Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwBhamSh_GeomW4W4_c.c
Location:line 766, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomW4W4_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwBhamSh_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104
105 x = xx[0];
106 f = ff[0];
107
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = fr->epsfac;
117 charge = mdatoms->chargeA;
118 krf = fr->ic->k_rf;
119 krf2 = krf*2.0;
120 crf = fr->ic->c_rf;
121 nvdwtype = fr->ntype;
122 vdwparam = fr->nbfp;
123 vdwtype = mdatoms->typeA;
124
125 /* Setup water-specific parameters */
126 inr = nlist->iinr[0];
127 iq1 = facel*charge[inr+1];
128 iq2 = facel*charge[inr+2];
129 iq3 = facel*charge[inr+3];
130 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
131
132 jq1 = charge[inr+1];
133 jq2 = charge[inr+2];
134 jq3 = charge[inr+3];
135 vdwjidx0 = 3*vdwtype[inr+0];
136 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
137 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
138 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
139 qq11 = iq1*jq1;
140 qq12 = iq1*jq2;
141 qq13 = iq1*jq3;
142 qq21 = iq2*jq1;
143 qq22 = iq2*jq2;
144 qq23 = iq2*jq3;
145 qq31 = iq3*jq1;
146 qq32 = iq3*jq2;
147 qq33 = iq3*jq3;
148
149 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150 rcutoff = fr->rcoulomb;
151 rcutoff2 = rcutoff*rcutoff;
152
153 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
154 rvdw = fr->rvdw;
155
156 outeriter = 0;
157 inneriter = 0;
158
159 /* Start outer loop over neighborlists */
160 for(iidx=0; iidx<nri; iidx++)
161 {
162 /* Load shift vector for this list */
163 i_shift_offset = DIM3*shiftidx[iidx];
164 shX = shiftvec[i_shift_offset+XX0];
165 shY = shiftvec[i_shift_offset+YY1];
166 shZ = shiftvec[i_shift_offset+ZZ2];
167
168 /* Load limits for loop over neighbors */
169 j_index_start = jindex[iidx];
170 j_index_end = jindex[iidx+1];
171
172 /* Get outer coordinate index */
173 inr = iinr[iidx];
174 i_coord_offset = DIM3*inr;
175
176 /* Load i particle coords and add shift vector */
177 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
178 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
179 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
180 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
181 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
182 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
183 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
184 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
185 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
186 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
187 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
188 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
189
190 fix0 = 0.0;
191 fiy0 = 0.0;
192 fiz0 = 0.0;
193 fix1 = 0.0;
194 fiy1 = 0.0;
195 fiz1 = 0.0;
196 fix2 = 0.0;
197 fiy2 = 0.0;
198 fiz2 = 0.0;
199 fix3 = 0.0;
200 fiy3 = 0.0;
201 fiz3 = 0.0;
202
203 /* Reset potential sums */
204 velecsum = 0.0;
205 vvdwsum = 0.0;
206
207 /* Start inner kernel loop */
208 for(jidx=j_index_start; jidx<j_index_end; jidx++)
209 {
210 /* Get j neighbor index, and coordinate index */
211 jnr = jjnr[jidx];
212 j_coord_offset = DIM3*jnr;
213
214 /* load j atom coordinates */
215 jx0 = x[j_coord_offset+DIM3*0+XX0];
216 jy0 = x[j_coord_offset+DIM3*0+YY1];
217 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
218 jx1 = x[j_coord_offset+DIM3*1+XX0];
219 jy1 = x[j_coord_offset+DIM3*1+YY1];
220 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
221 jx2 = x[j_coord_offset+DIM3*2+XX0];
222 jy2 = x[j_coord_offset+DIM3*2+YY1];
223 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
224 jx3 = x[j_coord_offset+DIM3*3+XX0];
225 jy3 = x[j_coord_offset+DIM3*3+YY1];
226 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
227
