Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sse4_1_single.c
Location:line 145, column 5
Description:Value stored to 'jnrA' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LJEwald
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
97 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
98 __m128 c6grid_00;
99 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
100 real *vdwgridparam;
101 __m128 one_half = _mm_set1_ps(0.5);
102 __m128 minus_one = _mm_set1_ps(-1.0);
103 __m128i ewitab;
104 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105 real *ewtab;
106 __m128 dummy_mask,cutoff_mask;
107 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108 __m128 one = _mm_set1_ps(1.0);
109 __m128 two = _mm_set1_ps(2.0);
110 x = xx[0];
111 f = ff[0];
112
113 nri = nlist->nri;
114 iinr = nlist->iinr;
115 jindex = nlist->jindex;
116 jjnr = nlist->jjnr;
117 shiftidx = nlist->shift;
118 gid = nlist->gid;
119 shiftvec = fr->shift_vec[0];
120 fshift = fr->fshift[0];
121 facel = _mm_set1_ps(fr->epsfac);
122 charge = mdatoms->chargeA;
123 nvdwtype = fr->ntype;
124 vdwparam = fr->nbfp;
125 vdwtype = mdatoms->typeA;
126 vdwgridparam = fr->ljpme_c6grid;
127 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
128 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
129 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
130
131 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
132 ewtab = fr->ic->tabq_coul_FDV0;
133 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
134 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137 rcutoff_scalar = fr->rcoulomb;
138 rcutoff = _mm_set1_ps(rcutoff_scalar);
139 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
140
141 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
142 rvdw = _mm_set1_ps(fr->rvdw);
143
144 /* Avoid stupid compiler warnings */
145 jnrA = jnrB = jnrC = jnrD = 0;
Value stored to 'jnrA' is never read
146 j_coord_offsetA = 0;
147 j_coord_offsetB = 0;
148 j_coord_offsetC = 0;
149 j_coord_offsetD = 0;
150
151 outeriter = 0;
152 inneriter = 0;
153
154 for(iidx=0;iidx<4*DIM3;iidx++)
155 {
156 scratch[iidx] = 0.0;
157 }
158
159 /* Start outer loop over neighborlists */
160 for(iidx=0; iidx<nri; iidx++)
161 {
162 /* Load shift vector for this list */
163 i_shift_offset = DIM3*shiftidx[iidx];
164
165 /* Load limits for loop over neighbors */
166 j_index_start = jindex[iidx];
167 j_index_end = jindex[iidx+1];
168
169 /* Get outer coordinate index */
170 inr = iinr[iidx];
171 i_coord_offset = DIM3*inr;
172
173 /* Load i particle coords and add shift vector */
174 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
175
176 fix0 = _mm_setzero_ps();
177 fiy0 = _mm_setzero_ps();
178 fiz0 = _mm_setzero_ps();
179
180 /* Load parameters for i particles */
181 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
182 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
183
184 /* Reset potential sums */
185 velecsum = _mm_setzero_ps();
186 vvdwsum = _mm_setzero_ps();
187
188 /* Start inner kernel loop */
189 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190 {
191
192 /* Get j neighbor index, and coordinate index */
193 jnrA = jjnr[jidx];
194 jnrB = jjnr[jidx+1];
195 jnrC = jjnr[jidx+2];
196 jnrD = jjnr[jidx+3];
197 j_coord_offsetA = DIM3*jnrA;
198 j_coord_offsetB = DIM3*jnrB;
199 j_coord_offsetC = DIM3*jnrC;
200 j_coord_offsetD = DIM3*jnrD;
201
202 /* load j atom coordinates */
203 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204 x+j_coord_offsetC,x+j_coord_offsetD,
205 &jx0,&jy0,&jz0);
206
207 /* Calculate displacement vector */
208 dx00 = _mm_sub_ps(ix0,jx0);
209 dy00 = _mm_sub_ps(iy0,jy0);
210 dz00 = _mm_sub_ps(iz0,jz0);
211
212 /* Calculate squared distance and things based on it */
213 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214
215 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
