Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_c.c
Location:line 952, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 int ewitab;
105 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
106 real *ewtab;
107 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
108
109 x = xx[0];
110 f = ff[0];
111
112 nri = nlist->nri;
113 iinr = nlist->iinr;
114 jindex = nlist->jindex;
115 jjnr = nlist->jjnr;
116 shiftidx = nlist->shift;
117 gid = nlist->gid;
118 shiftvec = fr->shift_vec[0];
119 fshift = fr->fshift[0];
120 facel = fr->epsfac;
121 charge = mdatoms->chargeA;
122 nvdwtype = fr->ntype;
123 vdwparam = fr->nbfp;
124 vdwtype = mdatoms->typeA;
125
126 sh_ewald = fr->ic->sh_ewald;
127 ewtab = fr->ic->tabq_coul_FDV0;
128 ewtabscale = fr->ic->tabq_scale;
129 ewtabhalfspace = 0.5/ewtabscale;
130
131 /* Setup water-specific parameters */
132 inr = nlist->iinr[0];
133 iq1 = facel*charge[inr+1];
134 iq2 = facel*charge[inr+2];
135 iq3 = facel*charge[inr+3];
136 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
137
138 jq1 = charge[inr+1];
139 jq2 = charge[inr+2];
140 jq3 = charge[inr+3];
141 vdwjidx0 = 3*vdwtype[inr+0];
142 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
143 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
144 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
145 qq11 = iq1*jq1;
146 qq12 = iq1*jq2;
147 qq13 = iq1*jq3;
148 qq21 = iq2*jq1;
149 qq22 = iq2*jq2;
150 qq23 = iq2*jq3;
151 qq31 = iq3*jq1;
152 qq32 = iq3*jq2;
153 qq33 = iq3*jq3;
154
155 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
156 rcutoff = fr->rcoulomb;
157 rcutoff2 = rcutoff*rcutoff;
158
159 rswitch = fr->rcoulomb_switch;
160 /* Setup switch parameters */
161 d = rcutoff-rswitch;
162 swV3 = -10.0/(d*d*d);
163 swV4 = 15.0/(d*d*d*d);
164 swV5 = -6.0/(d*d*d*d*d);
165 swF2 = -30.0/(d*d*d);
166 swF3 = 60.0/(d*d*d*d);
167 swF4 = -30.0/(d*d*d*d*d);
168
169 outeriter = 0;
170 inneriter = 0;
171
172 /* Start outer loop over neighborlists */
173 for(iidx=0; iidx<nri; iidx++)
174 {
175 /* Load shift vector for this list */
176 i_shift_offset = DIM3*shiftidx[iidx];
177 shX = shiftvec[i_shift_offset+XX0];
178 shY = shiftvec[i_shift_offset+YY1];
179 shZ = shiftvec[i_shift_offset+ZZ2];
180
181 /* Load limits for loop over neighbors */
182 j_index_start = jindex[iidx];
183 j_index_end = jindex[iidx+1];
184
185 /* Get outer coordinate index */
186 inr = iinr[iidx];
187 i_coord_offset = DIM3*inr;
188
189 /* Load i particle coords and add shift vector */
190 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
191 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
192 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
193 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
194 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
195 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
196 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
197 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
198 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
199 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
200 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
201 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
202
203 fix0 = 0.0;
204 fiy0 = 0.0;
205 fiz0 = 0.0;
206 fix1 = 0.0;
207 fiy1 = 0.0;
208 fiz1 = 0.0;
209 fix2 = 0.0;
210 fiy2 = 0.0;
211 fiz2 = 0.0;
212 fix3 = 0.0;
213 fiy3 = 0.0;
214 fiz3 = 0.0;
215
216 /* Reset potential sums */
217 velecsum = 0.0;
218 vvdwsum = 0.0;
219
220 /* Start inner kernel loop */
221 for(jidx=j_index_start; jidx<j_index_end; jidx++)
222 {
223 /* Get j neighbor index, and coordinate index */
224 jnr = jjnr[jidx];
225 j_coord_offset = DIM3*jnr;
226
227 /* load j atom coordinates */
228 jx0 = x[j_coord_offset+DIM3*0+XX0];
229 jy0 = x[j_coord_offset+DIM3*0+YY1];
230 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
231 jx1 = x[j_coord_offset+DIM3*1+XX0];
232 jy1 = x[j_coord_offset+DIM3*1+YY1];
233 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
234 jx2 = x[j_coord_offset+DIM3*2+XX0];
235 jy2 = x[j_coord_offset+DIM3*2+YY1];
236 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
237 jx3 = x[j_coord_offset+DIM3*3+XX0];
238 jy3 = x[j_coord_offset+DIM3*3+YY1];
239 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
240
241 /* Calculate displacement vector */
242 dx00 = ix0 - jx0;
243 dy00 = iy0 - jy0;
244 dz00 = iz0 - jz0;
245 dx11 = ix1 - jx1;
246 dy11 = iy1 - jy1;
247 dz11 = iz1 - jz1;
248 dx12 = ix1 - jx2;
249 dy12 = iy1 - jy2;
250 dz12 = iz1 - jz2;
251 dx13 = ix1 - jx3;
252 dy13 = iy1 - jy3;
253 dz13 = iz1 - jz3;
254 dx21 = ix2 - jx1;
255 dy21 = iy2 - jy1;
256 dz21 = iz2 - jz1;
257 dx22 = ix2 - jx2;
258 dy22 = iy2 - jy2;
259 dz22 = iz2 - jz2;
260 dx23 = ix2 - jx3;
261 dy23 = iy2 - jy3;
262 dz23 = iz2 - jz3;
263 dx31 = ix3 - jx1;
264 dy31 = iy3 - jy1;
265 dz31 = iz3 - jz1;
266 dx32 = ix3 - jx2;
267 dy32 = iy3 - jy2;
268 dz32 = iz3 - jz2;
269 dx33 = ix3 - jx3;
270 dy33 = iy3 - jy3;
271 dz33 = iz3 - jz3;
272
273 /* Calculate squared distance and things based on it */
274 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
275 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
276 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
277 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
278 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
279 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
