Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwLJSh_GeomW3W3_c.c
Location:line 672, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW3W3_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwLJSh_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99
100 x = xx[0];
101 f = ff[0];
102
103 nri = nlist->nri;
104 iinr = nlist->iinr;
105 jindex = nlist->jindex;
106 jjnr = nlist->jjnr;
107 shiftidx = nlist->shift;
108 gid = nlist->gid;
109 shiftvec = fr->shift_vec[0];
110 fshift = fr->fshift[0];
111 facel = fr->epsfac;
112 charge = mdatoms->chargeA;
113 krf = fr->ic->k_rf;
114 krf2 = krf*2.0;
115 crf = fr->ic->c_rf;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 /* Setup water-specific parameters */
121 inr = nlist->iinr[0];
122 iq0 = facel*charge[inr+0];
123 iq1 = facel*charge[inr+1];
124 iq2 = facel*charge[inr+2];
125 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
126
127 jq0 = charge[inr+0];
128 jq1 = charge[inr+1];
129 jq2 = charge[inr+2];
130 vdwjidx0 = 2*vdwtype[inr+0];
131 qq00 = iq0*jq0;
132 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
133 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
134 qq01 = iq0*jq1;
135 qq02 = iq0*jq2;
136 qq10 = iq1*jq0;
137 qq11 = iq1*jq1;
138 qq12 = iq1*jq2;
139 qq20 = iq2*jq0;
140 qq21 = iq2*jq1;
141 qq22 = iq2*jq2;
142
143 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
144 rcutoff = fr->rcoulomb;
145 rcutoff2 = rcutoff*rcutoff;
146
147 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
148 rvdw = fr->rvdw;
149
150 outeriter = 0;
151 inneriter = 0;
152
153 /* Start outer loop over neighborlists */
154 for(iidx=0; iidx<nri; iidx++)
155 {
156 /* Load shift vector for this list */
157 i_shift_offset = DIM3*shiftidx[iidx];
158 shX = shiftvec[i_shift_offset+XX0];
159 shY = shiftvec[i_shift_offset+YY1];
160 shZ = shiftvec[i_shift_offset+ZZ2];
161
162 /* Load limits for loop over neighbors */
163 j_index_start = jindex[iidx];
164 j_index_end = jindex[iidx+1];
165
166 /* Get outer coordinate index */
167 inr = iinr[iidx];
168 i_coord_offset = DIM3*inr;
169
170 /* Load i particle coords and add shift vector */
171 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
172 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
173 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
174 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
175 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
176 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
177 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
178 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
179 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
180
181 fix0 = 0.0;
182 fiy0 = 0.0;
183 fiz0 = 0.0;
184 fix1 = 0.0;
185 fiy1 = 0.0;
186 fiz1 = 0.0;
187 fix2 = 0.0;
188 fiy2 = 0.0;
189 fiz2 = 0.0;
190
191 /* Reset potential sums */
192 velecsum = 0.0;
193 vvdwsum = 0.0;
194
195 /* Start inner kernel loop */
196 for(jidx=j_index_start; jidx<j_index_end; jidx++)
197 {
198 /* Get j neighbor index, and coordinate index */
199 jnr = jjnr[jidx];
200 j_coord_offset = DIM3*jnr;
201
202 /* load j atom coordinates */
203 jx0 = x[j_coord_offset+DIM3*0+XX0];
204 jy0 = x[j_coord_offset+DIM3*0+YY1];
205 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
206 jx1 = x[j_coord_offset+DIM3*1+XX0];
207 jy1 = x[j_coord_offset+DIM3*1+YY1];
208 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
209 jx2 = x[j_coord_offset+DIM3*2+XX0];
210 jy2 = x[j_coord_offset+DIM3*2+YY1];