216
217 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
218
219 /* Load parameters for j particles */
220 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221 charge+jnrC+0,charge+jnrD+0);
222 vdwjidx0A = 2*vdwtype[jnrA+0];
223 vdwjidx0B = 2*vdwtype[jnrB+0];
224 vdwjidx0C = 2*vdwtype[jnrC+0];
225 vdwjidx0D = 2*vdwtype[jnrD+0];
226
227 /**************************
228 * CALCULATE INTERACTIONS *
229 **************************/
230
231 if (gmx_mm_any_lt(rsq00,rcutoff2))
232 {
233
234 r00 = _mm_mul_ps(rsq00,rinv00);
235
236 /* Compute parameters for interactions between i and j atoms */
237 qq00 = _mm_mul_ps(iq0,jq0);
238 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239 vdwparam+vdwioffset0+vdwjidx0B,
240 vdwparam+vdwioffset0+vdwjidx0C,
241 vdwparam+vdwioffset0+vdwjidx0D,
242 &c6_00,&c12_00);
243
244 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
245 vdwgridparam+vdwioffset0+vdwjidx0B,
246 vdwgridparam+vdwioffset0+vdwjidx0C,
247 vdwgridparam+vdwioffset0+vdwjidx0D);
248
249 /* EWALD ELECTROSTATICS */
250
251 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
252 ewrt = _mm_mul_ps(r00,ewtabscale);
253 ewitab = _mm_cvttps_epi32(ewrt);
254 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
255 ewitab = _mm_slli_epi32(ewitab,2);
256 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
257 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
258 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
259 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
260 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
261 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
262 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
263 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
264 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
265
266 /* Analytical LJ-PME */
267 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
268 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
269 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
270 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
271 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
272 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
273 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
274 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
275 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
276 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
277 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
278 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
279 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
280
281 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
282
283 /* Update potential sum for this i atom from the interaction with this j atom. */
284 velec = _mm_and_ps(velec,cutoff_mask);
285 velecsum = _mm_add_ps(velecsum,velec);
286 vvdw = _mm_and_ps(vvdw,cutoff_mask);
287 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
288
289 fscal = _mm_add_ps(felec,fvdw);
290
291 fscal = _mm_and_ps(fscal,cutoff_mask);
292
293 /* Calculate temporary vectorial force */
294 tx = _mm_mul_ps(fscal,dx00);
295 ty = _mm_mul_ps(fscal,dy00);
296 tz = _mm_mul_ps(fscal,dz00);
297
298 /* Update vectorial force */
299 fix0 = _mm_add_ps(fix0,tx);
300 fiy0 = _mm_add_ps(fiy0,ty);
301 fiz0 = _mm_add_ps(fiz0,tz);
302
303 fjptrA = f+j_coord_offsetA;
304 fjptrB = f+j_coord_offsetB;
305 fjptrC = f+j_coord_offsetC;
306 fjptrD = f+j_coord_offsetD;
307 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
308
309 }
310
311 /* Inner loop uses 82 flops */
312 }
313
314 if(jidx<j_index_end)
315 {
316
317 /* Get j neighbor index, and coordinate index */
318 jnrlistA = jjnr[jidx];
319 jnrlistB = jjnr[jidx+1];
320 jnrlistC = jjnr[jidx+2];
321 jnrlistD = jjnr[jidx+3];
322 /* Sign of each element will be negative for non-real atoms.