228 /* Calculate displacement vector */
229 dx00 = ix0 - jx0;
230 dy00 = iy0 - jy0;
231 dz00 = iz0 - jz0;
232 dx11 = ix1 - jx1;
233 dy11 = iy1 - jy1;
234 dz11 = iz1 - jz1;
235 dx12 = ix1 - jx2;
236 dy12 = iy1 - jy2;
237 dz12 = iz1 - jz2;
238 dx13 = ix1 - jx3;
239 dy13 = iy1 - jy3;
240 dz13 = iz1 - jz3;
241 dx21 = ix2 - jx1;
242 dy21 = iy2 - jy1;
243 dz21 = iz2 - jz1;
244 dx22 = ix2 - jx2;
245 dy22 = iy2 - jy2;
246 dz22 = iz2 - jz2;
247 dx23 = ix2 - jx3;
248 dy23 = iy2 - jy3;
249 dz23 = iz2 - jz3;
250 dx31 = ix3 - jx1;
251 dy31 = iy3 - jy1;
252 dz31 = iz3 - jz1;
253 dx32 = ix3 - jx2;
254 dy32 = iy3 - jy2;
255 dz32 = iz3 - jz2;
256 dx33 = ix3 - jx3;
257 dy33 = iy3 - jy3;
258 dz33 = iz3 - jz3;
259
260 /* Calculate squared distance and things based on it */
261 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
262 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
263 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
264 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
265 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
266 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
267 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
268 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
269 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
270 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
271
272 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
273 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
274 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
275 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
276 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
277 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
278 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
279 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
280 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
281 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
282
283 rinvsq00 = rinv00*rinv00;
284 rinvsq11 = rinv11*rinv11;
285 rinvsq12 = rinv12*rinv12;
286 rinvsq13 = rinv13*rinv13;
287 rinvsq21 = rinv21*rinv21;
288 rinvsq22 = rinv22*rinv22;
289 rinvsq23 = rinv23*rinv23;
290 rinvsq31 = rinv31*rinv31;
291 rinvsq32 = rinv32*rinv32;
292 rinvsq33 = rinv33*rinv33;
293
294 /**************************
295 * CALCULATE INTERACTIONS *
296 **************************/
297
298 if (rsq00<rcutoff2)
299 {
300
301 r00 = rsq00*rinv00;
302
303 /* BUCKINGHAM DISPERSION/REPULSION */
304 rinvsix = rinvsq00*rinvsq00*rinvsq00;
305 vvdw6 = c6_00*rinvsix;
306 br = cexp2_00*r00;
307 vvdwexp = cexp1_00*exp(-br);
308 vvdw = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
309 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
310
311 /* Update potential sums from outer loop */
312 vvdwsum += vvdw;
313
314 fscal = fvdw;
315
316 /* Calculate temporary vectorial force */
317 tx = fscal*dx00;
318 ty = fscal*dy00;
319 tz = fscal*dz00;
320
321 /* Update vectorial force */
322 fix0 += tx;
323 fiy0 += ty;
324 fiz0 += tz;
325 f[j_coord_offset+DIM3*0+XX0] -= tx;
326 f[j_coord_offset+DIM3*0+YY1] -= ty;
327 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
328
329 }
330
331 /**************************
332 * CALCULATE INTERACTIONS *
333 **************************/
334
335 if (rsq11<rcutoff2)
336 {
337
338 /* REACTION-FIELD ELECTROSTATICS */
339 velec = qq11*(rinv11+krf*rsq11-crf);
340 felec = qq11*(rinv11*rinvsq11-krf2);
341
342 /* Update potential sums from outer loop */
343 velecsum += velec;
344
345 fscal = felec;
346
347 /* Calculate temporary vectorial force */
348 tx = fscal*dx11;
349 ty = fscal*dy11;
350 tz = fscal*dz11;
351
352 /* Update vectorial force */
353 fix1 += tx;
354 fiy1 += ty;
355 fiz1 += tz;
356 f[j_coord_offset+DIM3*1+XX0] -= tx;
357 f[j_coord_offset+DIM3*1+YY1] -= ty;
358 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
359
360 }
361
362 /**************************
