * CALCULATE INTERACTIONS *
1813 **************************/
1814
1815 /* COULOMB ELECTROSTATICS */
1816 velec = _mm_mul_ps(qq11,rinv11);
1817 felec = _mm_mul_ps(velec,rinvsq11);
1818
1819 fscal = felec;
1820
1821 fscal = _mm_andnot_ps(dummy_mask,fscal);
1822
1823 /* Calculate temporary vectorial force */
1824 tx = _mm_mul_ps(fscal,dx11);
1825 ty = _mm_mul_ps(fscal,dy11);
1826 tz = _mm_mul_ps(fscal,dz11);
1827
1828 /* Update vectorial force */
1829 fix1 = _mm_add_ps(fix1,tx);
1830 fiy1 = _mm_add_ps(fiy1,ty);
1831 fiz1 = _mm_add_ps(fiz1,tz);
1832
1833 fjx1 = _mm_add_ps(fjx1,tx);
1834 fjy1 = _mm_add_ps(fjy1,ty);
1835 fjz1 = _mm_add_ps(fjz1,tz);
1836
1837 /**************************
1838 * CALCULATE INTERACTIONS *
1839 **************************/
1840
1841 /* COULOMB ELECTROSTATICS */
1842 velec = _mm_mul_ps(qq12,rinv12);
1843 felec = _mm_mul_ps(velec,rinvsq12);
1844
1845 fscal = felec;
1846
1847 fscal = _mm_andnot_ps(dummy_mask,fscal);
1848
1849 /* Calculate temporary vectorial force */
1850 tx = _mm_mul_ps(fscal,dx12);
1851 ty = _mm_mul_ps(fscal,dy12);
1852 tz = _mm_mul_ps(fscal,dz12);
1853
1854 /* Update vectorial force */
1855 fix1 = _mm_add_ps(fix1,tx);
1856 fiy1 = _mm_add_ps(fiy1,ty);
1857 fiz1 = _mm_add_ps(fiz1,tz);
1858
1859 fjx2 = _mm_add_ps(fjx2,tx);
1860 fjy2 = _mm_add_ps(fjy2,ty);
1861 fjz2 = _mm_add_ps(fjz2,tz);
1862
1863 /**************************
1864 * CALCULATE INTERACTIONS *
1865 **************************/
1866
1867 /* COULOMB ELECTROSTATICS */
1868 velec = _mm_mul_ps(qq13,rinv13);
1869 felec = _mm_mul_ps(velec,rinvsq13);
1870
1871 fscal = felec;
1872
1873 fscal = _mm_andnot_ps(dummy_mask,fscal);
1874
1875 /* Calculate temporary vectorial force */
1876 tx = _mm_mul_ps(fscal,dx13);
1877 ty = _mm_mul_ps(fscal,dy13);
1878 tz = _mm_mul_ps(fscal,dz13);
1879
1880 /* Update vectorial force */
1881 fix1 = _mm_add_ps(fix1,tx);
1882 fiy1 = _mm_add_ps(fiy1,ty);
1883 fiz1 = _mm_add_ps(fiz1,tz);
1884
1885 fjx3 = _mm_add_ps(fjx3,tx);
1886 fjy3 = _mm_add_ps(fjy3,ty);
1887 fjz3 = _mm_add_ps(fjz3,tz);
1888
1889 /**************************
1890 * CALCULATE INTERACTIONS *
1891 **************************/
1892
1893 /* COULOMB ELECTROSTATICS */
1894 velec = _mm_mul_ps(qq21,rinv21);
1895 felec = _mm_mul_ps(velec,rinvsq21);
1896
1897 fscal = felec;
1898
1899 fscal = _mm_andnot_ps(dummy_mask,fscal);
1900
1901 /* Calculate temporary vectorial force */
1902 tx = _mm_mul_ps(fscal,dx21);
1903 ty = _mm_mul_ps(fscal,dy21);
1904 tz = _mm_mul_ps(fscal,dz21);
1905
1906 /* Update vectorial force */
1907 fix2 = _mm_add_ps(fix2,tx);
1908 fiy2 = _mm_add_ps(fiy2,ty);
1909 fiz2 = _mm_add_ps(fiz2,tz);
1910
1911 fjx1 = _mm_add_ps(fjx1,tx);
1912 fjy1 = _mm_add_ps(fjy1,ty);
1913 fjz1 = _mm_add_ps(fjz1,tz);
1914
1915 /**************************
1916 * CALCULATE INTERACTIONS *
1917 **************************/
1918
1919 /* COULOMB ELECTROSTATICS */
1920 velec = _mm_mul_ps(qq22,rinv22);
1921 felec = _mm_mul_ps(velec,rinvsq22);
1922
1923 fscal = felec;
1924
1925 fscal = _mm_andnot_ps(dummy_mask,fscal);
1926
1927 /* Calculate temporary vectorial force */
1928 tx = _mm_mul_ps(fscal,dx22);
1929 ty = _mm_mul_ps(fscal,dy22);
1930 tz = _mm_mul_ps(fscal,dz22);
1931
1932 /* Update vectorial force */
1933 fix2 = _mm_add_ps(fix2,tx);
1934 fiy2 = _mm_add_ps(fiy2,ty);
1935 fiz2 = _mm_add_ps(fiz2,tz);
1936
1937 fjx2 = _mm_add_ps(fjx2,tx);
1938 fjy2 = _mm_add_ps(fjy2,ty);
1939 fjz2 = _mm_add_ps(fjz2,tz);
1940
1941 /**************************
1942 * CALCULATE INTERACTIONS *
1943 **************************/
1944
1945 /* COULOMB ELECTROSTATICS */
1946 velec = _mm_mul_ps(qq23,rinv23);
