Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwLJ_GeomW4W4_c.c
Location:line 796, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW4W4_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwLJ_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 int vfitab;
105 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
106 real *vftab;
107
108 x = xx[0];
109 f = ff[0];
110
111 nri = nlist->nri;
112 iinr = nlist->iinr;
113 jindex = nlist->jindex;
114 jjnr = nlist->jjnr;
115 shiftidx = nlist->shift;
116 gid = nlist->gid;
117 shiftvec = fr->shift_vec[0];
118 fshift = fr->fshift[0];
119 facel = fr->epsfac;
120 charge = mdatoms->chargeA;
121 nvdwtype = fr->ntype;
122 vdwparam = fr->nbfp;
123 vdwtype = mdatoms->typeA;
124
125 vftab = kernel_data->table_elec->data;
126 vftabscale = kernel_data->table_elec->scale;
127
128 /* Setup water-specific parameters */
129 inr = nlist->iinr[0];
130 iq1 = facel*charge[inr+1];
131 iq2 = facel*charge[inr+2];
132 iq3 = facel*charge[inr+3];
133 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
134
135 jq1 = charge[inr+1];
136 jq2 = charge[inr+2];
137 jq3 = charge[inr+3];
138 vdwjidx0 = 2*vdwtype[inr+0];
139 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
140 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
141 qq11 = iq1*jq1;
142 qq12 = iq1*jq2;
143 qq13 = iq1*jq3;
144 qq21 = iq2*jq1;
145 qq22 = iq2*jq2;
146 qq23 = iq2*jq3;
147 qq31 = iq3*jq1;
148 qq32 = iq3*jq2;
149 qq33 = iq3*jq3;
150
151 outeriter = 0;
152 inneriter = 0;
153
154 /* Start outer loop over neighborlists */
155 for(iidx=0; iidx<nri; iidx++)
156 {
157 /* Load shift vector for this list */
158 i_shift_offset = DIM3*shiftidx[iidx];
159 shX = shiftvec[i_shift_offset+XX0];
160 shY = shiftvec[i_shift_offset+YY1];
161 shZ = shiftvec[i_shift_offset+ZZ2];
162
163 /* Load limits for loop over neighbors */
164 j_index_start = jindex[iidx];
165 j_index_end = jindex[iidx+1];
166
167 /* Get outer coordinate index */
168 inr = iinr[iidx];
169 i_coord_offset = DIM3*inr;
170
171 /* Load i particle coords and add shift vector */
172 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
173 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
174 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
175 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
176 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
177 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
178 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
179 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
180 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
181 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
182 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
183 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
184
185 fix0 = 0.0;
186 fiy0 = 0.0;
187 fiz0 = 0.0;
188 fix1 = 0.0;
189 fiy1 = 0.0;
190 fiz1 = 0.0;
191 fix2 = 0.0;
192 fiy2 = 0.0;
193 fiz2 = 0.0;
194 fix3 = 0.0;
195 fiy3 = 0.0;
196 fiz3 = 0.0;
197
198 /* Reset potential sums */
199 velecsum = 0.0;
200 vvdwsum = 0.0;
201
202 /* Start inner kernel loop */
203 for(jidx=j_index_start; jidx<j_index_end; jidx++)
204 {
205 /* Get j neighbor index, and coordinate index */
206 jnr = jjnr[jidx];
207 j_coord_offset = DIM3*jnr;
208
209 /* load j atom coordinates */
210 jx0 = x[j_coord_offset+DIM3*0+XX0];
211 jy0 = x[j_coord_offset+DIM3*0+YY1];
212 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
213 jx1 = x[j_coord_offset+DIM3*1+XX0];