363 * CALCULATE INTERACTIONS *
364 **************************/
365
366 if (rsq12<rcutoff2)
367 {
368
369 /* REACTION-FIELD ELECTROSTATICS */
370 velec = qq12*(rinv12+krf*rsq12-crf);
371 felec = qq12*(rinv12*rinvsq12-krf2);
372
373 /* Update potential sums from outer loop */
374 velecsum += velec;
375
376 fscal = felec;
377
378 /* Calculate temporary vectorial force */
379 tx = fscal*dx12;
380 ty = fscal*dy12;
381 tz = fscal*dz12;
382
383 /* Update vectorial force */
384 fix1 += tx;
385 fiy1 += ty;
386 fiz1 += tz;
387 f[j_coord_offset+DIM3*2+XX0] -= tx;
388 f[j_coord_offset+DIM3*2+YY1] -= ty;
389 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
390
391 }
392
393 /**************************
394 * CALCULATE INTERACTIONS *
395 **************************/
396
397 if (rsq13<rcutoff2)
398 {
399
400 /* REACTION-FIELD ELECTROSTATICS */
401 velec = qq13*(rinv13+krf*rsq13-crf);
402 felec = qq13*(rinv13*rinvsq13-krf2);
403
404 /* Update potential sums from outer loop */
405 velecsum += velec;
406
407 fscal = felec;
408
409 /* Calculate temporary vectorial force */
410 tx = fscal*dx13;
411 ty = fscal*dy13;
412 tz = fscal*dz13;
413
414 /* Update vectorial force */
415 fix1 += tx;
416 fiy1 += ty;
417 fiz1 += tz;
418 f[j_coord_offset+DIM3*3+XX0] -= tx;
419 f[j_coord_offset+DIM3*3+YY1] -= ty;
420 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
421
422 }
423
424 /**************************
425 * CALCULATE INTERACTIONS *
426 **************************/
427
428 if (rsq21<rcutoff2)
429 {
430
431 /* REACTION-FIELD ELECTROSTATICS */
432 velec = qq21*(rinv21+krf*rsq21-crf);
433 felec = qq21*(rinv21*rinvsq21-krf2);
434
435 /* Update potential sums from outer loop */
436 velecsum += velec;
437
438 fscal = felec;
439
440 /* Calculate temporary vectorial force */
441 tx = fscal*dx21;
442 ty = fscal*dy21;
443 tz = fscal*dz21;
444
445 /* Update vectorial force */
446 fix2 += tx;
447 fiy2 += ty;
448 fiz2 += tz;
449 f[j_coord_offset+DIM3*1+XX0] -= tx;
450 f[j_coord_offset+DIM3*1+YY1] -= ty;
451 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
452
453 }
454
455 /**************************
456 * CALCULATE INTERACTIONS *
457 **************************/
458
459 if (rsq22<rcutoff2)
460 {
461
462 /* REACTION-FIELD ELECTROSTATICS */
463 velec = qq22*(rinv22+krf*rsq22-crf);
464 felec = qq22*(rinv22*rinvsq22-krf2);
465
466 /* Update potential sums from outer loop */
467 velecsum += velec;
468
469 fscal = felec;
470
471 /* Calculate temporary vectorial force */
472 tx = fscal*dx22;
473 ty = fscal*dy22;
474 tz = fscal*dz22;
475
476 /* Update vectorial force */
477 fix2 += tx;
478 fiy2 += ty;
479 fiz2 += tz;
480 f[j_coord_offset+DIM3*2+XX0] -= tx;
481 f[j_coord_offset+DIM3*2+YY1] -= ty;
482 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
483
484 }
485
486 /**************************
487 * CALCULATE INTERACTIONS *
488 **************************/
489
490 if (rsq23<rcutoff2)
491 {
492
493 /* REACTION-FIELD ELECTROSTATICS */
494 velec = qq23*(rinv23+krf*rsq23-crf);
495 felec = qq23*(rinv23*rinvsq23-krf2);
496
497 /* Update potential sums from outer loop */
498 velecsum += velec;
499
500 fscal = felec;
501
502 /* Calculate temporary vectorial force */
503 tx = fscal*dx23;
504 ty = fscal*dy23;
505 tz = fscal*dz23;
506
507 /* Update vectorial force */
508 fix2 += tx;
509 fiy2 += ty;
510 fiz2 += tz;
511 f[j_coord_offset+DIM3*3+XX0] -= tx;
512 f[j_coord_offset+DIM3*3+YY1] -= ty;
513 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
514
515 }
516
517 /**************************
518 * CALCULATE INTERACTIONS *
519 **************************/
520
521 if (rsq31<rcutoff2)
522 {
523
524 /* REACTION-FIELD ELECTROSTATICS */
525 velec = qq31*(rinv31+krf*rsq31-crf);
526 felec = qq31*(rinv31*rinvsq31-krf2);
527
528 /* Update potential sums from outer loop */
529 velecsum += velec;
530