280 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
281 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
282 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
283 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
284
285 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
286 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
287 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
288 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
289 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
290 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
291 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
292 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
293 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
294 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
295
296 rinvsq00 = rinv00*rinv00;
297 rinvsq11 = rinv11*rinv11;
298 rinvsq12 = rinv12*rinv12;
299 rinvsq13 = rinv13*rinv13;
300 rinvsq21 = rinv21*rinv21;
301 rinvsq22 = rinv22*rinv22;
302 rinvsq23 = rinv23*rinv23;
303 rinvsq31 = rinv31*rinv31;
304 rinvsq32 = rinv32*rinv32;
305 rinvsq33 = rinv33*rinv33;
306
307 /**************************
308 * CALCULATE INTERACTIONS *
309 **************************/
310
311 if (rsq00<rcutoff2)
312 {
313
314 r00 = rsq00*rinv00;
315
316 /* BUCKINGHAM DISPERSION/REPULSION */
317 rinvsix = rinvsq00*rinvsq00*rinvsq00;
318 vvdw6 = c6_00*rinvsix;
319 br = cexp2_00*r00;
320 vvdwexp = cexp1_00*exp(-br);
321 vvdw = vvdwexp - vvdw6*(1.0/6.0);
322 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
323
324 d = r00-rswitch;
325 d = (d>0.0) ? d : 0.0;
326 d2 = d*d;
327 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
328
329 dsw = d2*(swF2+d*(swF3+d*swF4));
330
331 /* Evaluate switch function */
332 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
333 fvdw = fvdw*sw - rinv00*vvdw*dsw;
334 vvdw *= sw;
335
336 /* Update potential sums from outer loop */
337 vvdwsum += vvdw;
338
339 fscal = fvdw;
340
341 /* Calculate temporary vectorial force */
342 tx = fscal*dx00;
343 ty = fscal*dy00;
344 tz = fscal*dz00;
345
346 /* Update vectorial force */
347 fix0 += tx;
348 fiy0 += ty;
349 fiz0 += tz;
350 f[j_coord_offset+DIM3*0+XX0] -= tx;
351 f[j_coord_offset+DIM3*0+YY1] -= ty;
352 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
353
354 }
355
356 /**************************
357 * CALCULATE INTERACTIONS *
358 **************************/
359
360 if (rsq11<rcutoff2)
361 {
362
363 r11 = rsq11*rinv11;
364
365 /* EWALD ELECTROSTATICS */
366
367 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368 ewrt = r11*ewtabscale;
369 ewitab = ewrt;
370 eweps = ewrt-ewitab;
371 ewitab = 4*ewitab;
372 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
373 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
374 felec = qq11*rinv11*(rinvsq11-felec);
375
376 d = r11-rswitch;
377 d = (d>0.0) ? d : 0.0;
378 d2 = d*d;
379 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
380
381 dsw = d2*(swF2+d*(swF3+d*swF4));
382
383 /* Evaluate switch function */
384 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
385 felec = felec*sw - rinv11*velec*dsw;
386 velec *= sw;
387
388 /* Update potential sums from outer loop */
389 velecsum += velec;
390
391 fscal = felec;
392
393 /* Calculate temporary vectorial force */
394 tx = fscal*dx11;
395 ty = fscal*dy11;
396 tz = fscal*dz11;
397
398 /* Update vectorial force */
399 fix1 += tx;
400 fiy1 += ty;
401 fiz1 += tz;
402 f[j_coord_offset+DIM3*1+XX0] -= tx;
403 f[j_coord_offset+DIM3*1+YY1] -= ty;
404 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
405
406 }
407
408 /**************************
409 * CALCULATE INTERACTIONS *
410 **************************/
411
412 if (rsq12<rcutoff2)
413 {
414
415 r12 = rsq12*rinv12;
416
417 /* EWALD ELECTROSTATICS */
418
419 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
420 ewrt = r12*ewtabscale;
421 ewitab = ewrt;
422 eweps = ewrt-ewitab;
423 ewitab = 4*ewitab;
424 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
425 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
426 felec = qq12*rinv12*(rinvsq12-felec);
427
428 d = r12-rswitch;
429 d = (d>0.0) ? d : 0.0;
430 d2 = d*d;
431 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
432
433 dsw = d2*(swF2+d*(swF3+d*swF4));
434
435 /* Evaluate switch function */
436 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
437 felec = felec*sw - rinv12*velec*dsw;
438 velec *= sw;
439
440 /* Update potential sums from outer loop */
441 velecsum += velec;
442
443 fscal = felec;
444
445 /* Calculate temporary vectorial force */
446 tx = fscal*dx12;
447 ty = fscal*dy12;
448 tz = fscal*dz12;
449
450 /* Update vectorial force */
451 fix1 += tx;
452 fiy1 += ty;
453 fiz1 += tz;
454 f[j_coord_offset+DIM3*2+XX0] -= tx;
455 f[j_coord_offset+DIM3*2+YY1] -= ty;
456 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
457
458 }
459
460 /**************************
461 * CALCULATE INTERACTIONS *
462 **************************/
463
464 if (rsq13<rcutoff2)
465 {
466
467 r13 = rsq13*rinv13;
468
469 /* EWALD ELECTROSTATICS */
470
471 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
472 ewrt = r13*ewtabscale;
473 ewitab = ewrt;
474 eweps = ewrt-ewitab;
475 ewitab = 4*ewitab;
476 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
477 velec = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
478 felec = qq13*rinv13*(rinvsq13-felec);
479
480 d = r13-rswitch;
