Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecCoul_VdwNone_GeomP1P1_sse4_1_single.c
Location:line 377, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Coulomb
55 * VdW interaction: None
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 __m128 dummy_mask,cutoff_mask;
93 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94 __m128 one = _mm_set1_ps(1.0);
95 __m128 two = _mm_set1_ps(2.0);
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = _mm_set1_ps(fr->epsfac);
108 charge = mdatoms->chargeA;
109
110 /* Avoid stupid compiler warnings */
111 jnrA = jnrB = jnrC = jnrD = 0;
112 j_coord_offsetA = 0;
113 j_coord_offsetB = 0;
114 j_coord_offsetC = 0;
115 j_coord_offsetD = 0;
116
117 outeriter = 0;
118 inneriter = 0;
119
120 for(iidx=0;iidx<4*DIM3;iidx++)
121 {
122 scratch[iidx] = 0.0;
123 }
124
125 /* Start outer loop over neighborlists */
126 for(iidx=0; iidx<nri; iidx++)
127 {
128 /* Load shift vector for this list */
129 i_shift_offset = DIM3*shiftidx[iidx];
130
131 /* Load limits for loop over neighbors */
132 j_index_start = jindex[iidx];
133 j_index_end = jindex[iidx+1];
134
135 /* Get outer coordinate index */
136 inr = iinr[iidx];
137 i_coord_offset = DIM3*inr;
138
139 /* Load i particle coords and add shift vector */
140 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142 fix0 = _mm_setzero_ps();
143 fiy0 = _mm_setzero_ps();
144 fiz0 = _mm_setzero_ps();
145
146 /* Load parameters for i particles */
147 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
148
149 /* Reset potential sums */
150 velecsum = _mm_setzero_ps();
151
152 /* Start inner kernel loop */
153 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
154 {
155
156 /* Get j neighbor index, and coordinate index */
157 jnrA = jjnr[jidx];
158 jnrB = jjnr[jidx+1];
159 jnrC = jjnr[jidx+2];
160 jnrD = jjnr[jidx+3];
161 j_coord_offsetA = DIM3*jnrA;
162 j_coord_offsetB = DIM3*jnrB;
163 j_coord_offsetC = DIM3*jnrC;
164 j_coord_offsetD = DIM3*jnrD;
165
166 /* load j atom coordinates */
167 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
168 x+j_coord_offsetC,x+j_coord_offsetD,
169 &jx0,&jy0,&jz0);
170
171 /* Calculate displacement vector */
172 dx00 = _mm_sub_ps(ix0,jx0);
173 dy00 = _mm_sub_ps(iy0,jy0);
174 dz00 = _mm_sub_ps(iz0,jz0);
175
176 /* Calculate squared distance and things based on it */
177 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
178
179 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
180
181 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
182
183 /* Load parameters for j particles */
184 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
185 charge+jnrC+0,charge+jnrD+0);
186
187 /**************************
188 * CALCULATE INTERACTIONS *
189 **************************/
190
191 /* Compute parameters for interactions between i and j atoms */
192 qq00 = _mm_mul_ps(iq0,jq0);
193
194 /* COULOMB ELECTROSTATICS */
195 velec = _mm_mul_ps(qq00,rinv00);
196 felec = _mm_mul_ps(velec,rinvsq00);
197
198 /* Update potential sum for this i atom from the interaction with this j atom. */
199 velecsum = _mm_add_ps(velecsum,velec);
200
201 fscal = felec;
202
203 /* Calculate temporary vectorial force */
204 tx = _mm_mul_ps(fscal,dx00);
205 ty = _mm_mul_ps(fscal,dy00);
206 tz = _mm_mul_ps(fscal,dz00);
207
208 /* Update vectorial force */
209 fix0 = _mm_add_ps(fix0,tx);
210 fiy0 = _mm_add_ps(fiy0,ty);
211 fiz0 = _mm_add_ps(fiz0,tz);
212
213 fjptrA = f+j_coord_offsetA;
214 fjptrB = f+j_coord_offsetB;
215 fjptrC = f+j_coord_offsetC;
216 fjptrD = f+j_coord_offsetD;
217 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
218
219 /* Inner loop uses 28 flops */
220 }
221
222 if(jidx<j_index_end)
223 {
224
225 /* Get j neighbor index, and coordinate index */
226 jnrlistA = jjnr[jidx];
227 jnrlistB = jjnr[jidx+1];
228 jnrlistC = jjnr[jidx+2];
229 jnrlistD = jjnr[jidx+3];
230 /* Sign of each element will be negative for non-real atoms.