211 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
212
213 /* Calculate displacement vector */
214 dx00 = ix0 - jx0;
215 dy00 = iy0 - jy0;
216 dz00 = iz0 - jz0;
217 dx01 = ix0 - jx1;
218 dy01 = iy0 - jy1;
219 dz01 = iz0 - jz1;
220 dx02 = ix0 - jx2;
221 dy02 = iy0 - jy2;
222 dz02 = iz0 - jz2;
223 dx10 = ix1 - jx0;
224 dy10 = iy1 - jy0;
225 dz10 = iz1 - jz0;
226 dx11 = ix1 - jx1;
227 dy11 = iy1 - jy1;
228 dz11 = iz1 - jz1;
229 dx12 = ix1 - jx2;
230 dy12 = iy1 - jy2;
231 dz12 = iz1 - jz2;
232 dx20 = ix2 - jx0;
233 dy20 = iy2 - jy0;
234 dz20 = iz2 - jz0;
235 dx21 = ix2 - jx1;
236 dy21 = iy2 - jy1;
237 dz21 = iz2 - jz1;
238 dx22 = ix2 - jx2;
239 dy22 = iy2 - jy2;
240 dz22 = iz2 - jz2;
241
242 /* Calculate squared distance and things based on it */
243 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
244 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
245 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
246 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
247 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
248 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
249 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
250 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
251 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
252
253 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
254 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
255 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
256 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
257 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
258 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
259 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
260 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
261 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
262
263 rinvsq00 = rinv00*rinv00;
264 rinvsq01 = rinv01*rinv01;
265 rinvsq02 = rinv02*rinv02;
266 rinvsq10 = rinv10*rinv10;
267 rinvsq11 = rinv11*rinv11;
268 rinvsq12 = rinv12*rinv12;
269 rinvsq20 = rinv20*rinv20;
270 rinvsq21 = rinv21*rinv21;
271 rinvsq22 = rinv22*rinv22;
272
273 /**************************
274 * CALCULATE INTERACTIONS *
275 **************************/
276
277 if (rsq00<rcutoff2)
278 {
279
280 /* REACTION-FIELD ELECTROSTATICS */
281 velec = qq00*(rinv00+krf*rsq00-crf);
282 felec = qq00*(rinv00*rinvsq00-krf2);
283
284 /* LENNARD-JONES DISPERSION/REPULSION */
285
286 rinvsix = rinvsq00*rinvsq00*rinvsq00;
287 vvdw6 = c6_00*rinvsix;
288 vvdw12 = c12_00*rinvsix*rinvsix;
289 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
290 fvdw = (vvdw12-vvdw6)*rinvsq00;
291
292 /* Update potential sums from outer loop */
293 velecsum += velec;
294 vvdwsum += vvdw;
295
296 fscal = felec+fvdw;
297
298 /* Calculate temporary vectorial force */
299 tx = fscal*dx00;
300 ty = fscal*dy00;
301 tz = fscal*dz00;
302
303 /* Update vectorial force */
304 fix0 += tx;
305 fiy0 += ty;
306 fiz0 += tz;
307 f[j_coord_offset+DIM3*0+XX0] -= tx;
308 f[j_coord_offset+DIM3*0+YY1] -= ty;
309 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
310
311 }
312
313 /**************************
314 * CALCULATE INTERACTIONS *
315 **************************/
316
317 if (rsq01<rcutoff2)
318 {
319
320 /* REACTION-FIELD ELECTROSTATICS */
321 velec = qq01*(rinv01+krf*rsq01-crf);
322 felec = qq01*(rinv01*rinvsq01-krf2);
323
324 /* Update potential sums from outer loop */
325 velecsum += velec;
326
327 fscal = felec;
328