214 jy1 = x[j_coord_offset+DIM3*1+YY1];
215 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
216 jx2 = x[j_coord_offset+DIM3*2+XX0];
217 jy2 = x[j_coord_offset+DIM3*2+YY1];
218 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
219 jx3 = x[j_coord_offset+DIM3*3+XX0];
220 jy3 = x[j_coord_offset+DIM3*3+YY1];
221 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
222
223 /* Calculate displacement vector */
224 dx00 = ix0 - jx0;
225 dy00 = iy0 - jy0;
226 dz00 = iz0 - jz0;
227 dx11 = ix1 - jx1;
228 dy11 = iy1 - jy1;
229 dz11 = iz1 - jz1;
230 dx12 = ix1 - jx2;
231 dy12 = iy1 - jy2;
232 dz12 = iz1 - jz2;
233 dx13 = ix1 - jx3;
234 dy13 = iy1 - jy3;
235 dz13 = iz1 - jz3;
236 dx21 = ix2 - jx1;
237 dy21 = iy2 - jy1;
238 dz21 = iz2 - jz1;
239 dx22 = ix2 - jx2;
240 dy22 = iy2 - jy2;
241 dz22 = iz2 - jz2;
242 dx23 = ix2 - jx3;
243 dy23 = iy2 - jy3;
244 dz23 = iz2 - jz3;
245 dx31 = ix3 - jx1;
246 dy31 = iy3 - jy1;
247 dz31 = iz3 - jz1;
248 dx32 = ix3 - jx2;
249 dy32 = iy3 - jy2;
250 dz32 = iz3 - jz2;
251 dx33 = ix3 - jx3;
252 dy33 = iy3 - jy3;
253 dz33 = iz3 - jz3;
254
255 /* Calculate squared distance and things based on it */
256 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
257 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
258 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
259 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
260 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
261 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
262 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
263 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
264 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
265 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
266
267 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
268 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
269 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
270 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
271 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
272 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
273 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
274 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
275 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
276
277 rinvsq00 = 1.0/rsq00;
278
279 /**************************
280 * CALCULATE INTERACTIONS *
281 **************************/
282
283 /* LENNARD-JONES DISPERSION/REPULSION */
284
285 rinvsix = rinvsq00*rinvsq00*rinvsq00;
286 vvdw6 = c6_00*rinvsix;
287 vvdw12 = c12_00*rinvsix*rinvsix;
288 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
289 fvdw = (vvdw12-vvdw6)*rinvsq00;
290
291 /* Update potential sums from outer loop */
292 vvdwsum += vvdw;
293
294 fscal = fvdw;
295
296 /* Calculate temporary vectorial force */
297 tx = fscal*dx00;
298 ty = fscal*dy00;
299 tz = fscal*dz00;
300
301 /* Update vectorial force */
302 fix0 += tx;
303 fiy0 += ty;
304 fiz0 += tz;
305 f[j_coord_offset+DIM3*0+XX0] -= tx;
306 f[j_coord_offset+DIM3*0+YY1] -= ty;
307 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
308
309 /**************************
310 * CALCULATE INTERACTIONS *
311 **************************/
312
313 r11 = rsq11*rinv11;
314
315 /* Calculate table index by multiplying r with table scale and truncate to integer */
316 rt = r11*vftabscale;
317 vfitab = rt;
318 vfeps = rt-vfitab;
319 vfitab = 1*4*vfitab;
320
321 /* CUBIC SPLINE TABLE ELECTROSTATICS */
322 Y = vftab[vfitab];