531 fscal = felec;
532
533 /* Calculate temporary vectorial force */
534 tx = fscal*dx31;
535 ty = fscal*dy31;
536 tz = fscal*dz31;
537
538 /* Update vectorial force */
539 fix3 += tx;
540 fiy3 += ty;
541 fiz3 += tz;
542 f[j_coord_offset+DIM3*1+XX0] -= tx;
543 f[j_coord_offset+DIM3*1+YY1] -= ty;
544 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
545
546 }
547
548 /**************************
549 * CALCULATE INTERACTIONS *
550 **************************/
551
552 if (rsq32<rcutoff2)
553 {
554
555 /* REACTION-FIELD ELECTROSTATICS */
556 velec = qq32*(rinv32+krf*rsq32-crf);
557 felec = qq32*(rinv32*rinvsq32-krf2);
558
559 /* Update potential sums from outer loop */
560 velecsum += velec;
561
562 fscal = felec;
563
564 /* Calculate temporary vectorial force */
565 tx = fscal*dx32;
566 ty = fscal*dy32;
567 tz = fscal*dz32;
568
569 /* Update vectorial force */
570 fix3 += tx;
571 fiy3 += ty;
572 fiz3 += tz;
573 f[j_coord_offset+DIM3*2+XX0] -= tx;
574 f[j_coord_offset+DIM3*2+YY1] -= ty;
575 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
576
577 }
578
579 /**************************
580 * CALCULATE INTERACTIONS *
581 **************************/
582
583 if (rsq33<rcutoff2)
584 {
585
586 /* REACTION-FIELD ELECTROSTATICS */
587 velec = qq33*(rinv33+krf*rsq33-crf);
588 felec = qq33*(rinv33*rinvsq33-krf2);
589
590 /* Update potential sums from outer loop */
591 velecsum += velec;
592
593 fscal = felec;
594
595 /* Calculate temporary vectorial force */
596 tx = fscal*dx33;
597 ty = fscal*dy33;
598 tz = fscal*dz33;
599
600 /* Update vectorial force */
601 fix3 += tx;
602 fiy3 += ty;
603 fiz3 += tz;
604 f[j_coord_offset+DIM3*3+XX0] -= tx;
605 f[j_coord_offset+DIM3*3+YY1] -= ty;
606 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
607
608 }
609
610 /* Inner loop uses 371 flops */
611 }
612 /* End of innermost loop */
613
614 tx = ty = tz = 0;
615 f[i_coord_offset+DIM3*0+XX0] += fix0;
616 f[i_coord_offset+DIM3*0+YY1] += fiy0;
617 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
618 tx += fix0;
619 ty += fiy0;
620 tz += fiz0;
621 f[i_coord_offset+DIM3*1+XX0] += fix1;
622 f[i_coord_offset+DIM3*1+YY1] += fiy1;
623 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
624 tx += fix1;
625 ty += fiy1;
626 tz += fiz1;
627 f[i_coord_offset+DIM3*2+XX0] += fix2;
628 f[i_coord_offset+DIM3*2+YY1] += fiy2;
629 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
630 tx += fix2;
631 ty += fiy2;
632 tz += fiz2;
633 f[i_coord_offset+DIM3*3+XX0] += fix3;
634 f[i_coord_offset+DIM3*3+YY1] += fiy3;
635 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
636 tx += fix3;
637 ty += fiy3;
638 tz += fiz3;
639 fshift[i_shift_offset+XX0] += tx;
640 fshift[i_shift_offset+YY1] += ty;
641 fshift[i_shift_offset+ZZ2] += tz;
642
643 ggid = gid[iidx];
644 /* Update potential energies */
645 kernel_data->energygrp_elec[ggid] += velecsum;
646 kernel_data->energygrp_vdw[ggid] += vvdwsum;
647
648 /* Increment number of inner iterations */
649 inneriter += j_index_end - j_index_start;
650
651 /* Outer loop uses 41 flops */
652 }
653
654 /* Increment number of outer iterations */
655 outeriter += nri;
656
657 /* Update outer/inner flops */
658
659 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*371)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*371
;
660}
661/*
662 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomW4W4_F_c
663 * Electrostatics interaction: ReactionField
664 * VdW interaction: Buckingham
665 * Geometry: Water4-Water4
666 * Calculate force/pot: Force
667 */
668void
669nb_kernel_ElecRFCut_VdwBhamSh_GeomW4W4_F_c
670 (t_nblist * gmx_restrict__restrict nlist,
671 rvec * gmx_restrict__restrict xx,
672 rvec * gmx_restrict__restrict ff,
673 t_forcerec * gmx_restrict__restrict fr,
674 t_mdatoms * gmx_restrict__restrict mdatoms,
675 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