481 d = (d>0.0) ? d : 0.0;
482 d2 = d*d;
483 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
484
485 dsw = d2*(swF2+d*(swF3+d*swF4));
486
487 /* Evaluate switch function */
488 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
489 felec = felec*sw - rinv13*velec*dsw;
490 velec *= sw;
491
492 /* Update potential sums from outer loop */
493 velecsum += velec;
494
495 fscal = felec;
496
497 /* Calculate temporary vectorial force */
498 tx = fscal*dx13;
499 ty = fscal*dy13;
500 tz = fscal*dz13;
501
502 /* Update vectorial force */
503 fix1 += tx;
504 fiy1 += ty;
505 fiz1 += tz;
506 f[j_coord_offset+DIM3*3+XX0] -= tx;
507 f[j_coord_offset+DIM3*3+YY1] -= ty;
508 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
509
510 }
511
512 /**************************
513 * CALCULATE INTERACTIONS *
514 **************************/
515
516 if (rsq21<rcutoff2)
517 {
518
519 r21 = rsq21*rinv21;
520
521 /* EWALD ELECTROSTATICS */
522
523 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
524 ewrt = r21*ewtabscale;
525 ewitab = ewrt;
526 eweps = ewrt-ewitab;
527 ewitab = 4*ewitab;
528 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
529 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
530 felec = qq21*rinv21*(rinvsq21-felec);
531
532 d = r21-rswitch;
533 d = (d>0.0) ? d : 0.0;
534 d2 = d*d;
535 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
536
537 dsw = d2*(swF2+d*(swF3+d*swF4));
538
539 /* Evaluate switch function */
540 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
541 felec = felec*sw - rinv21*velec*dsw;
542 velec *= sw;
543
544 /* Update potential sums from outer loop */
545 velecsum += velec;
546
547 fscal = felec;
548
549 /* Calculate temporary vectorial force */
550 tx = fscal*dx21;
551 ty = fscal*dy21;
552 tz = fscal*dz21;
553
554 /* Update vectorial force */
555 fix2 += tx;
556 fiy2 += ty;
557 fiz2 += tz;
558 f[j_coord_offset+DIM3*1+XX0] -= tx;
559 f[j_coord_offset+DIM3*1+YY1] -= ty;
560 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
561
562 }
563
564 /**************************
565 * CALCULATE INTERACTIONS *
566 **************************/
567
568 if (rsq22<rcutoff2)
569 {
570
571 r22 = rsq22*rinv22;
572
573 /* EWALD ELECTROSTATICS */
574
575 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
576 ewrt = r22*ewtabscale;
577 ewitab = ewrt;
578 eweps = ewrt-ewitab;
579 ewitab = 4*ewitab;
580 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
581 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
582 felec = qq22*rinv22*(rinvsq22-felec);
583
584 d = r22-rswitch;
585 d = (d>0.0) ? d : 0.0;
586 d2 = d*d;
587 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
588
589 dsw = d2*(swF2+d*(swF3+d*swF4));
590
591 /* Evaluate switch function */
592 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
593 felec = felec*sw - rinv22*velec*dsw;
594 velec *= sw;
595
596 /* Update potential sums from outer loop */
597 velecsum += velec;
598
599 fscal = felec;
600
601 /* Calculate temporary vectorial force */
602 tx = fscal*dx22;
603 ty = fscal*dy22;
604 tz = fscal*dz22;
605
606 /* Update vectorial force */
607 fix2 += tx;
608 fiy2 += ty;
609 fiz2 += tz;
610 f[j_coord_offset+DIM3*2+XX0] -= tx;
611 f[j_coord_offset+DIM3*2+YY1] -= ty;
612 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
613
614 }
615
616 /**************************
617 * CALCULATE INTERACTIONS *
618 **************************/
619
620 if (rsq23<rcutoff2)
621 {
622
623 r23 = rsq23*rinv23;
624
625 /* EWALD ELECTROSTATICS */
626
627 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628 ewrt = r23*ewtabscale;
629 ewitab = ewrt;
630 eweps = ewrt-ewitab;
631 ewitab = 4*ewitab;
632 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
633 velec = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
634 felec = qq23*rinv23*(rinvsq23-felec);
635
636 d = r23-rswitch;
637 d = (d>0.0) ? d : 0.0;
638 d2 = d*d;
639 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
640
641 dsw = d2*(swF2+d*(swF3+d*swF4));
642
643 /* Evaluate switch function */
644 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
645 felec = felec*sw - rinv23*velec*dsw;
646 velec *= sw;
647
648 /* Update potential sums from outer loop */
649 velecsum += velec;
650
651 fscal = felec;
652
653 /* Calculate temporary vectorial force */
654 tx = fscal*dx23;
655 ty = fscal*dy23;
656 tz = fscal*dz23;
657
658 /* Update vectorial force */
659 fix2 += tx;
660 fiy2 += ty;
661 fiz2 += tz;
662 f[j_coord_offset+DIM3*3+XX0] -= tx;
663 f[j_coord_offset+DIM3*3+YY1] -= ty;
664 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
665
666 }
667
668 /**************************
669 * CALCULATE INTERACTIONS *
670 **************************/
671
672 if (rsq31<rcutoff2)
673 {
674
675 r31 = rsq31*rinv31;
676
677 /* EWALD ELECTROSTATICS */
678
679 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
680 ewrt = r31*ewtabscale;
681 ewitab = ewrt;
682 eweps = ewrt-ewitab;
683 ewitab = 4*ewitab;
684 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
685 velec = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
686 felec = qq31*rinv31*(rinvsq31-felec);
687
688 d = r31-rswitch;
689 d = (d>0.0) ? d : 0.0;
690 d2 = d*d;
691 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
692
693 dsw = d2*(swF2+d*(swF3+d*swF4));
694
695 /* Evaluate switch function */
696 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
697 felec = felec*sw - rinv31*velec*dsw;