323 F = vftab[vfitab+1];
324 Geps = vfeps*vftab[vfitab+2];
325 Heps2 = vfeps*vfeps*vftab[vfitab+3];
326 Fp = F+Geps+Heps2;
327 VV = Y+vfeps*Fp;
328 velec = qq11*VV;
329 FF = Fp+Geps+2.0*Heps2;
330 felec = -qq11*FF*vftabscale*rinv11;
331
332 /* Update potential sums from outer loop */
333 velecsum += velec;
334
335 fscal = felec;
336
337 /* Calculate temporary vectorial force */
338 tx = fscal*dx11;
339 ty = fscal*dy11;
340 tz = fscal*dz11;
341
342 /* Update vectorial force */
343 fix1 += tx;
344 fiy1 += ty;
345 fiz1 += tz;
346 f[j_coord_offset+DIM3*1+XX0] -= tx;
347 f[j_coord_offset+DIM3*1+YY1] -= ty;
348 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
349
350 /**************************
351 * CALCULATE INTERACTIONS *
352 **************************/
353
354 r12 = rsq12*rinv12;
355
356 /* Calculate table index by multiplying r with table scale and truncate to integer */
357 rt = r12*vftabscale;
358 vfitab = rt;
359 vfeps = rt-vfitab;
360 vfitab = 1*4*vfitab;
361
362 /* CUBIC SPLINE TABLE ELECTROSTATICS */
363 Y = vftab[vfitab];
364 F = vftab[vfitab+1];
365 Geps = vfeps*vftab[vfitab+2];
366 Heps2 = vfeps*vfeps*vftab[vfitab+3];
367 Fp = F+Geps+Heps2;
368 VV = Y+vfeps*Fp;
369 velec = qq12*VV;
370 FF = Fp+Geps+2.0*Heps2;
371 felec = -qq12*FF*vftabscale*rinv12;
372
373 /* Update potential sums from outer loop */
374 velecsum += velec;
375
376 fscal = felec;
377
378 /* Calculate temporary vectorial force */
379 tx = fscal*dx12;
380 ty = fscal*dy12;
381 tz = fscal*dz12;
382
383 /* Update vectorial force */
384 fix1 += tx;
385 fiy1 += ty;
386 fiz1 += tz;
387 f[j_coord_offset+DIM3*2+XX0] -= tx;
388 f[j_coord_offset+DIM3*2+YY1] -= ty;
389 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
390
391 /**************************
392 * CALCULATE INTERACTIONS *
393 **************************/
394
395 r13 = rsq13*rinv13;
396
397 /* Calculate table index by multiplying r with table scale and truncate to integer */
398 rt = r13*vftabscale;
399 vfitab = rt;
400 vfeps = rt-vfitab;
401 vfitab = 1*4*vfitab;
402
403 /* CUBIC SPLINE TABLE ELECTROSTATICS */
404 Y = vftab[vfitab];
405 F = vftab[vfitab+1];
406 Geps = vfeps*vftab[vfitab+2];
407 Heps2 = vfeps*vfeps*vftab[vfitab+3];
408 Fp = F+Geps+Heps2;
409 VV = Y+vfeps*Fp;
410 velec = qq13*VV;
411 FF = Fp+Geps+2.0*Heps2;
412 felec = -qq13*FF*vftabscale*rinv13;
413
414 /* Update potential sums from outer loop */
415 velecsum += velec;
416
417 fscal = felec;
418
419 /* Calculate temporary vectorial force */
420 tx = fscal*dx13;
421 ty = fscal*dy13;
422 tz = fscal*dz13;
423
424 /* Update vectorial force */
425 fix1 += tx;
426 fiy1 += ty;
427 fiz1 += tz;
428 f[j_coord_offset+DIM3*3+XX0] -= tx;
429 f[j_coord_offset+DIM3*3+YY1] -= ty;
430 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
431
432 /**************************
433 * CALCULATE INTERACTIONS *
434 **************************/
435
436 r21 = rsq21*rinv21;
437
438 /* Calculate table index by multiplying r with table scale and truncate to integer */
439 rt = r21*vftabscale;
440 vfitab = rt;
441 vfeps = rt-vfitab;
442 vfitab = 1*4*vfitab;
443
444 /* CUBIC SPLINE TABLE ELECTROSTATICS */
445 Y = vftab[vfitab];
446 F = vftab[vfitab+1];
447 Geps = vfeps*vftab[vfitab+2];
448 Heps2 = vfeps*vfeps*vftab[vfitab+3];
449 Fp = F+Geps+Heps2;
450 VV = Y+vfeps*Fp;
451 velec = qq21*VV;
452 FF = Fp+Geps+2.0*Heps2;
453 felec = -qq21*FF*vftabscale*rinv21;
454
455 /* Update potential sums from outer loop */
456 velecsum += velec;