323 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
324 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
325 */
326 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
327 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
328 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
329 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
330 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
331 j_coord_offsetA = DIM3*jnrA;
332 j_coord_offsetB = DIM3*jnrB;
333 j_coord_offsetC = DIM3*jnrC;
334 j_coord_offsetD = DIM3*jnrD;
335
336 /* load j atom coordinates */
337 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
338 x+j_coord_offsetC,x+j_coord_offsetD,
339 &jx0,&jy0,&jz0);
340
341 /* Calculate displacement vector */
342 dx00 = _mm_sub_ps(ix0,jx0);
343 dy00 = _mm_sub_ps(iy0,jy0);
344 dz00 = _mm_sub_ps(iz0,jz0);
345
346 /* Calculate squared distance and things based on it */
347 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
348
349 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
350
351 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
352
353 /* Load parameters for j particles */
354 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
355 charge+jnrC+0,charge+jnrD+0);
356 vdwjidx0A = 2*vdwtype[jnrA+0];
357 vdwjidx0B = 2*vdwtype[jnrB+0];
358 vdwjidx0C = 2*vdwtype[jnrC+0];
359 vdwjidx0D = 2*vdwtype[jnrD+0];
360
361 /**************************
362 * CALCULATE INTERACTIONS *
363 **************************/
364
365 if (gmx_mm_any_lt(rsq00,rcutoff2))
366 {
367
368 r00 = _mm_mul_ps(rsq00,rinv00);
369 r00 = _mm_andnot_ps(dummy_mask,r00);
370
371 /* Compute parameters for interactions between i and j atoms */
372 qq00 = _mm_mul_ps(iq0,jq0);
373 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
374 vdwparam+vdwioffset0+vdwjidx0B,
375 vdwparam+vdwioffset0+vdwjidx0C,
376 vdwparam+vdwioffset0+vdwjidx0D,
377 &c6_00,&c12_00);
378
379 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
380 vdwgridparam+vdwioffset0+vdwjidx0B,
381 vdwgridparam+vdwioffset0+vdwjidx0C,
382 vdwgridparam+vdwioffset0+vdwjidx0D);
383
384 /* EWALD ELECTROSTATICS */
385
386 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
387 ewrt = _mm_mul_ps(r00,ewtabscale);
388 ewitab = _mm_cvttps_epi32(ewrt);
389 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
390 ewitab = _mm_slli_epi32(ewitab,2);
391 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
392 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
393 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
394 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
395 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
396 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
397 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
398 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
399 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
400
401 /* Analytical LJ-PME */
402 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
403 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
404 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
405 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
406 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
407 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
408 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
409 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
410 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
411 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
412 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
413 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
414 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
415
416 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
417
418 /* Update potential sum for this i atom from the interaction with this j atom. */
419 velec = _mm_and_ps(velec,cutoff_mask);
420 velec = _mm_andnot_ps(dummy_mask,velec);
421 velecsum = _mm_add_ps(velecsum,velec);
422 vvdw = _mm_and_ps(vvdw,cutoff_mask);
423 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
424 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
425
426 fscal = _mm_add_ps(felec,fvdw);
427
428 fscal = _mm_and_ps(fscal,cutoff_mask);
429
430 fscal = _mm_andnot_ps(dummy_mask,fscal);
431
432 /* Calculate temporary vectorial force */
433 tx = _mm_mul_ps(fscal,dx00);
434 ty = _mm_mul_ps(fscal,dy00);
435 tz = _mm_mul_ps(fscal,dz00);
436
437 /* Update vectorial force */
438 fix0 = _mm_add_ps(fix0,tx);
439 fiy0 = _mm_add_ps(fiy0,ty);
440 fiz0 = _mm_add_ps(fiz0,tz);
441
442 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
443 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
444 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
445 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
446 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
447
448 }
449
450 /* Inner loop uses 83 flops */
451 }
452
453 /* End of innermost loop */
454
455 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
456 f+i_coord_offset,fshift+i_shift_offset);
457
458 ggid = gid[iidx];
459 /* Update potential energies */
460 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
461 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
462
463 /* Increment number of inner iterations */
464 inneriter += j_index_end - j_index_start;
465
466 /* Outer loop uses 9 flops */
467 }
468
469 /* Increment number of outer iterations */
470 outeriter += nri;
471
472 /* Update outer/inner flops */
473
474 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*9 + inneriter
*83
;
475}
476/*
477 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_single
478 * Electrostatics interaction: Ewald
479 * VdW interaction: LJEwald
480 * Geometry: Particle-Particle
481 * Calculate force/pot: Force
482 */
483void
484nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_single
485 (t_nblist * gmx_restrict nlist,
486 rvec * gmx_restrict xx,
487 rvec * gmx_restrict ff,
488 t_forcerec * gmx_restrict fr,
489 t_mdatoms * gmx_restrict mdatoms,
490 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
491 t_nrnb * gmx_restrict nrnb)
492{
493 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
494 * just 0 for non-waters.
