Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwCSTab_GeomP1P1_c.c
Location:line 110, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: CubicSplineTable
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 int vfitab;
84 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
85 real *vftab;
86 int ewitab;
87 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
88 real *ewtab;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 nvdwtype = fr->ntype;
104 vdwparam = fr->nbfp;
105 vdwtype = mdatoms->typeA;
106
107 vftab = kernel_data->table_vdw->data;
108 vftabscale = kernel_data->table_vdw->scale;
109
110 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
111 ewtab = fr->ic->tabq_coul_FDV0;
112 ewtabscale = fr->ic->tabq_scale;
113 ewtabhalfspace = 0.5/ewtabscale;
114
115 outeriter = 0;
116 inneriter = 0;
117
118 /* Start outer loop over neighborlists */
119 for(iidx=0; iidx<nri; iidx++)
120 {
121 /* Load shift vector for this list */
122 i_shift_offset = DIM3*shiftidx[iidx];
123 shX = shiftvec[i_shift_offset+XX0];
124 shY = shiftvec[i_shift_offset+YY1];
125 shZ = shiftvec[i_shift_offset+ZZ2];
126
127 /* Load limits for loop over neighbors */
128 j_index_start = jindex[iidx];
129 j_index_end = jindex[iidx+1];
130
131 /* Get outer coordinate index */
132 inr = iinr[iidx];
133 i_coord_offset = DIM3*inr;
134
135 /* Load i particle coords and add shift vector */
136 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
137 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
138 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
139
140 fix0 = 0.0;
141 fiy0 = 0.0;
142 fiz0 = 0.0;
143
144 /* Load parameters for i particles */
145 iq0 = facel*charge[inr+0];
146 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
147
148 /* Reset potential sums */
149 velecsum = 0.0;
150 vvdwsum = 0.0;
151
152 /* Start inner kernel loop */
153 for(jidx=j_index_start; jidx<j_index_end; jidx++)
154 {
155 /* Get j neighbor index, and coordinate index */
156 jnr = jjnr[jidx];
157 j_coord_offset = DIM3*jnr;
158
159 /* load j atom coordinates */
160 jx0 = x[j_coord_offset+DIM3*0+XX0];
161 jy0 = x[j_coord_offset+DIM3*0+YY1];
162 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
163
164 /* Calculate displacement vector */
165 dx00 = ix0 - jx0;
166 dy00 = iy0 - jy0;
167 dz00 = iz0 - jz0;
168
169 /* Calculate squared distance and things based on it */
170 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
171
172 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
173
174 rinvsq00 = rinv00*rinv00;
175
176 /* Load parameters for j particles */
177 jq0 = charge[jnr+0];
178 vdwjidx0 = 2*vdwtype[jnr+0];
179
180 /**************************
181 * CALCULATE INTERACTIONS *
182 **************************/
183
184 r00 = rsq00*rinv00;
185
186 qq00 = iq0*jq0;
187 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
188 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
189
190 /* Calculate table index by multiplying r with table scale and truncate to integer */
191 rt = r00*vftabscale;
192 vfitab = rt;
193 vfeps = rt-vfitab;
194 vfitab = 2*4*vfitab;
195
196 /* EWALD ELECTROSTATICS */
197
198 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
199 ewrt = r00*ewtabscale;
200 ewitab = ewrt;
201 eweps = ewrt-ewitab;
202 ewitab = 4*ewitab;
203 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
204 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
205 felec = qq00*rinv00*(rinvsq00-felec);
206
207 /* CUBIC SPLINE TABLE DISPERSION */
208 vfitab += 0;
209 Y = vftab[vfitab];
210 F = vftab[vfitab+1];
211 Geps = vfeps*vftab[vfitab+2];
212 Heps2 = vfeps*vfeps*vftab[vfitab+3];
213 Fp = F+Geps+Heps2;
214 VV = Y+vfeps*Fp;
215 vvdw6 = c6_00*VV;
216 FF = Fp+Geps+2.0*Heps2;
217 fvdw6 = c6_00*FF;
218
219 /* CUBIC SPLINE TABLE REPULSION */
220 Y = vftab[vfitab+4];
221 F = vftab[vfitab+5];
222 Geps = vfeps*vftab[vfitab+6];
223 Heps2 = vfeps*vfeps*vftab[vfitab+7];
224 Fp = F+Geps+Heps2;