457
458 fscal = felec;
459
460 /* Calculate temporary vectorial force */
461 tx = fscal*dx21;
462 ty = fscal*dy21;
463 tz = fscal*dz21;
464
465 /* Update vectorial force */
466 fix2 += tx;
467 fiy2 += ty;
468 fiz2 += tz;
469 f[j_coord_offset+DIM3*1+XX0] -= tx;
470 f[j_coord_offset+DIM3*1+YY1] -= ty;
471 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
472
473 /**************************
474 * CALCULATE INTERACTIONS *
475 **************************/
476
477 r22 = rsq22*rinv22;
478
479 /* Calculate table index by multiplying r with table scale and truncate to integer */
480 rt = r22*vftabscale;
481 vfitab = rt;
482 vfeps = rt-vfitab;
483 vfitab = 1*4*vfitab;
484
485 /* CUBIC SPLINE TABLE ELECTROSTATICS */
486 Y = vftab[vfitab];
487 F = vftab[vfitab+1];
488 Geps = vfeps*vftab[vfitab+2];
489 Heps2 = vfeps*vfeps*vftab[vfitab+3];
490 Fp = F+Geps+Heps2;
491 VV = Y+vfeps*Fp;
492 velec = qq22*VV;
493 FF = Fp+Geps+2.0*Heps2;
494 felec = -qq22*FF*vftabscale*rinv22;
495
496 /* Update potential sums from outer loop */
497 velecsum += velec;
498
499 fscal = felec;
500
501 /* Calculate temporary vectorial force */
502 tx = fscal*dx22;
503 ty = fscal*dy22;
504 tz = fscal*dz22;
505
506 /* Update vectorial force */
507 fix2 += tx;
508 fiy2 += ty;
509 fiz2 += tz;
510 f[j_coord_offset+DIM3*2+XX0] -= tx;
511 f[j_coord_offset+DIM3*2+YY1] -= ty;
512 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
513
514 /**************************
515 * CALCULATE INTERACTIONS *
516 **************************/
517
518 r23 = rsq23*rinv23;
519
520 /* Calculate table index by multiplying r with table scale and truncate to integer */
521 rt = r23*vftabscale;
522 vfitab = rt;
523 vfeps = rt-vfitab;
524 vfitab = 1*4*vfitab;
525
526 /* CUBIC SPLINE TABLE ELECTROSTATICS */
527 Y = vftab[vfitab];
528 F = vftab[vfitab+1];
529 Geps = vfeps*vftab[vfitab+2];
530 Heps2 = vfeps*vfeps*vftab[vfitab+3];
531 Fp = F+Geps+Heps2;
532 VV = Y+vfeps*Fp;
533 velec = qq23*VV;
534 FF = Fp+Geps+2.0*Heps2;
535 felec = -qq23*FF*vftabscale*rinv23;
536
537 /* Update potential sums from outer loop */
538 velecsum += velec;
539
540 fscal = felec;
541
542 /* Calculate temporary vectorial force */
543 tx = fscal*dx23;
544 ty = fscal*dy23;
545 tz = fscal*dz23;
546
547 /* Update vectorial force */
548 fix2 += tx;
549 fiy2 += ty;
550 fiz2 += tz;
551 f[j_coord_offset+DIM3*3+XX0] -= tx;
552 f[j_coord_offset+DIM3*3+YY1] -= ty;
553 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
554
555 /**************************
556 * CALCULATE INTERACTIONS *
557 **************************/
558
559 r31 = rsq31*rinv31;
560
561 /* Calculate table index by multiplying r with table scale and truncate to integer */
562 rt = r31*vftabscale;
563 vfitab = rt;
564 vfeps = rt-vfitab;
565 vfitab = 1*4*vfitab;
566
567 /* CUBIC SPLINE TABLE ELECTROSTATICS */
568 Y = vftab[vfitab];
569 F = vftab[vfitab+1];
570 Geps = vfeps*vftab[vfitab+2];
571 Heps2 = vfeps*vfeps*vftab[vfitab+3];
572 Fp = F+Geps+Heps2;
573 VV = Y+vfeps*Fp;
574 velec = qq31*VV;
575 FF = Fp+Geps+2.0*Heps2;
576 felec = -qq31*FF*vftabscale*rinv31;
577
578 /* Update potential sums from outer loop */
579 velecsum += velec;
580
581 fscal = felec;
582
583 /* Calculate temporary vectorial force */
584 tx = fscal*dx31;
585 ty = fscal*dy31;
586 tz = fscal*dz31;
587
588 /* Update vectorial force */
589 fix3 += tx;
590 fiy3 += ty;
591 fiz3 += tz;
592 f[j_coord_offset+DIM3*1+XX0] -= tx;
593 f[j_coord_offset+DIM3*1+YY1] -= ty;