698 velec *= sw;
699
700 /* Update potential sums from outer loop */
701 velecsum += velec;
702
703 fscal = felec;
704
705 /* Calculate temporary vectorial force */
706 tx = fscal*dx31;
707 ty = fscal*dy31;
708 tz = fscal*dz31;
709
710 /* Update vectorial force */
711 fix3 += tx;
712 fiy3 += ty;
713 fiz3 += tz;
714 f[j_coord_offset+DIM3*1+XX0] -= tx;
715 f[j_coord_offset+DIM3*1+YY1] -= ty;
716 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
717
718 }
719
720 /**************************
721 * CALCULATE INTERACTIONS *
722 **************************/
723
724 if (rsq32<rcutoff2)
725 {
726
727 r32 = rsq32*rinv32;
728
729 /* EWALD ELECTROSTATICS */
730
731 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
732 ewrt = r32*ewtabscale;
733 ewitab = ewrt;
734 eweps = ewrt-ewitab;
735 ewitab = 4*ewitab;
736 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
737 velec = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
738 felec = qq32*rinv32*(rinvsq32-felec);
739
740 d = r32-rswitch;
741 d = (d>0.0) ? d : 0.0;
742 d2 = d*d;
743 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
744
745 dsw = d2*(swF2+d*(swF3+d*swF4));
746
747 /* Evaluate switch function */
748 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
749 felec = felec*sw - rinv32*velec*dsw;
750 velec *= sw;
751
752 /* Update potential sums from outer loop */
753 velecsum += velec;
754
755 fscal = felec;
756
757 /* Calculate temporary vectorial force */
758 tx = fscal*dx32;
759 ty = fscal*dy32;
760 tz = fscal*dz32;
761
762 /* Update vectorial force */
763 fix3 += tx;
764 fiy3 += ty;
765 fiz3 += tz;
766 f[j_coord_offset+DIM3*2+XX0] -= tx;
767 f[j_coord_offset+DIM3*2+YY1] -= ty;
768 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
769
770 }
771
772 /**************************
773 * CALCULATE INTERACTIONS *
774 **************************/
775
776 if (rsq33<rcutoff2)
777 {
778
779 r33 = rsq33*rinv33;
780
781 /* EWALD ELECTROSTATICS */
782
783 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
784 ewrt = r33*ewtabscale;
785 ewitab = ewrt;
786 eweps = ewrt-ewitab;
787 ewitab = 4*ewitab;
788 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
789 velec = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
790 felec = qq33*rinv33*(rinvsq33-felec);
791
792 d = r33-rswitch;
793 d = (d>0.0) ? d : 0.0;
794 d2 = d*d;
795 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
796
797 dsw = d2*(swF2+d*(swF3+d*swF4));
798
799 /* Evaluate switch function */
800 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
801 felec = felec*sw - rinv33*velec*dsw;
802 velec *= sw;
803
804 /* Update potential sums from outer loop */
805 velecsum += velec;
806
807 fscal = felec;
808
809 /* Calculate temporary vectorial force */
810 tx = fscal*dx33;
811 ty = fscal*dy33;
812 tz = fscal*dz33;
813
814 /* Update vectorial force */
815 fix3 += tx;
816 fiy3 += ty;
817 fiz3 += tz;
818 f[j_coord_offset+DIM3*3+XX0] -= tx;
819 f[j_coord_offset+DIM3*3+YY1] -= ty;
820 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
821
822 }
823
824 /* Inner loop uses 601 flops */
825 }
826 /* End of innermost loop */
827
828 tx = ty = tz = 0;
829 f[i_coord_offset+DIM3*0+XX0] += fix0;
830 f[i_coord_offset+DIM3*0+YY1] += fiy0;
831 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
832 tx += fix0;
833 ty += fiy0;
834 tz += fiz0;
835 f[i_coord_offset+DIM3*1+XX0] += fix1;
836 f[i_coord_offset+DIM3*1+YY1] += fiy1;
837 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
838 tx += fix1;
839 ty += fiy1;
840 tz += fiz1;
841 f[i_coord_offset+DIM3*2+XX0] += fix2;
842 f[i_coord_offset+DIM3*2+YY1] += fiy2;
843 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
844 tx += fix2;
845 ty += fiy2;
846 tz += fiz2;
847 f[i_coord_offset+DIM3*3+XX0] += fix3;
848 f[i_coord_offset+DIM3*3+YY1] += fiy3;
849 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
850 tx += fix3;
851 ty += fiy3;
852 tz += fiz3;
853 fshift[i_shift_offset+XX0] += tx;
854 fshift[i_shift_offset+YY1] += ty;
855 fshift[i_shift_offset+ZZ2] += tz;
856
857 ggid = gid[iidx];
858 /* Update potential energies */
859 kernel_data->energygrp_elec[ggid] += velecsum;
860 kernel_data->energygrp_vdw[ggid] += vvdwsum;
861
862 /* Increment number of inner iterations */
863 inneriter += j_index_end - j_index_start;
864
865 /* Outer loop uses 41 flops */
866 }
867
868 /* Increment number of outer iterations */
869 outeriter += nri;
870
871 /* Update outer/inner flops */
872
873 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*601)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*601
;
874}
875/*
876 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_F_c
877 * Electrostatics interaction: Ewald
878 * VdW interaction: Buckingham
879 * Geometry: Water4-Water4
880 * Calculate force/pot: Force
881 */
882void
883nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_F_c
884 (t_nblist * gmx_restrict__restrict nlist,
885 rvec * gmx_restrict__restrict xx,
886 rvec * gmx_restrict__restrict ff,
887 t_forcerec * gmx_restrict__restrict fr,
888 t_mdatoms * gmx_restrict__restrict mdatoms,
889 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
890 t_nrnb * gmx_restrict__restrict nrnb)
891{
892 int i_shift_offset,i_coord_offset,j_coord_offset;
893 int j_index_start,j_index_end;
894 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
895 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
896 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