329 /* Calculate temporary vectorial force */
330 tx = fscal*dx01;
331 ty = fscal*dy01;
332 tz = fscal*dz01;
333
334 /* Update vectorial force */
335 fix0 += tx;
336 fiy0 += ty;
337 fiz0 += tz;
338 f[j_coord_offset+DIM3*1+XX0] -= tx;
339 f[j_coord_offset+DIM3*1+YY1] -= ty;
340 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
341
342 }
343
344 /**************************
345 * CALCULATE INTERACTIONS *
346 **************************/
347
348 if (rsq02<rcutoff2)
349 {
350
351 /* REACTION-FIELD ELECTROSTATICS */
352 velec = qq02*(rinv02+krf*rsq02-crf);
353 felec = qq02*(rinv02*rinvsq02-krf2);
354
355 /* Update potential sums from outer loop */
356 velecsum += velec;
357
358 fscal = felec;
359
360 /* Calculate temporary vectorial force */
361 tx = fscal*dx02;
362 ty = fscal*dy02;
363 tz = fscal*dz02;
364
365 /* Update vectorial force */
366 fix0 += tx;
367 fiy0 += ty;
368 fiz0 += tz;
369 f[j_coord_offset+DIM3*2+XX0] -= tx;
370 f[j_coord_offset+DIM3*2+YY1] -= ty;
371 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
372
373 }
374
375 /**************************
376 * CALCULATE INTERACTIONS *
377 **************************/
378
379 if (rsq10<rcutoff2)
380 {
381
382 /* REACTION-FIELD ELECTROSTATICS */
383 velec = qq10*(rinv10+krf*rsq10-crf);
384 felec = qq10*(rinv10*rinvsq10-krf2);
385
386 /* Update potential sums from outer loop */
387 velecsum += velec;
388
389 fscal = felec;
390
391 /* Calculate temporary vectorial force */
392 tx = fscal*dx10;
393 ty = fscal*dy10;
394 tz = fscal*dz10;
395
396 /* Update vectorial force */
397 fix1 += tx;
398 fiy1 += ty;
399 fiz1 += tz;
400 f[j_coord_offset+DIM3*0+XX0] -= tx;
401 f[j_coord_offset+DIM3*0+YY1] -= ty;
402 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
403
404 }
405
406 /**************************
407 * CALCULATE INTERACTIONS *
408 **************************/
409
410 if (rsq11<rcutoff2)
411 {
412
413 /* REACTION-FIELD ELECTROSTATICS */
414 velec = qq11*(rinv11+krf*rsq11-crf);
415 felec = qq11*(rinv11*rinvsq11-krf2);
416
417 /* Update potential sums from outer loop */
418 velecsum += velec;
419
420 fscal = felec;
421
422 /* Calculate temporary vectorial force */
423 tx = fscal*dx11;
424 ty = fscal*dy11;
425 tz = fscal*dz11;
426
427 /* Update vectorial force */
428 fix1 += tx;
429 fiy1 += ty;
430 fiz1 += tz;
431 f[j_coord_offset+DIM3*1+XX0] -= tx;
432 f[j_coord_offset+DIM3*1+YY1] -= ty;
433 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
434
435 }
436
437 /**************************
438 * CALCULATE INTERACTIONS *
439 **************************/
440
441 if (rsq12<rcutoff2)
442 {
443
444 /* REACTION-FIELD ELECTROSTATICS */
445 velec = qq12*(rinv12+krf*rsq12-crf);
446 felec = qq12*(rinv12*rinvsq12-krf2);
447
448 /* Update potential sums from outer loop */
449 velecsum += velec;
450
451 fscal = felec;
452
453 /* Calculate temporary vectorial force */
454 tx = fscal*dx12;
455 ty = fscal*dy12;
456 tz = fscal*dz12;
457
458 /* Update vectorial force */
459 fix1 += tx;
460 fiy1 += ty;
461 fiz1 += tz;
462 f[j_coord_offset+DIM3*2+XX0] -= tx;
463 f[j_coord_offset+DIM3*2+YY1] -= ty;
464 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
465
466 }
467
468 /**************************
469 * CALCULATE INTERACTIONS *
470 **************************/
471
472 if (rsq20<rcutoff2)
473 {
474
475 /* REACTION-FIELD ELECTROSTATICS */
476 velec = qq20*(rinv20+krf*rsq20-crf);
477 felec = qq20*(rinv20*rinvsq20-krf2);
478
479 /* Update potential sums from outer loop */