225 VV = Y+vfeps*Fp;
226 vvdw12 = c12_00*VV;
227 FF = Fp+Geps+2.0*Heps2;
228 fvdw12 = c12_00*FF;
229 vvdw = vvdw12+vvdw6;
230 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
231
232 /* Update potential sums from outer loop */
233 velecsum += velec;
234 vvdwsum += vvdw;
235
236 fscal = felec+fvdw;
237
238 /* Calculate temporary vectorial force */
239 tx = fscal*dx00;
240 ty = fscal*dy00;
241 tz = fscal*dz00;
242
243 /* Update vectorial force */
244 fix0 += tx;
245 fiy0 += ty;
246 fiz0 += tz;
247 f[j_coord_offset+DIM3*0+XX0] -= tx;
248 f[j_coord_offset+DIM3*0+YY1] -= ty;
249 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
250
251 /* Inner loop uses 74 flops */
252 }
253 /* End of innermost loop */
254
255 tx = ty = tz = 0;
256 f[i_coord_offset+DIM3*0+XX0] += fix0;
257 f[i_coord_offset+DIM3*0+YY1] += fiy0;
258 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
259 tx += fix0;
260 ty += fiy0;
261 tz += fiz0;
262 fshift[i_shift_offset+XX0] += tx;
263 fshift[i_shift_offset+YY1] += ty;
264 fshift[i_shift_offset+ZZ2] += tz;
265
266 ggid = gid[iidx];
267 /* Update potential energies */
268 kernel_data->energygrp_elec[ggid] += velecsum;
269 kernel_data->energygrp_vdw[ggid] += vvdwsum;
270
271 /* Increment number of inner iterations */
272 inneriter += j_index_end - j_index_start;
273
274 /* Outer loop uses 15 flops */
275 }
276
277 /* Increment number of outer iterations */
278 outeriter += nri;
279
280 /* Update outer/inner flops */
281
282 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*74)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*74
;
283}
284/*
285 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_c
286 * Electrostatics interaction: Ewald
287 * VdW interaction: CubicSplineTable
288 * Geometry: Particle-Particle
289 * Calculate force/pot: Force
290 */
291void
292nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_c
293 (t_nblist * gmx_restrict__restrict nlist,
294 rvec * gmx_restrict__restrict xx,
295 rvec * gmx_restrict__restrict ff,
296 t_forcerec * gmx_restrict__restrict fr,
297 t_mdatoms * gmx_restrict__restrict mdatoms,
298 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
299 t_nrnb * gmx_restrict__restrict nrnb)
300{
301 int i_shift_offset,i_coord_offset,j_coord_offset;
302 int j_index_start,j_index_end;
303 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
304 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
305 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
306 real *shiftvec,*fshift,*x,*f;
307 int vdwioffset0;
308 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
309 int vdwjidx0;
310 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
311 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
312 real velec,felec,velecsum,facel,crf,krf,krf2;
313 real *charge;
314 int nvdwtype;
315 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
316 int *vdwtype;
317 real *vdwparam;
318 int vfitab;
319 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
320 real *vftab;
321 int ewitab;
322 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
323 real *ewtab;
324
325 x = xx[0];
326 f = ff[0];
327
328 nri = nlist->nri;
329 iinr = nlist->iinr;
330 jindex = nlist->jindex;
331 jjnr = nlist->jjnr;
332 shiftidx = nlist->shift;
333 gid = nlist->gid;
334 shiftvec = fr->shift_vec[0];
335 fshift = fr->fshift[0];
336 facel = fr->epsfac;
337 charge = mdatoms->chargeA;
338 nvdwtype = fr->ntype;
339 vdwparam = fr->nbfp;
340 vdwtype = mdatoms->typeA;
341
342 vftab = kernel_data->table_vdw->data;
343 vftabscale = kernel_data->table_vdw->scale;
344
345 sh_ewald = fr->ic->sh_ewald;
346 ewtab = fr->ic->tabq_coul_F;
347 ewtabscale = fr->ic->tabq_scale;
348 ewtabhalfspace = 0.5/ewtabscale;
349
350 outeriter = 0;
351 inneriter = 0;
352
353 /* Start outer loop over neighborlists */
354 for(iidx=0; iidx<nri; iidx++)
355 {
356 /* Load shift vector for this list */
357 i_shift_offset = DIM3*shiftidx[iidx];