897 real *shiftvec,*fshift,*x,*f;
898 int vdwioffset0;
899 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
900 int vdwioffset1;
901 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
902 int vdwioffset2;
903 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
904 int vdwioffset3;
905 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
906 int vdwjidx0;
907 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
908 int vdwjidx1;
909 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
910 int vdwjidx2;
911 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
912 int vdwjidx3;
913 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
914 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
915 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
916 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
917 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
918 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
919 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
920 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
921 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
922 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
923 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
924 real velec,felec,velecsum,facel,crf,krf,krf2;
925 real *charge;
926 int nvdwtype;
927 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
928 int *vdwtype;
929 real *vdwparam;
930 int ewitab;
931 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
932 real *ewtab;
933 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
934
935 x = xx[0];
936 f = ff[0];
937
938 nri = nlist->nri;
939 iinr = nlist->iinr;
940 jindex = nlist->jindex;
941 jjnr = nlist->jjnr;
942 shiftidx = nlist->shift;
943 gid = nlist->gid;
944 shiftvec = fr->shift_vec[0];
945 fshift = fr->fshift[0];
946 facel = fr->epsfac;
947 charge = mdatoms->chargeA;
948 nvdwtype = fr->ntype;
949 vdwparam = fr->nbfp;
950 vdwtype = mdatoms->typeA;
951
952 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
953 ewtab = fr->ic->tabq_coul_FDV0;
954 ewtabscale = fr->ic->tabq_scale;
955 ewtabhalfspace = 0.5/ewtabscale;
956
957 /* Setup water-specific parameters */
958 inr = nlist->iinr[0];
959 iq1 = facel*charge[inr+1];
960 iq2 = facel*charge[inr+2];
961 iq3 = facel*charge[inr+3];
962 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
963
964 jq1 = charge[inr+1];
965 jq2 = charge[inr+2];
966 jq3 = charge[inr+3];
967 vdwjidx0 = 3*vdwtype[inr+0];
968 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
969 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
970 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
971 qq11 = iq1*jq1;
972 qq12 = iq1*jq2;
973 qq13 = iq1*jq3;
974 qq21 = iq2*jq1;
975 qq22 = iq2*jq2;
976 qq23 = iq2*jq3;
977 qq31 = iq3*jq1;
978 qq32 = iq3*jq2;
979 qq33 = iq3*jq3;
980
981 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
982 rcutoff = fr->rcoulomb;
983 rcutoff2 = rcutoff*rcutoff;
984
985 rswitch = fr->rcoulomb_switch;
986 /* Setup switch parameters */
987 d = rcutoff-rswitch;
988 swV3 = -10.0/(d*d*d);
989 swV4 = 15.0/(d*d*d*d);
990 swV5 = -6.0/(d*d*d*d*d);
991 swF2 = -30.0/(d*d*d);
992 swF3 = 60.0/(d*d*d*d);
993 swF4 = -30.0/(d*d*d*d*d);
994
995 outeriter = 0;
996 inneriter = 0;
997
998 /* Start outer loop over neighborlists */
999 for(iidx=0; iidx<nri; iidx++)
1000 {
1001 /* Load shift vector for this list */
1002 i_shift_offset = DIM3*shiftidx[iidx];
1003 shX = shiftvec[i_shift_offset+XX0];
1004 shY = shiftvec[i_shift_offset+YY1];
1005 shZ = shiftvec[i_shift_offset+ZZ2];
1006
1007 /* Load limits for loop over neighbors */
1008 j_index_start = jindex[iidx];
1009 j_index_end = jindex[iidx+1];
1010
1011 /* Get outer coordinate index */
1012 inr = iinr[iidx];
1013 i_coord_offset = DIM3*inr;
1014
1015 /* Load i particle coords and add shift vector */
1016 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
1017 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
1018 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
1019 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
1020 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
1021 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
1022 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
1023 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
1024 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
1025 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
1026 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
1027 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
1028
1029 fix0 = 0.0;
1030 fiy0 = 0.0;
1031 fiz0 = 0.0;
1032 fix1 = 0.0;
1033 fiy1 = 0.0;
1034 fiz1 = 0.0;
1035 fix2 = 0.0;
1036 fiy2 = 0.0;
1037 fiz2 = 0.0;
1038 fix3 = 0.0;
1039 fiy3 = 0.0;
1040 fiz3 = 0.0;
1041
1042 /* Start inner kernel loop */
1043 for(jidx=j_index_start; jidx<j_index_end; jidx++)
1044 {
1045 /* Get j neighbor index, and coordinate index */
1046 jnr = jjnr[jidx];
1047 j_coord_offset = DIM3*jnr;
1048
1049 /* load j atom coordinates */
1050 jx0 = x[j_coord_offset+DIM3*0+XX0];
1051 jy0 = x[j_coord_offset+DIM3*0+YY1];
1052 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
1053 jx1 = x[j_coord_offset+DIM3*1+XX0];
1054 jy1 = x[j_coord_offset+DIM3*1+YY1];
1055 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
1056 jx2 = x[j_coord_offset+DIM3*2+XX0];
1057 jy2 = x[j_coord_offset+DIM3*2+YY1];