1947 felec = _mm_mul_ps(velec,rinvsq23);
1948
1949 fscal = felec;
1950
1951 fscal = _mm_andnot_ps(dummy_mask,fscal);
1952
1953 /* Calculate temporary vectorial force */
1954 tx = _mm_mul_ps(fscal,dx23);
1955 ty = _mm_mul_ps(fscal,dy23);
1956 tz = _mm_mul_ps(fscal,dz23);
1957
1958 /* Update vectorial force */
1959 fix2 = _mm_add_ps(fix2,tx);
1960 fiy2 = _mm_add_ps(fiy2,ty);
1961 fiz2 = _mm_add_ps(fiz2,tz);
1962
1963 fjx3 = _mm_add_ps(fjx3,tx);
1964 fjy3 = _mm_add_ps(fjy3,ty);
1965 fjz3 = _mm_add_ps(fjz3,tz);
1966
1967 /**************************
1968 * CALCULATE INTERACTIONS *
1969 **************************/
1970
1971 /* COULOMB ELECTROSTATICS */
1972 velec = _mm_mul_ps(qq31,rinv31);
1973 felec = _mm_mul_ps(velec,rinvsq31);
1974
1975 fscal = felec;
1976
1977 fscal = _mm_andnot_ps(dummy_mask,fscal);
1978
1979 /* Calculate temporary vectorial force */
1980 tx = _mm_mul_ps(fscal,dx31);
1981 ty = _mm_mul_ps(fscal,dy31);
1982 tz = _mm_mul_ps(fscal,dz31);
1983
1984 /* Update vectorial force */
1985 fix3 = _mm_add_ps(fix3,tx);
1986 fiy3 = _mm_add_ps(fiy3,ty);
1987 fiz3 = _mm_add_ps(fiz3,tz);
1988
1989 fjx1 = _mm_add_ps(fjx1,tx);
1990 fjy1 = _mm_add_ps(fjy1,ty);
1991 fjz1 = _mm_add_ps(fjz1,tz);
1992
1993 /**************************
1994 * CALCULATE INTERACTIONS *
1995 **************************/
1996
1997 /* COULOMB ELECTROSTATICS */
1998 velec = _mm_mul_ps(qq32,rinv32);
1999 felec = _mm_mul_ps(velec,rinvsq32);
2000
2001 fscal = felec;
2002
2003 fscal = _mm_andnot_ps(dummy_mask,fscal);
2004
2005 /* Calculate temporary vectorial force */
2006 tx = _mm_mul_ps(fscal,dx32);
2007 ty = _mm_mul_ps(fscal,dy32);
2008 tz = _mm_mul_ps(fscal,dz32);
2009
2010 /* Update vectorial force */
2011 fix3 = _mm_add_ps(fix3,tx);
2012 fiy3 = _mm_add_ps(fiy3,ty);
2013 fiz3 = _mm_add_ps(fiz3,tz);
2014
2015 fjx2 = _mm_add_ps(fjx2,tx);
2016 fjy2 = _mm_add_ps(fjy2,ty);
2017 fjz2 = _mm_add_ps(fjz2,tz);
2018
2019 /**************************
2020 * CALCULATE INTERACTIONS *
2021 **************************/
2022
2023 /* COULOMB ELECTROSTATICS */
2024 velec = _mm_mul_ps(qq33,rinv33);
2025 felec = _mm_mul_ps(velec,rinvsq33);
2026
2027 fscal = felec;
2028
2029 fscal = _mm_andnot_ps(dummy_mask,fscal);
2030
2031 /* Calculate temporary vectorial force */
2032 tx = _mm_mul_ps(fscal,dx33);
2033 ty = _mm_mul_ps(fscal,dy33);
2034 tz = _mm_mul_ps(fscal,dz33);
2035
2036 /* Update vectorial force */
2037 fix3 = _mm_add_ps(fix3,tx);
2038 fiy3 = _mm_add_ps(fiy3,ty);
2039 fiz3 = _mm_add_ps(fiz3,tz);
2040
2041 fjx3 = _mm_add_ps(fjx3,tx);
2042 fjy3 = _mm_add_ps(fjy3,ty);
2043 fjz3 = _mm_add_ps(fjz3,tz);
2044
2045 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2046 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2047 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2048 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2049
2050 gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2051 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
2052 fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2053
2054 /* Inner loop uses 295 flops */
2055 }
2056
2057 /* End of innermost loop */
2058
2059 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2060 f+i_coord_offset,fshift+i_shift_offset);
2061
2062 /* Increment number of inner iterations */
2063 inneriter += j_index_end - j_index_start;
2064
2065 /* Outer loop uses 24 flops */
2066 }
2067
2068 /* Increment number of outer iterations */
2069 outeriter += nri;
2070
2071 /* Update outer/inner flops */
2072
2073 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*295)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*24 + inneriter
*295
;
2074}