480 velecsum += velec;
481
482 fscal = felec;
483
484 /* Calculate temporary vectorial force */
485 tx = fscal*dx20;
486 ty = fscal*dy20;
487 tz = fscal*dz20;
488
489 /* Update vectorial force */
490 fix2 += tx;
491 fiy2 += ty;
492 fiz2 += tz;
493 f[j_coord_offset+DIM3*0+XX0] -= tx;
494 f[j_coord_offset+DIM3*0+YY1] -= ty;
495 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
496
497 }
498
499 /**************************
500 * CALCULATE INTERACTIONS *
501 **************************/
502
503 if (rsq21<rcutoff2)
504 {
505
506 /* REACTION-FIELD ELECTROSTATICS */
507 velec = qq21*(rinv21+krf*rsq21-crf);
508 felec = qq21*(rinv21*rinvsq21-krf2);
509
510 /* Update potential sums from outer loop */
511 velecsum += velec;
512
513 fscal = felec;
514
515 /* Calculate temporary vectorial force */
516 tx = fscal*dx21;
517 ty = fscal*dy21;
518 tz = fscal*dz21;
519
520 /* Update vectorial force */
521 fix2 += tx;
522 fiy2 += ty;
523 fiz2 += tz;
524 f[j_coord_offset+DIM3*1+XX0] -= tx;
525 f[j_coord_offset+DIM3*1+YY1] -= ty;
526 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
527
528 }
529
530 /**************************
531 * CALCULATE INTERACTIONS *
532 **************************/
533
534 if (rsq22<rcutoff2)
535 {
536
537 /* REACTION-FIELD ELECTROSTATICS */
538 velec = qq22*(rinv22+krf*rsq22-crf);
539 felec = qq22*(rinv22*rinvsq22-krf2);
540
541 /* Update potential sums from outer loop */
542 velecsum += velec;
543
544 fscal = felec;
545
546 /* Calculate temporary vectorial force */
547 tx = fscal*dx22;
548 ty = fscal*dy22;
549 tz = fscal*dz22;
550
551 /* Update vectorial force */
552 fix2 += tx;
553 fiy2 += ty;
554 fiz2 += tz;
555 f[j_coord_offset+DIM3*2+XX0] -= tx;
556 f[j_coord_offset+DIM3*2+YY1] -= ty;
557 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
558
559 }
560
561 /* Inner loop uses 296 flops */
562 }
563 /* End of innermost loop */
564
565 tx = ty = tz = 0;
566 f[i_coord_offset+DIM3*0+XX0] += fix0;
567 f[i_coord_offset+DIM3*0+YY1] += fiy0;
568 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
569 tx += fix0;
570 ty += fiy0;
571 tz += fiz0;
572 f[i_coord_offset+DIM3*1+XX0] += fix1;
573 f[i_coord_offset+DIM3*1+YY1] += fiy1;
574 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
575 tx += fix1;
576 ty += fiy1;
577 tz += fiz1;
578 f[i_coord_offset+DIM3*2+XX0] += fix2;
579 f[i_coord_offset+DIM3*2+YY1] += fiy2;
580 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
581 tx += fix2;
582 ty += fiy2;
583 tz += fiz2;
584 fshift[i_shift_offset+XX0] += tx;
585 fshift[i_shift_offset+YY1] += ty;
586 fshift[i_shift_offset+ZZ2] += tz;
587
588 ggid = gid[iidx];
589 /* Update potential energies */
590 kernel_data->energygrp_elec[ggid] += velecsum;
591 kernel_data->energygrp_vdw[ggid] += vvdwsum;
592
593 /* Increment number of inner iterations */
594 inneriter += j_index_end - j_index_start;
595
596 /* Outer loop uses 32 flops */
597 }
598
599 /* Increment number of outer iterations */
600 outeriter += nri;
601
602 /* Update outer/inner flops */
603
604 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*296)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*296
;
605}
606/*
607 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW3W3_F_c
608 * Electrostatics interaction: ReactionField
609 * VdW interaction: LennardJones
610 * Geometry: Water3-Water3
611 * Calculate force/pot: Force
612 */
613void
614nb_kernel_ElecRFCut_VdwLJSh_GeomW3W3_F_c
615 (t_nblist * gmx_restrict__restrict nlist,