1058 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
1059 jx3 = x[j_coord_offset+DIM3*3+XX0];
1060 jy3 = x[j_coord_offset+DIM3*3+YY1];
1061 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
1062
1063 /* Calculate displacement vector */
1064 dx00 = ix0 - jx0;
1065 dy00 = iy0 - jy0;
1066 dz00 = iz0 - jz0;
1067 dx11 = ix1 - jx1;
1068 dy11 = iy1 - jy1;
1069 dz11 = iz1 - jz1;
1070 dx12 = ix1 - jx2;
1071 dy12 = iy1 - jy2;
1072 dz12 = iz1 - jz2;
1073 dx13 = ix1 - jx3;
1074 dy13 = iy1 - jy3;
1075 dz13 = iz1 - jz3;
1076 dx21 = ix2 - jx1;
1077 dy21 = iy2 - jy1;
1078 dz21 = iz2 - jz1;
1079 dx22 = ix2 - jx2;
1080 dy22 = iy2 - jy2;
1081 dz22 = iz2 - jz2;
1082 dx23 = ix2 - jx3;
1083 dy23 = iy2 - jy3;
1084 dz23 = iz2 - jz3;
1085 dx31 = ix3 - jx1;
1086 dy31 = iy3 - jy1;
1087 dz31 = iz3 - jz1;
1088 dx32 = ix3 - jx2;
1089 dy32 = iy3 - jy2;
1090 dz32 = iz3 - jz2;
1091 dx33 = ix3 - jx3;
1092 dy33 = iy3 - jy3;
1093 dz33 = iz3 - jz3;
1094
1095 /* Calculate squared distance and things based on it */
1096 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
1097 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
1098 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
1099 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
1100 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
1101 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
1102 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
1103 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
1104 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
1105 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
1106
1107 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
1108 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
1109 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
1110 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
1111 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
1112 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
1113 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
1114 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
1115 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
1116 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
1117
1118 rinvsq00 = rinv00*rinv00;
1119 rinvsq11 = rinv11*rinv11;
1120 rinvsq12 = rinv12*rinv12;
1121 rinvsq13 = rinv13*rinv13;
1122 rinvsq21 = rinv21*rinv21;
1123 rinvsq22 = rinv22*rinv22;
1124 rinvsq23 = rinv23*rinv23;
1125 rinvsq31 = rinv31*rinv31;
1126 rinvsq32 = rinv32*rinv32;
1127 rinvsq33 = rinv33*rinv33;
1128
1129 /**************************
1130 * CALCULATE INTERACTIONS *
1131 **************************/
1132
1133 if (rsq00<rcutoff2)
1134 {
1135
1136 r00 = rsq00*rinv00;
1137
1138 /* BUCKINGHAM DISPERSION/REPULSION */
1139 rinvsix = rinvsq00*rinvsq00*rinvsq00;
1140 vvdw6 = c6_00*rinvsix;
1141 br = cexp2_00*r00;
1142 vvdwexp = cexp1_00*exp(-br);
1143 vvdw = vvdwexp - vvdw6*(1.0/6.0);
1144 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
1145
1146 d = r00-rswitch;
1147 d = (d>0.0) ? d : 0.0;
1148 d2 = d*d;
1149 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1150
1151 dsw = d2*(swF2+d*(swF3+d*swF4));
1152
1153 /* Evaluate switch function */
1154 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1155 fvdw = fvdw*sw - rinv00*vvdw*dsw;
1156
1157 fscal = fvdw;
1158
1159 /* Calculate temporary vectorial force */
1160 tx = fscal*dx00;
1161 ty = fscal*dy00;
1162 tz = fscal*dz00;
1163
1164 /* Update vectorial force */
1165 fix0 += tx;
1166 fiy0 += ty;
1167 fiz0 += tz;
1168 f[j_coord_offset+DIM3*0+XX0] -= tx;
1169 f[j_coord_offset+DIM3*0+YY1] -= ty;
1170 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1171
1172 }
1173
1174 /**************************
1175 * CALCULATE INTERACTIONS *
1176 **************************/
1177
1178 if (rsq11<rcutoff2)
1179 {
1180
1181 r11 = rsq11*rinv11;
1182
1183 /* EWALD ELECTROSTATICS */
1184
1185 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1186 ewrt = r11*ewtabscale;
1187 ewitab = ewrt;
1188 eweps = ewrt-ewitab;
1189 ewitab = 4*ewitab;
1190 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1191 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1192 felec = qq11*rinv11*(rinvsq11-felec);
1193
1194 d = r11-rswitch;
1195 d = (d>0.0) ? d : 0.0;
1196 d2 = d*d;
1197 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1198
1199 dsw = d2*(swF2+d*(swF3+d*swF4));
1200
1201 /* Evaluate switch function */
1202 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1203 felec = felec*sw - rinv11*velec*dsw;
1204
1205 fscal = felec;
1206
1207 /* Calculate temporary vectorial force */
1208 tx = fscal*dx11;
1209 ty = fscal*dy11;
1210 tz = fscal*dz11;
1211
1212 /* Update vectorial force */
1213 fix1 += tx;
1214 fiy1 += ty;
1215 fiz1 += tz;
1216 f[j_coord_offset+DIM3*1+XX0] -= tx;
1217 f[j_coord_offset+DIM3*1+YY1] -= ty;
1218 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1219
1220 }
1221
1222 /**************************
1223 * CALCULATE INTERACTIONS *
1224 **************************/
1225
1226 if (rsq12<rcutoff2)
1227 {
1228
1229 r12 = rsq12*rinv12;
1230
1231 /* EWALD ELECTROSTATICS */
1232
1233 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1234 ewrt = r12*ewtabscale;
1235 ewitab = ewrt;
1236 eweps = ewrt-ewitab;
1237 ewitab = 4*ewitab;
1238 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1239 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1240 felec = qq12*rinv12*(rinvsq12-felec);