358 shX = shiftvec[i_shift_offset+XX0];
359 shY = shiftvec[i_shift_offset+YY1];
360 shZ = shiftvec[i_shift_offset+ZZ2];
361
362 /* Load limits for loop over neighbors */
363 j_index_start = jindex[iidx];
364 j_index_end = jindex[iidx+1];
365
366 /* Get outer coordinate index */
367 inr = iinr[iidx];
368 i_coord_offset = DIM3*inr;
369
370 /* Load i particle coords and add shift vector */
371 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
372 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
373 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
374
375 fix0 = 0.0;
376 fiy0 = 0.0;
377 fiz0 = 0.0;
378
379 /* Load parameters for i particles */
380 iq0 = facel*charge[inr+0];
381 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
382
383 /* Start inner kernel loop */
384 for(jidx=j_index_start; jidx<j_index_end; jidx++)
385 {
386 /* Get j neighbor index, and coordinate index */
387 jnr = jjnr[jidx];
388 j_coord_offset = DIM3*jnr;
389
390 /* load j atom coordinates */
391 jx0 = x[j_coord_offset+DIM3*0+XX0];
392 jy0 = x[j_coord_offset+DIM3*0+YY1];
393 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
394
395 /* Calculate displacement vector */
396 dx00 = ix0 - jx0;
397 dy00 = iy0 - jy0;
398 dz00 = iz0 - jz0;
399
400 /* Calculate squared distance and things based on it */
401 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
402
403 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
404
405 rinvsq00 = rinv00*rinv00;
406
407 /* Load parameters for j particles */
408 jq0 = charge[jnr+0];
409 vdwjidx0 = 2*vdwtype[jnr+0];
410
411 /**************************
412 * CALCULATE INTERACTIONS *
413 **************************/
414
415 r00 = rsq00*rinv00;
416
417 qq00 = iq0*jq0;
418 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
419 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
420
421 /* Calculate table index by multiplying r with table scale and truncate to integer */
422 rt = r00*vftabscale;
423 vfitab = rt;
424 vfeps = rt-vfitab;
425 vfitab = 2*4*vfitab;
426
427 /* EWALD ELECTROSTATICS */
428
429 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
430 ewrt = r00*ewtabscale;
431 ewitab = ewrt;
432 eweps = ewrt-ewitab;
433 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
434 felec = qq00*rinv00*(rinvsq00-felec);
435
436 /* CUBIC SPLINE TABLE DISPERSION */
437 vfitab += 0;
438 F = vftab[vfitab+1];
439 Geps = vfeps*vftab[vfitab+2];
440 Heps2 = vfeps*vfeps*vftab[vfitab+3];
441 Fp = F+Geps+Heps2;
442 FF = Fp+Geps+2.0*Heps2;
443 fvdw6 = c6_00*FF;
444
445 /* CUBIC SPLINE TABLE REPULSION */
446 F = vftab[vfitab+5];
447 Geps = vfeps*vftab[vfitab+6];
448 Heps2 = vfeps*vfeps*vftab[vfitab+7];
449 Fp = F+Geps+Heps2;
450 FF = Fp+Geps+2.0*Heps2;
451 fvdw12 = c12_00*FF;
452 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
453
454 fscal = felec+fvdw;
455
456 /* Calculate temporary vectorial force */
457 tx = fscal*dx00;
458 ty = fscal*dy00;
459 tz = fscal*dz00;
460
461 /* Update vectorial force */
462 fix0 += tx;
463 fiy0 += ty;
464 fiz0 += tz;
465 f[j_coord_offset+DIM3*0+XX0] -= tx;
466 f[j_coord_offset+DIM3*0+YY1] -= ty;
467 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
468
469 /* Inner loop uses 59 flops */
470 }
471 /* End of innermost loop */
472
473 tx = ty = tz = 0;
474 f[i_coord_offset+DIM3*0+XX0] += fix0;
475 f[i_coord_offset+DIM3*0+YY1] += fiy0;
476 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
477 tx += fix0;
478 ty += fiy0;
479 tz += fiz0;
480 fshift[i_shift_offset+XX0] += tx;
481 fshift[i_shift_offset+YY1] += ty;
482 fshift[i_shift_offset+ZZ2] += tz;
483
484 /* Increment number of inner iterations */
485 inneriter += j_index_end - j_index_start;
486
487 /* Outer loop uses 13 flops */
488 }
489
490 /* Increment number of outer iterations */
491 outeriter += nri;
492
493 /* Update outer/inner flops */
494
495 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*59)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*59
;
496}