231 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
232 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
233 */
234 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
235 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
236 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
237 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
238 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
239 j_coord_offsetA = DIM3*jnrA;
240 j_coord_offsetB = DIM3*jnrB;
241 j_coord_offsetC = DIM3*jnrC;
242 j_coord_offsetD = DIM3*jnrD;
243
244 /* load j atom coordinates */
245 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
246 x+j_coord_offsetC,x+j_coord_offsetD,
247 &jx0,&jy0,&jz0);
248
249 /* Calculate displacement vector */
250 dx00 = _mm_sub_ps(ix0,jx0);
251 dy00 = _mm_sub_ps(iy0,jy0);
252 dz00 = _mm_sub_ps(iz0,jz0);
253
254 /* Calculate squared distance and things based on it */
255 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
256
257 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
258
259 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
260
261 /* Load parameters for j particles */
262 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
263 charge+jnrC+0,charge+jnrD+0);
264
265 /**************************
266 * CALCULATE INTERACTIONS *
267 **************************/
268
269 /* Compute parameters for interactions between i and j atoms */
270 qq00 = _mm_mul_ps(iq0,jq0);
271
272 /* COULOMB ELECTROSTATICS */
273 velec = _mm_mul_ps(qq00,rinv00);
274 felec = _mm_mul_ps(velec,rinvsq00);
275
276 /* Update potential sum for this i atom from the interaction with this j atom. */
277 velec = _mm_andnot_ps(dummy_mask,velec);
278 velecsum = _mm_add_ps(velecsum,velec);
279
280 fscal = felec;
281
282 fscal = _mm_andnot_ps(dummy_mask,fscal);
283
284 /* Calculate temporary vectorial force */
285 tx = _mm_mul_ps(fscal,dx00);
286 ty = _mm_mul_ps(fscal,dy00);
287 tz = _mm_mul_ps(fscal,dz00);
288
289 /* Update vectorial force */
290 fix0 = _mm_add_ps(fix0,tx);
291 fiy0 = _mm_add_ps(fiy0,ty);
292 fiz0 = _mm_add_ps(fiz0,tz);
293
294 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
295 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
296 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
297 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
298 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
299
300 /* Inner loop uses 28 flops */
301 }
302
303 /* End of innermost loop */
304
305 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
306 f+i_coord_offset,fshift+i_shift_offset);
307
308 ggid = gid[iidx];
309 /* Update potential energies */
310 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
311
312 /* Increment number of inner iterations */
313 inneriter += j_index_end - j_index_start;
314
315 /* Outer loop uses 8 flops */
316 }
317
318 /* Increment number of outer iterations */
319 outeriter += nri;
320
321 /* Update outer/inner flops */
322
323 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*28)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*8 + inneriter
*28
;
324}
325/*
326 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_sse4_1_single
327 * Electrostatics interaction: Coulomb
328 * VdW interaction: None
329 * Geometry: Particle-Particle
330 * Calculate force/pot: Force
331 */
332void
333nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_sse4_1_single
334 (t_nblist * gmx_restrict nlist,
335 rvec * gmx_restrict xx,
336 rvec * gmx_restrict ff,
337 t_forcerec * gmx_restrict fr,
338 t_mdatoms * gmx_restrict mdatoms,
339 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
340 t_nrnb * gmx_restrict nrnb)
341{
342 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
343 * just 0 for non-waters.