676 t_nrnb * gmx_restrict__restrict nrnb)
677{
678 int i_shift_offset,i_coord_offset,j_coord_offset;
679 int j_index_start,j_index_end;
680 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
681 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
682 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
683 real *shiftvec,*fshift,*x,*f;
684 int vdwioffset0;
685 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
686 int vdwioffset1;
687 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
688 int vdwioffset2;
689 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
690 int vdwioffset3;
691 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
692 int vdwjidx0;
693 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
694 int vdwjidx1;
695 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
696 int vdwjidx2;
697 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
698 int vdwjidx3;
699 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
700 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
701 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
702 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
703 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
704 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
705 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
706 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
707 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
708 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
709 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
710 real velec,felec,velecsum,facel,crf,krf,krf2;
711 real *charge;
712 int nvdwtype;
713 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
714 int *vdwtype;
715 real *vdwparam;
716
717 x = xx[0];
718 f = ff[0];
719
720 nri = nlist->nri;
721 iinr = nlist->iinr;
722 jindex = nlist->jindex;
723 jjnr = nlist->jjnr;
724 shiftidx = nlist->shift;
725 gid = nlist->gid;
726 shiftvec = fr->shift_vec[0];
727 fshift = fr->fshift[0];
728 facel = fr->epsfac;
729 charge = mdatoms->chargeA;
730 krf = fr->ic->k_rf;
731 krf2 = krf*2.0;
732 crf = fr->ic->c_rf;
733 nvdwtype = fr->ntype;
734 vdwparam = fr->nbfp;
735 vdwtype = mdatoms->typeA;
736
737 /* Setup water-specific parameters */
738 inr = nlist->iinr[0];
739 iq1 = facel*charge[inr+1];
740 iq2 = facel*charge[inr+2];
741 iq3 = facel*charge[inr+3];
742 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
743
744 jq1 = charge[inr+1];
745 jq2 = charge[inr+2];
746 jq3 = charge[inr+3];
747 vdwjidx0 = 3*vdwtype[inr+0];
748 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
749 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
750 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
751 qq11 = iq1*jq1;
752 qq12 = iq1*jq2;
753 qq13 = iq1*jq3;
754 qq21 = iq2*jq1;
755 qq22 = iq2*jq2;
756 qq23 = iq2*jq3;
757 qq31 = iq3*jq1;
758 qq32 = iq3*jq2;
759 qq33 = iq3*jq3;
760
761 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
762 rcutoff = fr->rcoulomb;
763 rcutoff2 = rcutoff*rcutoff;
764
765 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
766 rvdw = fr->rvdw;
Value stored to 'rvdw' is never read
767
768 outeriter = 0;
769 inneriter = 0;
770
771 /* Start outer loop over neighborlists */
772 for(iidx=0; iidx<nri; iidx++)
773 {
774 /* Load shift vector for this list */
775 i_shift_offset = DIM3*shiftidx[iidx];
776 shX = shiftvec[i_shift_offset+XX0];
777 shY = shiftvec[i_shift_offset+YY1];
778 shZ = shiftvec[i_shift_offset+ZZ2];
779
780 /* Load limits for loop over neighbors */
781 j_index_start = jindex[iidx];
782 j_index_end = jindex[iidx+1];
783
784 /* Get outer coordinate index */
785 inr = iinr[iidx];
786 i_coord_offset = DIM3*inr;
787
788 /* Load i particle coords and add shift vector */
789 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
790 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