1241
1242 d = r12-rswitch;
1243 d = (d>0.0) ? d : 0.0;
1244 d2 = d*d;
1245 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1246
1247 dsw = d2*(swF2+d*(swF3+d*swF4));
1248
1249 /* Evaluate switch function */
1250 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1251 felec = felec*sw - rinv12*velec*dsw;
1252
1253 fscal = felec;
1254
1255 /* Calculate temporary vectorial force */
1256 tx = fscal*dx12;
1257 ty = fscal*dy12;
1258 tz = fscal*dz12;
1259
1260 /* Update vectorial force */
1261 fix1 += tx;
1262 fiy1 += ty;
1263 fiz1 += tz;
1264 f[j_coord_offset+DIM3*2+XX0] -= tx;
1265 f[j_coord_offset+DIM3*2+YY1] -= ty;
1266 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1267
1268 }
1269
1270 /**************************
1271 * CALCULATE INTERACTIONS *
1272 **************************/
1273
1274 if (rsq13<rcutoff2)
1275 {
1276
1277 r13 = rsq13*rinv13;
1278
1279 /* EWALD ELECTROSTATICS */
1280
1281 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1282 ewrt = r13*ewtabscale;
1283 ewitab = ewrt;
1284 eweps = ewrt-ewitab;
1285 ewitab = 4*ewitab;
1286 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1287 velec = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1288 felec = qq13*rinv13*(rinvsq13-felec);
1289
1290 d = r13-rswitch;
1291 d = (d>0.0) ? d : 0.0;
1292 d2 = d*d;
1293 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1294
1295 dsw = d2*(swF2+d*(swF3+d*swF4));
1296
1297 /* Evaluate switch function */
1298 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1299 felec = felec*sw - rinv13*velec*dsw;
1300
1301 fscal = felec;
1302
1303 /* Calculate temporary vectorial force */
1304 tx = fscal*dx13;
1305 ty = fscal*dy13;
1306 tz = fscal*dz13;
1307
1308 /* Update vectorial force */
1309 fix1 += tx;
1310 fiy1 += ty;
1311 fiz1 += tz;
1312 f[j_coord_offset+DIM3*3+XX0] -= tx;
1313 f[j_coord_offset+DIM3*3+YY1] -= ty;
1314 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1315
1316 }
1317
1318 /**************************
1319 * CALCULATE INTERACTIONS *
1320 **************************/
1321
1322 if (rsq21<rcutoff2)
1323 {
1324
1325 r21 = rsq21*rinv21;
1326
1327 /* EWALD ELECTROSTATICS */
1328
1329 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1330 ewrt = r21*ewtabscale;
1331 ewitab = ewrt;
1332 eweps = ewrt-ewitab;
1333 ewitab = 4*ewitab;
1334 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1335 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1336 felec = qq21*rinv21*(rinvsq21-felec);
1337
1338 d = r21-rswitch;
1339 d = (d>0.0) ? d : 0.0;
1340 d2 = d*d;
1341 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1342
1343 dsw = d2*(swF2+d*(swF3+d*swF4));
1344
1345 /* Evaluate switch function */
1346 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1347 felec = felec*sw - rinv21*velec*dsw;
1348
1349 fscal = felec;
1350
1351 /* Calculate temporary vectorial force */
1352 tx = fscal*dx21;
1353 ty = fscal*dy21;
1354 tz = fscal*dz21;
1355
1356 /* Update vectorial force */
1357 fix2 += tx;
1358 fiy2 += ty;
1359 fiz2 += tz;
1360 f[j_coord_offset+DIM3*1+XX0] -= tx;
1361 f[j_coord_offset+DIM3*1+YY1] -= ty;
1362 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1363
1364 }
1365
1366 /**************************
1367 * CALCULATE INTERACTIONS *
1368 **************************/
1369
1370 if (rsq22<rcutoff2)
1371 {
1372
1373 r22 = rsq22*rinv22;
1374
1375 /* EWALD ELECTROSTATICS */
1376
1377 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1378 ewrt = r22*ewtabscale;
1379 ewitab = ewrt;
1380 eweps = ewrt-ewitab;
1381 ewitab = 4*ewitab;
1382 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1383 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1384 felec = qq22*rinv22*(rinvsq22-felec);
1385
1386 d = r22-rswitch;
1387 d = (d>0.0) ? d : 0.0;
1388 d2 = d*d;
1389 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1390
1391 dsw = d2*(swF2+d*(swF3+d*swF4));
1392
1393 /* Evaluate switch function */
1394 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1395 felec = felec*sw - rinv22*velec*dsw;
1396
1397 fscal = felec;
1398
1399 /* Calculate temporary vectorial force */
1400 tx = fscal*dx22;
1401 ty = fscal*dy22;
1402 tz = fscal*dz22;
1403
1404 /* Update vectorial force */
1405 fix2 += tx;
1406 fiy2 += ty;
1407 fiz2 += tz;
1408 f[j_coord_offset+DIM3*2+XX0] -= tx;
1409 f[j_coord_offset+DIM3*2+YY1] -= ty;
1410 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1411
1412 }
1413
1414 /**************************
1415 * CALCULATE INTERACTIONS *
1416 **************************/
1417
1418 if (rsq23<rcutoff2)
1419 {
1420
1421 r23 = rsq23*rinv23;
1422
1423 /* EWALD ELECTROSTATICS */
1424
1425 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1426 ewrt = r23*ewtabscale;
1427 ewitab = ewrt;
1428 eweps = ewrt-ewitab;
1429 ewitab = 4*ewitab;
1430 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1431 velec = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1432 felec = qq23*rinv23*(rinvsq23-felec);
1433
1434 d = r23-rswitch;
1435 d = (d>0.0) ? d : 0.0;
1436 d2 = d*d;
1437 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1438
1439 dsw = d2*(swF2+d*(swF3+d*swF4));
1440
1441 /* Evaluate switch function */
1442 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1443 felec = felec*sw - rinv23*velec*dsw;
1444
1445 fscal = felec;
1446
1447 /* Calculate temporary vectorial force */
1448 tx = fscal*dx23;
1449 ty = fscal*dy23;
1450 tz = fscal*dz23;
1451