495 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
496 * jnr indices corresponding to data put in the four positions in the SIMD register.
497 */
498 int i_shift_offset,i_coord_offset,outeriter,inneriter;
499 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
500 int jnrA,jnrB,jnrC,jnrD;
501 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
502 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
503 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
504 real rcutoff_scalar;
505 real *shiftvec,*fshift,*x,*f;
506 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
507 real scratch[4*DIM3];
508 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
509 int vdwioffset0;
510 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
511 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
512 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
513 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
514 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
515 real *charge;
516 int nvdwtype;
517 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
518 int *vdwtype;
519 real *vdwparam;
520 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
521 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
522 __m128 c6grid_00;
523 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
524 real *vdwgridparam;
525 __m128 one_half = _mm_set1_ps(0.5);
526 __m128 minus_one = _mm_set1_ps(-1.0);
527 __m128i ewitab;
528 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
529 real *ewtab;
530 __m128 dummy_mask,cutoff_mask;
531 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
532 __m128 one = _mm_set1_ps(1.0);
533 __m128 two = _mm_set1_ps(2.0);
534 x = xx[0];
535 f = ff[0];
536
537 nri = nlist->nri;
538 iinr = nlist->iinr;
539 jindex = nlist->jindex;
540 jjnr = nlist->jjnr;
541 shiftidx = nlist->shift;
542 gid = nlist->gid;
543 shiftvec = fr->shift_vec[0];
544 fshift = fr->fshift[0];
545 facel = _mm_set1_ps(fr->epsfac);
546 charge = mdatoms->chargeA;
547 nvdwtype = fr->ntype;
548 vdwparam = fr->nbfp;
549 vdwtype = mdatoms->typeA;
550 vdwgridparam = fr->ljpme_c6grid;
551 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
552 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
553 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
554
555 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
556 ewtab = fr->ic->tabq_coul_F;
557 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
558 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
559
560 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
561 rcutoff_scalar = fr->rcoulomb;
562 rcutoff = _mm_set1_ps(rcutoff_scalar);
563 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
564
565 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
566 rvdw = _mm_set1_ps(fr->rvdw);
567
568 /* Avoid stupid compiler warnings */
569 jnrA = jnrB = jnrC = jnrD = 0;
570 j_coord_offsetA = 0;
571 j_coord_offsetB = 0;
572 j_coord_offsetC = 0;
573 j_coord_offsetD = 0;
574
575 outeriter = 0;
576 inneriter = 0;
577
578 for(iidx=0;iidx<4*DIM3;iidx++)
579 {
580 scratch[iidx] = 0.0;
581 }
582
583 /* Start outer loop over neighborlists */
584 for(iidx=0; iidx<nri; iidx++)
585 {
586 /* Load shift vector for this list */
587 i_shift_offset = DIM3*shiftidx[iidx];
588
589 /* Load limits for loop over neighbors */
590 j_index_start = jindex[iidx];
591 j_index_end = jindex[iidx+1];
592
593 /* Get outer coordinate index */
594 inr = iinr[iidx];
595 i_coord_offset = DIM3*inr;
596
597 /* Load i particle coords and add shift vector */
598 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
599
600 fix0 = _mm_setzero_ps();
601 fiy0 = _mm_setzero_ps();
602 fiz0 = _mm_setzero_ps();
603
604 /* Load parameters for i particles */
605 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
606 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
607
608 /* Start inner kernel loop */
609 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