344 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
345 * jnr indices corresponding to data put in the four positions in the SIMD register.
346 */
347 int i_shift_offset,i_coord_offset,outeriter,inneriter;
348 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
349 int jnrA,jnrB,jnrC,jnrD;
350 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
351 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
352 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
353 real rcutoff_scalar;
354 real *shiftvec,*fshift,*x,*f;
355 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
356 real scratch[4*DIM3];
357 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
358 int vdwioffset0;
359 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
360 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
361 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
362 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
363 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
364 real *charge;
365 __m128 dummy_mask,cutoff_mask;
366 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
367 __m128 one = _mm_set1_ps(1.0);
368 __m128 two = _mm_set1_ps(2.0);
369 x = xx[0];
370 f = ff[0];
371
372 nri = nlist->nri;
373 iinr = nlist->iinr;
374 jindex = nlist->jindex;
375 jjnr = nlist->jjnr;
376 shiftidx = nlist->shift;
377 gid = nlist->gid;
Value stored to 'gid' is never read
378 shiftvec = fr->shift_vec[0];
379 fshift = fr->fshift[0];
380 facel = _mm_set1_ps(fr->epsfac);
381 charge = mdatoms->chargeA;
382
383 /* Avoid stupid compiler warnings */
384 jnrA = jnrB = jnrC = jnrD = 0;
385 j_coord_offsetA = 0;
386 j_coord_offsetB = 0;
387 j_coord_offsetC = 0;
388 j_coord_offsetD = 0;
389
390 outeriter = 0;
391 inneriter = 0;
392
393 for(iidx=0;iidx<4*DIM3;iidx++)
394 {
395 scratch[iidx] = 0.0;
396 }
397
398 /* Start outer loop over neighborlists */
399 for(iidx=0; iidx<nri; iidx++)
400 {
401 /* Load shift vector for this list */
402 i_shift_offset = DIM3*shiftidx[iidx];
403
404 /* Load limits for loop over neighbors */
405 j_index_start = jindex[iidx];
406 j_index_end = jindex[iidx+1];
407
408 /* Get outer coordinate index */
409 inr = iinr[iidx];
410 i_coord_offset = DIM3*inr;
411
412 /* Load i particle coords and add shift vector */
413 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
414
415 fix0 = _mm_setzero_ps();
416 fiy0 = _mm_setzero_ps();
417 fiz0 = _mm_setzero_ps();
418
419 /* Load parameters for i particles */
420 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
421
422 /* Start inner kernel loop */
423 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
424 {
425
426 /* Get j neighbor index, and coordinate index */
427 jnrA = jjnr[jidx];
428 jnrB = jjnr[jidx+1];
429 jnrC = jjnr[jidx+2];
430 jnrD = jjnr[jidx+3];
431 j_coord_offsetA = DIM3*jnrA;
432 j_coord_offsetB = DIM3*jnrB;
433 j_coord_offsetC = DIM3*jnrC;
434 j_coord_offsetD = DIM3*jnrD;
435
436 /* load j atom coordinates */
437 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
438 x+j_coord_offsetC,x+j_coord_offsetD,
439 &jx0,&jy0,&jz0);
440
441 /* Calculate displacement vector */
442 dx00 = _mm_sub_ps(ix0,jx0);
443 dy00 = _mm_sub_ps(iy0,jy0);
444 dz00 = _mm_sub_ps(iz0,jz0);
445
446 /* Calculate squared distance and things based on it */
447 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
448
449 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
450
451 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
452
453 /* Load parameters for j particles */
454 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
455 charge+jnrC+0,charge+jnrD+0);
456
457 /**************************
458 * CALCULATE INTERACTIONS *
459 **************************/
460
461 /* Compute parameters for interactions between i and j atoms */