1452 /* Update vectorial force */
1453 fix2 += tx;
1454 fiy2 += ty;
1455 fiz2 += tz;
1456 f[j_coord_offset+DIM3*3+XX0] -= tx;
1457 f[j_coord_offset+DIM3*3+YY1] -= ty;
1458 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1459
1460 }
1461
1462 /**************************
1463 * CALCULATE INTERACTIONS *
1464 **************************/
1465
1466 if (rsq31<rcutoff2)
1467 {
1468
1469 r31 = rsq31*rinv31;
1470
1471 /* EWALD ELECTROSTATICS */
1472
1473 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1474 ewrt = r31*ewtabscale;
1475 ewitab = ewrt;
1476 eweps = ewrt-ewitab;
1477 ewitab = 4*ewitab;
1478 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1479 velec = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1480 felec = qq31*rinv31*(rinvsq31-felec);
1481
1482 d = r31-rswitch;
1483 d = (d>0.0) ? d : 0.0;
1484 d2 = d*d;
1485 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1486
1487 dsw = d2*(swF2+d*(swF3+d*swF4));
1488
1489 /* Evaluate switch function */
1490 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1491 felec = felec*sw - rinv31*velec*dsw;
1492
1493 fscal = felec;
1494
1495 /* Calculate temporary vectorial force */
1496 tx = fscal*dx31;
1497 ty = fscal*dy31;
1498 tz = fscal*dz31;
1499
1500 /* Update vectorial force */
1501 fix3 += tx;
1502 fiy3 += ty;
1503 fiz3 += tz;
1504 f[j_coord_offset+DIM3*1+XX0] -= tx;
1505 f[j_coord_offset+DIM3*1+YY1] -= ty;
1506 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1507
1508 }
1509
1510 /**************************
1511 * CALCULATE INTERACTIONS *
1512 **************************/
1513
1514 if (rsq32<rcutoff2)
1515 {
1516
1517 r32 = rsq32*rinv32;
1518
1519 /* EWALD ELECTROSTATICS */
1520
1521 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1522 ewrt = r32*ewtabscale;
1523 ewitab = ewrt;
1524 eweps = ewrt-ewitab;
1525 ewitab = 4*ewitab;
1526 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1527 velec = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1528 felec = qq32*rinv32*(rinvsq32-felec);
1529
1530 d = r32-rswitch;
1531 d = (d>0.0) ? d : 0.0;
1532 d2 = d*d;
1533 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1534
1535 dsw = d2*(swF2+d*(swF3+d*swF4));
1536
1537 /* Evaluate switch function */
1538 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1539 felec = felec*sw - rinv32*velec*dsw;
1540
1541 fscal = felec;
1542
1543 /* Calculate temporary vectorial force */
1544 tx = fscal*dx32;
1545 ty = fscal*dy32;
1546 tz = fscal*dz32;
1547
1548 /* Update vectorial force */
1549 fix3 += tx;
1550 fiy3 += ty;
1551 fiz3 += tz;
1552 f[j_coord_offset+DIM3*2+XX0] -= tx;
1553 f[j_coord_offset+DIM3*2+YY1] -= ty;
1554 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1555
1556 }
1557
1558 /**************************
1559 * CALCULATE INTERACTIONS *
1560 **************************/
1561
1562 if (rsq33<rcutoff2)
1563 {
1564
1565 r33 = rsq33*rinv33;
1566
1567 /* EWALD ELECTROSTATICS */
1568
1569 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1570 ewrt = r33*ewtabscale;
1571 ewitab = ewrt;
1572 eweps = ewrt-ewitab;
1573 ewitab = 4*ewitab;
1574 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1575 velec = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1576 felec = qq33*rinv33*(rinvsq33-felec);
1577
1578 d = r33-rswitch;
1579 d = (d>0.0) ? d : 0.0;
1580 d2 = d*d;
1581 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1582
1583 dsw = d2*(swF2+d*(swF3+d*swF4));
1584
1585 /* Evaluate switch function */
1586 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1587 felec = felec*sw - rinv33*velec*dsw;
1588
1589 fscal = felec;
1590
1591 /* Calculate temporary vectorial force */
1592 tx = fscal*dx33;
1593 ty = fscal*dy33;
1594 tz = fscal*dz33;
1595
1596 /* Update vectorial force */
1597 fix3 += tx;
1598 fiy3 += ty;
1599 fiz3 += tz;
1600 f[j_coord_offset+DIM3*3+XX0] -= tx;
1601 f[j_coord_offset+DIM3*3+YY1] -= ty;
1602 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1603
1604 }
1605
1606 /* Inner loop uses 581 flops */
1607 }
1608 /* End of innermost loop */
1609
1610 tx = ty = tz = 0;
1611 f[i_coord_offset+DIM3*0+XX0] += fix0;
1612 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1613 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1614 tx += fix0;
1615 ty += fiy0;
1616 tz += fiz0;
1617 f[i_coord_offset+DIM3*1+XX0] += fix1;
1618 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1619 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1620 tx += fix1;
1621 ty += fiy1;
1622 tz += fiz1;
1623 f[i_coord_offset+DIM3*2+XX0] += fix2;
1624 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1625 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1626 tx += fix2;
1627 ty += fiy2;
1628 tz += fiz2;
1629 f[i_coord_offset+DIM3*3+XX0] += fix3;
1630 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1631 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1632 tx += fix3;
1633 ty += fiy3;
1634 tz += fiz3;
1635 fshift[i_shift_offset+XX0] += tx;
1636 fshift[i_shift_offset+YY1] += ty;
1637 fshift[i_shift_offset+ZZ2] += tz;
1638
1639 /* Increment number of inner iterations */
1640 inneriter += j_index_end - j_index_start;
1641
1642 /* Outer loop uses 39 flops */
1643 }
1644
1645 /* Increment number of outer iterations */
1646 outeriter += nri;
1647
1648 /* Update outer/inner flops */
1649
1650 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*581)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*581
;
1651}