616 rvec * gmx_restrict__restrict xx,
617 rvec * gmx_restrict__restrict ff,
618 t_forcerec * gmx_restrict__restrict fr,
619 t_mdatoms * gmx_restrict__restrict mdatoms,
620 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
621 t_nrnb * gmx_restrict__restrict nrnb)
622{
623 int i_shift_offset,i_coord_offset,j_coord_offset;
624 int j_index_start,j_index_end;
625 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
626 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
627 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
628 real *shiftvec,*fshift,*x,*f;
629 int vdwioffset0;
630 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
631 int vdwioffset1;
632 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
633 int vdwioffset2;
634 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
635 int vdwjidx0;
636 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
637 int vdwjidx1;
638 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
639 int vdwjidx2;
640 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
641 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
642 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
643 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
644 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
645 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
646 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
647 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
648 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
649 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
650 real velec,felec,velecsum,facel,crf,krf,krf2;
651 real *charge;
652 int nvdwtype;
653 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
654 int *vdwtype;
655 real *vdwparam;
656
657 x = xx[0];
658 f = ff[0];
659
660 nri = nlist->nri;
661 iinr = nlist->iinr;
662 jindex = nlist->jindex;
663 jjnr = nlist->jjnr;
664 shiftidx = nlist->shift;
665 gid = nlist->gid;
666 shiftvec = fr->shift_vec[0];
667 fshift = fr->fshift[0];
668 facel = fr->epsfac;
669 charge = mdatoms->chargeA;
670 krf = fr->ic->k_rf;
671 krf2 = krf*2.0;
672 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
673 nvdwtype = fr->ntype;
674 vdwparam = fr->nbfp;
675 vdwtype = mdatoms->typeA;
676
677 /* Setup water-specific parameters */
678 inr = nlist->iinr[0];
679 iq0 = facel*charge[inr+0];
680 iq1 = facel*charge[inr+1];
681 iq2 = facel*charge[inr+2];
682 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
683
684 jq0 = charge[inr+0];
685 jq1 = charge[inr+1];
686 jq2 = charge[inr+2];
687 vdwjidx0 = 2*vdwtype[inr+0];
688 qq00 = iq0*jq0;
689 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
690 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
691 qq01 = iq0*jq1;
692 qq02 = iq0*jq2;
693 qq10 = iq1*jq0;
694 qq11 = iq1*jq1;
695 qq12 = iq1*jq2;
696 qq20 = iq2*jq0;
697 qq21 = iq2*jq1;
698 qq22 = iq2*jq2;
699
700 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
701 rcutoff = fr->rcoulomb;
702 rcutoff2 = rcutoff*rcutoff;
703
704 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
705 rvdw = fr->rvdw;
706
707 outeriter = 0;
708 inneriter = 0;
709
710 /* Start outer loop over neighborlists */
711 for(iidx=0; iidx<nri; iidx++)
712 {
713 /* Load shift vector for this list */
714 i_shift_offset = DIM3*shiftidx[iidx];
715 shX = shiftvec[i_shift_offset+XX0];
716 shY = shiftvec[i_shift_offset+YY1];
717 shZ = shiftvec[i_shift_offset+ZZ2];
718
719 /* Load limits for loop over neighbors */