462 qq00 = _mm_mul_ps(iq0,jq0);
463
464 /* COULOMB ELECTROSTATICS */
465 velec = _mm_mul_ps(qq00,rinv00);
466 felec = _mm_mul_ps(velec,rinvsq00);
467
468 fscal = felec;
469
470 /* Calculate temporary vectorial force */
471 tx = _mm_mul_ps(fscal,dx00);
472 ty = _mm_mul_ps(fscal,dy00);
473 tz = _mm_mul_ps(fscal,dz00);
474
475 /* Update vectorial force */
476 fix0 = _mm_add_ps(fix0,tx);
477 fiy0 = _mm_add_ps(fiy0,ty);
478 fiz0 = _mm_add_ps(fiz0,tz);
479
480 fjptrA = f+j_coord_offsetA;
481 fjptrB = f+j_coord_offsetB;
482 fjptrC = f+j_coord_offsetC;
483 fjptrD = f+j_coord_offsetD;
484 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
485
486 /* Inner loop uses 27 flops */
487 }
488
489 if(jidx<j_index_end)
490 {
491
492 /* Get j neighbor index, and coordinate index */
493 jnrlistA = jjnr[jidx];
494 jnrlistB = jjnr[jidx+1];
495 jnrlistC = jjnr[jidx+2];
496 jnrlistD = jjnr[jidx+3];
497 /* Sign of each element will be negative for non-real atoms.
498 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
499 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
500 */
501 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
502 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
503 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
504 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
505 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
506 j_coord_offsetA = DIM3*jnrA;
507 j_coord_offsetB = DIM3*jnrB;
508 j_coord_offsetC = DIM3*jnrC;
509 j_coord_offsetD = DIM3*jnrD;
510
511 /* load j atom coordinates */
512 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
513 x+j_coord_offsetC,x+j_coord_offsetD,
514 &jx0,&jy0,&jz0);
515
516 /* Calculate displacement vector */
517 dx00 = _mm_sub_ps(ix0,jx0);
518 dy00 = _mm_sub_ps(iy0,jy0);
519 dz00 = _mm_sub_ps(iz0,jz0);
520
521 /* Calculate squared distance and things based on it */
522 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
523
524 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
525
526 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
527
528 /* Load parameters for j particles */
529 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
530 charge+jnrC+0,charge+jnrD+0);
531
532 /**************************
533 * CALCULATE INTERACTIONS *
534 **************************/
535
536 /* Compute parameters for interactions between i and j atoms */
537 qq00 = _mm_mul_ps(iq0,jq0);
538
539 /* COULOMB ELECTROSTATICS */
540 velec = _mm_mul_ps(qq00,rinv00);
541 felec = _mm_mul_ps(velec,rinvsq00);
542
543 fscal = felec;
544
545 fscal = _mm_andnot_ps(dummy_mask,fscal);
546
547 /* Calculate temporary vectorial force */
548 tx = _mm_mul_ps(fscal,dx00);
549 ty = _mm_mul_ps(fscal,dy00);
550 tz = _mm_mul_ps(fscal,dz00);
551
552 /* Update vectorial force */
553 fix0 = _mm_add_ps(fix0,tx);
554 fiy0 = _mm_add_ps(fiy0,ty);
555 fiz0 = _mm_add_ps(fiz0,tz);
556
557 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
558 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
559 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
560 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
561 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
562
563 /* Inner loop uses 27 flops */
564 }
565
566 /* End of innermost loop */
567
568 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
569 f+i_coord_offset,fshift+i_shift_offset);
570
571 /* Increment number of inner iterations */
572 inneriter += j_index_end - j_index_start;
573
574 /* Outer loop uses 7 flops */
575 }
576
577 /* Increment number of outer iterations */
578 outeriter += nri;
579
580 /* Update outer/inner flops */
581
582 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*27)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*7 + inneriter*
27
;
583}