791 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
792 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
793 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
794 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
795 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
796 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
797 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
798 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
799 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
800 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
801
802 fix0 = 0.0;
803 fiy0 = 0.0;
804 fiz0 = 0.0;
805 fix1 = 0.0;
806 fiy1 = 0.0;
807 fiz1 = 0.0;
808 fix2 = 0.0;
809 fiy2 = 0.0;
810 fiz2 = 0.0;
811 fix3 = 0.0;
812 fiy3 = 0.0;
813 fiz3 = 0.0;
814
815 /* Start inner kernel loop */
816 for(jidx=j_index_start; jidx<j_index_end; jidx++)
817 {
818 /* Get j neighbor index, and coordinate index */
819 jnr = jjnr[jidx];
820 j_coord_offset = DIM3*jnr;
821
822 /* load j atom coordinates */
823 jx0 = x[j_coord_offset+DIM3*0+XX0];
824 jy0 = x[j_coord_offset+DIM3*0+YY1];
825 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
826 jx1 = x[j_coord_offset+DIM3*1+XX0];
827 jy1 = x[j_coord_offset+DIM3*1+YY1];
828 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
829 jx2 = x[j_coord_offset+DIM3*2+XX0];
830 jy2 = x[j_coord_offset+DIM3*2+YY1];
831 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
832 jx3 = x[j_coord_offset+DIM3*3+XX0];
833 jy3 = x[j_coord_offset+DIM3*3+YY1];
834 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
835
836 /* Calculate displacement vector */
837 dx00 = ix0 - jx0;
838 dy00 = iy0 - jy0;
839 dz00 = iz0 - jz0;
840 dx11 = ix1 - jx1;
841 dy11 = iy1 - jy1;
842 dz11 = iz1 - jz1;
843 dx12 = ix1 - jx2;
844 dy12 = iy1 - jy2;
845 dz12 = iz1 - jz2;
846 dx13 = ix1 - jx3;
847 dy13 = iy1 - jy3;
848 dz13 = iz1 - jz3;
849 dx21 = ix2 - jx1;
850 dy21 = iy2 - jy1;
851 dz21 = iz2 - jz1;
852 dx22 = ix2 - jx2;
853 dy22 = iy2 - jy2;
854 dz22 = iz2 - jz2;
855 dx23 = ix2 - jx3;
856 dy23 = iy2 - jy3;
857 dz23 = iz2 - jz3;
858 dx31 = ix3 - jx1;
859 dy31 = iy3 - jy1;
860 dz31 = iz3 - jz1;
861 dx32 = ix3 - jx2;
862 dy32 = iy3 - jy2;
863 dz32 = iz3 - jz2;
864 dx33 = ix3 - jx3;
865 dy33 = iy3 - jy3;
866 dz33 = iz3 - jz3;
867
868 /* Calculate squared distance and things based on it */
869 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
870 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
871 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
872 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
873 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
874 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
875 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
876 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
877 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
878 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
879
880 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
881 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
882 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
883 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
884 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
885 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
886 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
887 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
888 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
889 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
890
891 rinvsq00 = rinv00*rinv00;
892 rinvsq11 = rinv11*rinv11;
893 rinvsq12 = rinv12*rinv12;
894 rinvsq13 = rinv13*rinv13;
895 rinvsq21 = rinv21*rinv21;
896 rinvsq22 = rinv22*rinv22;
897 rinvsq23 = rinv23*rinv23;
898 rinvsq31 = rinv31*rinv31;
899 rinvsq32 = rinv32*rinv32;
900 rinvsq33 = rinv33*rinv33;
901