720 j_index_start = jindex[iidx];
721 j_index_end = jindex[iidx+1];
722
723 /* Get outer coordinate index */
724 inr = iinr[iidx];
725 i_coord_offset = DIM3*inr;
726
727 /* Load i particle coords and add shift vector */
728 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
729 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
730 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
731 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
732 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
733 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
734 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
735 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
736 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
737
738 fix0 = 0.0;
739 fiy0 = 0.0;
740 fiz0 = 0.0;
741 fix1 = 0.0;
742 fiy1 = 0.0;
743 fiz1 = 0.0;
744 fix2 = 0.0;
745 fiy2 = 0.0;
746 fiz2 = 0.0;
747
748 /* Start inner kernel loop */
749 for(jidx=j_index_start; jidx<j_index_end; jidx++)
750 {
751 /* Get j neighbor index, and coordinate index */
752 jnr = jjnr[jidx];
753 j_coord_offset = DIM3*jnr;
754
755 /* load j atom coordinates */
756 jx0 = x[j_coord_offset+DIM3*0+XX0];
757 jy0 = x[j_coord_offset+DIM3*0+YY1];
758 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
759 jx1 = x[j_coord_offset+DIM3*1+XX0];
760 jy1 = x[j_coord_offset+DIM3*1+YY1];
761 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
762 jx2 = x[j_coord_offset+DIM3*2+XX0];
763 jy2 = x[j_coord_offset+DIM3*2+YY1];
764 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
765
766 /* Calculate displacement vector */
767 dx00 = ix0 - jx0;
768 dy00 = iy0 - jy0;
769 dz00 = iz0 - jz0;
770 dx01 = ix0 - jx1;
771 dy01 = iy0 - jy1;
772 dz01 = iz0 - jz1;
773 dx02 = ix0 - jx2;
774 dy02 = iy0 - jy2;
775 dz02 = iz0 - jz2;
776 dx10 = ix1 - jx0;
777 dy10 = iy1 - jy0;
778 dz10 = iz1 - jz0;
779 dx11 = ix1 - jx1;
780 dy11 = iy1 - jy1;
781 dz11 = iz1 - jz1;
782 dx12 = ix1 - jx2;
783 dy12 = iy1 - jy2;
784 dz12 = iz1 - jz2;
785 dx20 = ix2 - jx0;
786 dy20 = iy2 - jy0;
787 dz20 = iz2 - jz0;
788 dx21 = ix2 - jx1;
789 dy21 = iy2 - jy1;
790 dz21 = iz2 - jz1;
791 dx22 = ix2 - jx2;
792 dy22 = iy2 - jy2;
793 dz22 = iz2 - jz2;
794
795 /* Calculate squared distance and things based on it */
796 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
797 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
798 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
799 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
800 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
801 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
802 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
803 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
804 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
805
806 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
807 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
808 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
809 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
810 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
811 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
812 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
813 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
814 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
815
816 rinvsq00 = rinv00*rinv00;
817 rinvsq01 = rinv01*rinv01;
818 rinvsq02 = rinv02*rinv02;
819 rinvsq10 = rinv10*rinv10;
820 rinvsq11 = rinv11*rinv11;