610 {
611
612 /* Get j neighbor index, and coordinate index */
613 jnrA = jjnr[jidx];
614 jnrB = jjnr[jidx+1];
615 jnrC = jjnr[jidx+2];
616 jnrD = jjnr[jidx+3];
617 j_coord_offsetA = DIM3*jnrA;
618 j_coord_offsetB = DIM3*jnrB;
619 j_coord_offsetC = DIM3*jnrC;
620 j_coord_offsetD = DIM3*jnrD;
621
622 /* load j atom coordinates */
623 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
624 x+j_coord_offsetC,x+j_coord_offsetD,
625 &jx0,&jy0,&jz0);
626
627 /* Calculate displacement vector */
628 dx00 = _mm_sub_ps(ix0,jx0);
629 dy00 = _mm_sub_ps(iy0,jy0);
630 dz00 = _mm_sub_ps(iz0,jz0);
631
632 /* Calculate squared distance and things based on it */
633 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
634
635 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
636
637 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
638
639 /* Load parameters for j particles */
640 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
641 charge+jnrC+0,charge+jnrD+0);
642 vdwjidx0A = 2*vdwtype[jnrA+0];
643 vdwjidx0B = 2*vdwtype[jnrB+0];
644 vdwjidx0C = 2*vdwtype[jnrC+0];
645 vdwjidx0D = 2*vdwtype[jnrD+0];
646
647 /**************************
648 * CALCULATE INTERACTIONS *
649 **************************/
650
651 if (gmx_mm_any_lt(rsq00,rcutoff2))
652 {
653
654 r00 = _mm_mul_ps(rsq00,rinv00);
655
656 /* Compute parameters for interactions between i and j atoms */
657 qq00 = _mm_mul_ps(iq0,jq0);
658 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
659 vdwparam+vdwioffset0+vdwjidx0B,
660 vdwparam+vdwioffset0+vdwjidx0C,
661 vdwparam+vdwioffset0+vdwjidx0D,
662 &c6_00,&c12_00);
663
664 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
665 vdwgridparam+vdwioffset0+vdwjidx0B,
666 vdwgridparam+vdwioffset0+vdwjidx0C,
667 vdwgridparam+vdwioffset0+vdwjidx0D);
668
669 /* EWALD ELECTROSTATICS */
670
671 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
672 ewrt = _mm_mul_ps(r00,ewtabscale);
673 ewitab = _mm_cvttps_epi32(ewrt);
674 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
675 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
676 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
677 &ewtabF,&ewtabFn);
678 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
679 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
680
681 /* Analytical LJ-PME */
682 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
683 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
684 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
685 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
686 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
687 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
688 /* f6A = 6 * C6grid * (1 - poly) */
689 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
690 /* f6B = C6grid * exponent * beta^6 */
691 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
692 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
693 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
694
695 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
696
697 fscal = _mm_add_ps(felec,fvdw);
698
699 fscal = _mm_and_ps(fscal,cutoff_mask);
700
701 /* Calculate temporary vectorial force */
702 tx = _mm_mul_ps(fscal,dx00);
703 ty = _mm_mul_ps(fscal,dy00);
704 tz = _mm_mul_ps(fscal,dz00);
705
706 /* Update vectorial force */
707 fix0 = _mm_add_ps(fix0,tx);
708 fiy0 = _mm_add_ps(fiy0,ty);
709 fiz0 = _mm_add_ps(fiz0,tz);
710
711 fjptrA = f+j_coord_offsetA;
712 fjptrB = f+j_coord_offsetB;
713 fjptrC = f+j_coord_offsetC;
714 fjptrD = f+j_coord_offsetD;
715 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
716
717 }
718
719 /* Inner loop uses 62 flops */
720 }
721
722 if(jidx<j_index_end)
723 {
724
725 /* Get j neighbor index, and coordinate index */
726 jnrlistA = jjnr[jidx];
727 jnrlistB = jjnr[jidx+1];
728 jnrlistC = jjnr[jidx+2];
729 jnrlistD = jjnr[jidx+3];
730 /* Sign of each element will be negative for non-real atoms.