902 /**************************
903 * CALCULATE INTERACTIONS *
904 **************************/
905
906 if (rsq00<rcutoff2)
907 {
908
909 r00 = rsq00*rinv00;
910
911 /* BUCKINGHAM DISPERSION/REPULSION */
912 rinvsix = rinvsq00*rinvsq00*rinvsq00;
913 vvdw6 = c6_00*rinvsix;
914 br = cexp2_00*r00;
915 vvdwexp = cexp1_00*exp(-br);
916 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
917
918 fscal = fvdw;
919
920 /* Calculate temporary vectorial force */
921 tx = fscal*dx00;
922 ty = fscal*dy00;
923 tz = fscal*dz00;
924
925 /* Update vectorial force */
926 fix0 += tx;
927 fiy0 += ty;
928 fiz0 += tz;
929 f[j_coord_offset+DIM3*0+XX0] -= tx;
930 f[j_coord_offset+DIM3*0+YY1] -= ty;
931 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
932
933 }
934
935 /**************************
936 * CALCULATE INTERACTIONS *
937 **************************/
938
939 if (rsq11<rcutoff2)
940 {
941
942 /* REACTION-FIELD ELECTROSTATICS */
943 felec = qq11*(rinv11*rinvsq11-krf2);
944
945 fscal = felec;
946
947 /* Calculate temporary vectorial force */
948 tx = fscal*dx11;
949 ty = fscal*dy11;
950 tz = fscal*dz11;
951
952 /* Update vectorial force */
953 fix1 += tx;
954 fiy1 += ty;
955 fiz1 += tz;
956 f[j_coord_offset+DIM3*1+XX0] -= tx;
957 f[j_coord_offset+DIM3*1+YY1] -= ty;
958 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
959
960 }
961
962 /**************************
963 * CALCULATE INTERACTIONS *
964 **************************/
965
966 if (rsq12<rcutoff2)
967 {
968
969 /* REACTION-FIELD ELECTROSTATICS */
970 felec = qq12*(rinv12*rinvsq12-krf2);
971
972 fscal = felec;
973
974 /* Calculate temporary vectorial force */
975 tx = fscal*dx12;
976 ty = fscal*dy12;
977 tz = fscal*dz12;
978
979 /* Update vectorial force */
980 fix1 += tx;
981 fiy1 += ty;
982 fiz1 += tz;
983 f[j_coord_offset+DIM3*2+XX0] -= tx;
984 f[j_coord_offset+DIM3*2+YY1] -= ty;
985 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
986
987 }
988
989 /**************************
990 * CALCULATE INTERACTIONS *
991 **************************/
992
993 if (rsq13<rcutoff2)
994 {
995
996 /* REACTION-FIELD ELECTROSTATICS */
997 felec = qq13*(rinv13*rinvsq13-krf2);
998
999 fscal = felec;
1000
1001 /* Calculate temporary vectorial force */
1002 tx = fscal*dx13;
1003 ty = fscal*dy13;
1004 tz = fscal*dz13;
1005
1006 /* Update vectorial force */
1007 fix1 += tx;
1008 fiy1 += ty;
1009 fiz1 += tz;
1010 f[j_coord_offset+DIM3*3+XX0] -= tx;
1011 f[j_coord_offset+DIM3*3+YY1] -= ty;
1012 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1013
1014 }
1015
1016 /**************************
1017 * CALCULATE INTERACTIONS *
1018 **************************/
1019
1020 if (rsq21<rcutoff2)
1021 {
1022
1023 /* REACTION-FIELD ELECTROSTATICS */
1024 felec = qq21*(rinv21*rinvsq21-krf2);
1025
1026 fscal = felec;
1027
1028 /* Calculate temporary vectorial force */
1029 tx = fscal*dx21;
1030 ty = fscal*dy21;
1031 tz = fscal*dz21;
1032
1033 /* Update vectorial force */
1034 fix2 += tx;
1035 fiy2 += ty;
1036 fiz2 += tz;
1037 f[j_coord_offset+DIM3*1+XX0] -= tx;
1038 f[j_coord_offset+DIM3*1+YY1] -= ty;
1039 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1040
1041 }
1042
1043 /**************************
1044 * CALCULATE INTERACTIONS *
1045 **************************/
1046
1047 if (rsq22<rcutoff2)
1048 {
1049
1050 /* REACTION-FIELD ELECTROSTATICS */
1051 felec = qq22*(rinv22*rinvsq22-krf2);
1052
1053 fscal = felec;
1054
1055 /* Calculate temporary vectorial force */
1056 tx = fscal*dx22;
1057 ty = fscal*dy22;
1058 tz = fscal*dz22;
1059
1060 /* Update vectorial force */
1061 fix2 += tx;
1062 fiy2 += ty;
1063 fiz2 += tz;
1064 f[j_coord_offset+DIM3*2+XX0] -= tx;
1065 f[j_coord_offset+DIM3*2+YY1] -= ty;
1066 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1067
1068 }
1069
1070 /**************************
1071 * CALCULATE INTERACTIONS *