821 rinvsq12 = rinv12*rinv12;
822 rinvsq20 = rinv20*rinv20;
823 rinvsq21 = rinv21*rinv21;
824 rinvsq22 = rinv22*rinv22;
825
826 /**************************
827 * CALCULATE INTERACTIONS *
828 **************************/
829
830 if (rsq00<rcutoff2)
831 {
832
833 /* REACTION-FIELD ELECTROSTATICS */
834 felec = qq00*(rinv00*rinvsq00-krf2);
835
836 /* LENNARD-JONES DISPERSION/REPULSION */
837
838 rinvsix = rinvsq00*rinvsq00*rinvsq00;
839 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
840
841 fscal = felec+fvdw;
842
843 /* Calculate temporary vectorial force */
844 tx = fscal*dx00;
845 ty = fscal*dy00;
846 tz = fscal*dz00;
847
848 /* Update vectorial force */
849 fix0 += tx;
850 fiy0 += ty;
851 fiz0 += tz;
852 f[j_coord_offset+DIM3*0+XX0] -= tx;
853 f[j_coord_offset+DIM3*0+YY1] -= ty;
854 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
855
856 }
857
858 /**************************
859 * CALCULATE INTERACTIONS *
860 **************************/
861
862 if (rsq01<rcutoff2)
863 {
864
865 /* REACTION-FIELD ELECTROSTATICS */
866 felec = qq01*(rinv01*rinvsq01-krf2);
867
868 fscal = felec;
869
870 /* Calculate temporary vectorial force */
871 tx = fscal*dx01;
872 ty = fscal*dy01;
873 tz = fscal*dz01;
874
875 /* Update vectorial force */
876 fix0 += tx;
877 fiy0 += ty;
878 fiz0 += tz;
879 f[j_coord_offset+DIM3*1+XX0] -= tx;
880 f[j_coord_offset+DIM3*1+YY1] -= ty;
881 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
882
883 }
884
885 /**************************
886 * CALCULATE INTERACTIONS *
887 **************************/
888
889 if (rsq02<rcutoff2)
890 {
891
892 /* REACTION-FIELD ELECTROSTATICS */
893 felec = qq02*(rinv02*rinvsq02-krf2);
894
895 fscal = felec;
896
897 /* Calculate temporary vectorial force */
898 tx = fscal*dx02;
899 ty = fscal*dy02;
900 tz = fscal*dz02;
901
902 /* Update vectorial force */
903 fix0 += tx;
904 fiy0 += ty;
905 fiz0 += tz;
906 f[j_coord_offset+DIM3*2+XX0] -= tx;
907 f[j_coord_offset+DIM3*2+YY1] -= ty;
908 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
909
910 }
911
912 /**************************
913 * CALCULATE INTERACTIONS *
914 **************************/
915
916 if (rsq10<rcutoff2)
917 {
918
919 /* REACTION-FIELD ELECTROSTATICS */
920 felec = qq10*(rinv10*rinvsq10-krf2);
921
922 fscal = felec;
923
924 /* Calculate temporary vectorial force */
925 tx = fscal*dx10;
926 ty = fscal*dy10;
927 tz = fscal*dz10;
928
929 /* Update vectorial force */
930 fix1 += tx;
931 fiy1 += ty;
932 fiz1 += tz;
933 f[j_coord_offset+DIM3*0+XX0] -= tx;
934 f[j_coord_offset+DIM3*0+YY1] -= ty;
935 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
936
937 }
938
939 /**************************
940 * CALCULATE INTERACTIONS *
941 **************************/
942
943 if (rsq11<rcutoff2)
944 {
945
946 /* REACTION-FIELD ELECTROSTATICS */
947 felec = qq11*(rinv11*rinvsq11-krf2);
948
949 fscal = felec;
950
951 /* Calculate temporary vectorial force */
952 tx = fscal*dx11;
953 ty = fscal*dy11;
954 tz = fscal*dz11;
955
956 /* Update vectorial force */
957 fix1 += tx;
958 fiy1 += ty;
959 fiz1 += tz;
960 f[j_coord_offset+DIM3*1+XX0] -= tx;
961 f[j_coord_offset+DIM3*1+YY1] -= ty;
962 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
963
964 }
965
966 /**************************
967 * CALCULATE INTERACTIONS *
968 **************************/
969
970 if (rsq12<rcutoff2)
971 {
972
973 /* REACTION-FIELD ELECTROSTATICS */
974 felec = qq12*(rinv12*rinvsq12-krf2);
975