731 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
732 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
733 */
734 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
735 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
736 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
737 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
738 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
739 j_coord_offsetA = DIM3*jnrA;
740 j_coord_offsetB = DIM3*jnrB;
741 j_coord_offsetC = DIM3*jnrC;
742 j_coord_offsetD = DIM3*jnrD;
743
744 /* load j atom coordinates */
745 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
746 x+j_coord_offsetC,x+j_coord_offsetD,
747 &jx0,&jy0,&jz0);
748
749 /* Calculate displacement vector */
750 dx00 = _mm_sub_ps(ix0,jx0);
751 dy00 = _mm_sub_ps(iy0,jy0);
752 dz00 = _mm_sub_ps(iz0,jz0);
753
754 /* Calculate squared distance and things based on it */
755 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
756
757 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
758
759 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
760
761 /* Load parameters for j particles */
762 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
763 charge+jnrC+0,charge+jnrD+0);
764 vdwjidx0A = 2*vdwtype[jnrA+0];
765 vdwjidx0B = 2*vdwtype[jnrB+0];
766 vdwjidx0C = 2*vdwtype[jnrC+0];
767 vdwjidx0D = 2*vdwtype[jnrD+0];
768
769 /**************************
770 * CALCULATE INTERACTIONS *
771 **************************/
772
773 if (gmx_mm_any_lt(rsq00,rcutoff2))
774 {
775
776 r00 = _mm_mul_ps(rsq00,rinv00);
777 r00 = _mm_andnot_ps(dummy_mask,r00);
778
779 /* Compute parameters for interactions between i and j atoms */
780 qq00 = _mm_mul_ps(iq0,jq0);
781 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
782 vdwparam+vdwioffset0+vdwjidx0B,
783 vdwparam+vdwioffset0+vdwjidx0C,
784 vdwparam+vdwioffset0+vdwjidx0D,
785 &c6_00,&c12_00);
786
787 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
788 vdwgridparam+vdwioffset0+vdwjidx0B,
789 vdwgridparam+vdwioffset0+vdwjidx0C,
790 vdwgridparam+vdwioffset0+vdwjidx0D);
791
792 /* EWALD ELECTROSTATICS */
793
794 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
795 ewrt = _mm_mul_ps(r00,ewtabscale);
796 ewitab = _mm_cvttps_epi32(ewrt);
797 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
798 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
799 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
800 &ewtabF,&ewtabFn);
801 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
802 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
803
804 /* Analytical LJ-PME */
805 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
806 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
807 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
808 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
809 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
810 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
811 /* f6A = 6 * C6grid * (1 - poly) */
812 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
813 /* f6B = C6grid * exponent * beta^6 */
814 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
815 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
816 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
817
818 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
819
820 fscal = _mm_add_ps(felec,fvdw);
821
822 fscal = _mm_and_ps(fscal,cutoff_mask);
823
824 fscal = _mm_andnot_ps(dummy_mask,fscal);
825
826 /* Calculate temporary vectorial force */
827 tx = _mm_mul_ps(fscal,dx00);
828 ty = _mm_mul_ps(fscal,dy00);
829 tz = _mm_mul_ps(fscal,dz00);
830
831 /* Update vectorial force */
832 fix0 = _mm_add_ps(fix0,tx);
833 fiy0 = _mm_add_ps(fiy0,ty);
834 fiz0 = _mm_add_ps(fiz0,tz);
835
836 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
837 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
838 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
839 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
840 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
841
842 }
843
844 /* Inner loop uses 63 flops */
845 }
846
847 /* End of innermost loop */
848
849 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
850 f+i_coord_offset,fshift+i_shift_offset);
851
852 /* Increment number of inner iterations */
853 inneriter += j_index_end - j_index_start;
854
855 /* Outer loop uses 7 flops */
856 }
857
858 /* Increment number of outer iterations */
859 outeriter += nri;
860
861 /* Update outer/inner flops */
862
863 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*63
;
864}