1072 **************************/
1073
1074 if (rsq23<rcutoff2)
1075 {
1076
1077 /* REACTION-FIELD ELECTROSTATICS */
1078 felec = qq23*(rinv23*rinvsq23-krf2);
1079
1080 fscal = felec;
1081
1082 /* Calculate temporary vectorial force */
1083 tx = fscal*dx23;
1084 ty = fscal*dy23;
1085 tz = fscal*dz23;
1086
1087 /* Update vectorial force */
1088 fix2 += tx;
1089 fiy2 += ty;
1090 fiz2 += tz;
1091 f[j_coord_offset+DIM3*3+XX0] -= tx;
1092 f[j_coord_offset+DIM3*3+YY1] -= ty;
1093 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1094
1095 }
1096
1097 /**************************
1098 * CALCULATE INTERACTIONS *
1099 **************************/
1100
1101 if (rsq31<rcutoff2)
1102 {
1103
1104 /* REACTION-FIELD ELECTROSTATICS */
1105 felec = qq31*(rinv31*rinvsq31-krf2);
1106
1107 fscal = felec;
1108
1109 /* Calculate temporary vectorial force */
1110 tx = fscal*dx31;
1111 ty = fscal*dy31;
1112 tz = fscal*dz31;
1113
1114 /* Update vectorial force */
1115 fix3 += tx;
1116 fiy3 += ty;
1117 fiz3 += tz;
1118 f[j_coord_offset+DIM3*1+XX0] -= tx;
1119 f[j_coord_offset+DIM3*1+YY1] -= ty;
1120 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1121
1122 }
1123
1124 /**************************
1125 * CALCULATE INTERACTIONS *
1126 **************************/
1127
1128 if (rsq32<rcutoff2)
1129 {
1130
1131 /* REACTION-FIELD ELECTROSTATICS */
1132 felec = qq32*(rinv32*rinvsq32-krf2);
1133
1134 fscal = felec;
1135
1136 /* Calculate temporary vectorial force */
1137 tx = fscal*dx32;
1138 ty = fscal*dy32;
1139 tz = fscal*dz32;
1140
1141 /* Update vectorial force */
1142 fix3 += tx;
1143 fiy3 += ty;
1144 fiz3 += tz;
1145 f[j_coord_offset+DIM3*2+XX0] -= tx;
1146 f[j_coord_offset+DIM3*2+YY1] -= ty;
1147 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1148
1149 }
1150
1151 /**************************
1152 * CALCULATE INTERACTIONS *
1153 **************************/
1154
1155 if (rsq33<rcutoff2)
1156 {
1157
1158 /* REACTION-FIELD ELECTROSTATICS */
1159 felec = qq33*(rinv33*rinvsq33-krf2);
1160
1161 fscal = felec;
1162
1163 /* Calculate temporary vectorial force */
1164 tx = fscal*dx33;
1165 ty = fscal*dy33;
1166 tz = fscal*dz33;
1167
1168 /* Update vectorial force */
1169 fix3 += tx;
1170 fiy3 += ty;
1171 fiz3 += tz;
1172 f[j_coord_offset+DIM3*3+XX0] -= tx;
1173 f[j_coord_offset+DIM3*3+YY1] -= ty;
1174 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1175
1176 }
1177
1178 /* Inner loop uses 292 flops */
1179 }
1180 /* End of innermost loop */
1181
1182 tx = ty = tz = 0;
1183 f[i_coord_offset+DIM3*0+XX0] += fix0;
1184 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1185 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1186 tx += fix0;
1187 ty += fiy0;
1188 tz += fiz0;
1189 f[i_coord_offset+DIM3*1+XX0] += fix1;
1190 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1191 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1192 tx += fix1;
1193 ty += fiy1;
1194 tz += fiz1;
1195 f[i_coord_offset+DIM3*2+XX0] += fix2;
1196 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1197 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1198 tx += fix2;
1199 ty += fiy2;
1200 tz += fiz2;
1201 f[i_coord_offset+DIM3*3+XX0] += fix3;
1202 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1203 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1204 tx += fix3;
1205 ty += fiy3;
1206 tz += fiz3;
1207 fshift[i_shift_offset+XX0] += tx;
1208 fshift[i_shift_offset+YY1] += ty;
1209 fshift[i_shift_offset+ZZ2] += tz;
1210
1211 /* Increment number of inner iterations */
1212 inneriter += j_index_end - j_index_start;
1213
1214 /* Outer loop uses 39 flops */
1215 }
1216
1217 /* Increment number of outer iterations */
1218 outeriter += nri;
1219
1220 /* Update outer/inner flops */
1221
1222 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*292)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*292
;
1223}