976 fscal = felec;
977
978 /* Calculate temporary vectorial force */
979 tx = fscal*dx12;
980 ty = fscal*dy12;
981 tz = fscal*dz12;
982
983 /* Update vectorial force */
984 fix1 += tx;
985 fiy1 += ty;
986 fiz1 += tz;
987 f[j_coord_offset+DIM3*2+XX0] -= tx;
988 f[j_coord_offset+DIM3*2+YY1] -= ty;
989 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
990
991 }
992
993 /**************************
994 * CALCULATE INTERACTIONS *
995 **************************/
996
997 if (rsq20<rcutoff2)
998 {
999
1000 /* REACTION-FIELD ELECTROSTATICS */
1001 felec = qq20*(rinv20*rinvsq20-krf2);
1002
1003 fscal = felec;
1004
1005 /* Calculate temporary vectorial force */
1006 tx = fscal*dx20;
1007 ty = fscal*dy20;
1008 tz = fscal*dz20;
1009
1010 /* Update vectorial force */
1011 fix2 += tx;
1012 fiy2 += ty;
1013 fiz2 += tz;
1014 f[j_coord_offset+DIM3*0+XX0] -= tx;
1015 f[j_coord_offset+DIM3*0+YY1] -= ty;
1016 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1017
1018 }
1019
1020 /**************************
1021 * CALCULATE INTERACTIONS *
1022 **************************/
1023
1024 if (rsq21<rcutoff2)
1025 {
1026
1027 /* REACTION-FIELD ELECTROSTATICS */
1028 felec = qq21*(rinv21*rinvsq21-krf2);
1029
1030 fscal = felec;
1031
1032 /* Calculate temporary vectorial force */
1033 tx = fscal*dx21;
1034 ty = fscal*dy21;
1035 tz = fscal*dz21;
1036
1037 /* Update vectorial force */
1038 fix2 += tx;
1039 fiy2 += ty;
1040 fiz2 += tz;
1041 f[j_coord_offset+DIM3*1+XX0] -= tx;
1042 f[j_coord_offset+DIM3*1+YY1] -= ty;
1043 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1044
1045 }
1046
1047 /**************************
1048 * CALCULATE INTERACTIONS *
1049 **************************/
1050
1051 if (rsq22<rcutoff2)
1052 {
1053
1054 /* REACTION-FIELD ELECTROSTATICS */
1055 felec = qq22*(rinv22*rinvsq22-krf2);
1056
1057 fscal = felec;
1058
1059 /* Calculate temporary vectorial force */
1060 tx = fscal*dx22;
1061 ty = fscal*dy22;
1062 tz = fscal*dz22;
1063
1064 /* Update vectorial force */
1065 fix2 += tx;
1066 fiy2 += ty;
1067 fiz2 += tz;
1068 f[j_coord_offset+DIM3*2+XX0] -= tx;
1069 f[j_coord_offset+DIM3*2+YY1] -= ty;
1070 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1071
1072 }
1073
1074 /* Inner loop uses 241 flops */
1075 }
1076 /* End of innermost loop */
1077
1078 tx = ty = tz = 0;
1079 f[i_coord_offset+DIM3*0+XX0] += fix0;
1080 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1081 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1082 tx += fix0;
1083 ty += fiy0;
1084 tz += fiz0;
1085 f[i_coord_offset+DIM3*1+XX0] += fix1;
1086 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1087 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1088 tx += fix1;
1089 ty += fiy1;
1090 tz += fiz1;
1091 f[i_coord_offset+DIM3*2+XX0] += fix2;
1092 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1093 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1094 tx += fix2;
1095 ty += fiy2;
1096 tz += fiz2;
1097 fshift[i_shift_offset+XX0] += tx;
1098 fshift[i_shift_offset+YY1] += ty;
1099 fshift[i_shift_offset+ZZ2] += tz;
1100
1101 /* Increment number of inner iterations */
1102 inneriter += j_index_end - j_index_start;
1103
1104 /* Outer loop uses 30 flops */
1105 }
1106
1107 /* Increment number of outer iterations */
1108 outeriter += nri;
1109
1110 /* Update outer/inner flops */
1111
1112 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*241)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*241
;
1113}