594 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
595
596 /**************************
597 * CALCULATE INTERACTIONS *
598 **************************/
599
600 r32 = rsq32*rinv32;
601
602 /* Calculate table index by multiplying r with table scale and truncate to integer */
603 rt = r32*vftabscale;
604 vfitab = rt;
605 vfeps = rt-vfitab;
606 vfitab = 1*4*vfitab;
607
608 /* CUBIC SPLINE TABLE ELECTROSTATICS */
609 Y = vftab[vfitab];
610 F = vftab[vfitab+1];
611 Geps = vfeps*vftab[vfitab+2];
612 Heps2 = vfeps*vfeps*vftab[vfitab+3];
613 Fp = F+Geps+Heps2;
614 VV = Y+vfeps*Fp;
615 velec = qq32*VV;
616 FF = Fp+Geps+2.0*Heps2;
617 felec = -qq32*FF*vftabscale*rinv32;
618
619 /* Update potential sums from outer loop */
620 velecsum += velec;
621
622 fscal = felec;
623
624 /* Calculate temporary vectorial force */
625 tx = fscal*dx32;
626 ty = fscal*dy32;
627 tz = fscal*dz32;
628
629 /* Update vectorial force */
630 fix3 += tx;
631 fiy3 += ty;
632 fiz3 += tz;
633 f[j_coord_offset+DIM3*2+XX0] -= tx;
634 f[j_coord_offset+DIM3*2+YY1] -= ty;
635 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
636
637 /**************************
638 * CALCULATE INTERACTIONS *
639 **************************/
640
641 r33 = rsq33*rinv33;
642
643 /* Calculate table index by multiplying r with table scale and truncate to integer */
644 rt = r33*vftabscale;
645 vfitab = rt;
646 vfeps = rt-vfitab;
647 vfitab = 1*4*vfitab;
648
649 /* CUBIC SPLINE TABLE ELECTROSTATICS */
650 Y = vftab[vfitab];
651 F = vftab[vfitab+1];
652 Geps = vfeps*vftab[vfitab+2];
653 Heps2 = vfeps*vfeps*vftab[vfitab+3];
654 Fp = F+Geps+Heps2;
655 VV = Y+vfeps*Fp;
656 velec = qq33*VV;
657 FF = Fp+Geps+2.0*Heps2;
658 felec = -qq33*FF*vftabscale*rinv33;
659
660 /* Update potential sums from outer loop */
661 velecsum += velec;
662
663 fscal = felec;
664
665 /* Calculate temporary vectorial force */
666 tx = fscal*dx33;
667 ty = fscal*dy33;
668 tz = fscal*dz33;
669
670 /* Update vectorial force */
671 fix3 += tx;
672 fiy3 += ty;
673 fiz3 += tz;
674 f[j_coord_offset+DIM3*3+XX0] -= tx;
675 f[j_coord_offset+DIM3*3+YY1] -= ty;
676 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
677
678 /* Inner loop uses 401 flops */
679 }
680 /* End of innermost loop */
681
682 tx = ty = tz = 0;
683 f[i_coord_offset+DIM3*0+XX0] += fix0;
684 f[i_coord_offset+DIM3*0+YY1] += fiy0;
685 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
686 tx += fix0;
687 ty += fiy0;
688 tz += fiz0;
689 f[i_coord_offset+DIM3*1+XX0] += fix1;
690 f[i_coord_offset+DIM3*1+YY1] += fiy1;
691 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
692 tx += fix1;
693 ty += fiy1;
694 tz += fiz1;
695 f[i_coord_offset+DIM3*2+XX0] += fix2;
696 f[i_coord_offset+DIM3*2+YY1] += fiy2;
697 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
698 tx += fix2;
699 ty += fiy2;
700 tz += fiz2;
701 f[i_coord_offset+DIM3*3+XX0] += fix3;
702 f[i_coord_offset+DIM3*3+YY1] += fiy3;
703 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
704 tx += fix3;
705 ty += fiy3;
706 tz += fiz3;
707 fshift[i_shift_offset+XX0] += tx;
708 fshift[i_shift_offset+YY1] += ty;
709 fshift[i_shift_offset+ZZ2] += tz;
710
711 ggid = gid[iidx];
712 /* Update potential energies */
713 kernel_data->energygrp_elec[ggid] += velecsum;
714 kernel_data->energygrp_vdw[ggid] += vvdwsum;
715
716 /* Increment number of inner iterations */
717 inneriter += j_index_end - j_index_start;
718
719 /* Outer loop uses 41 flops */
720 }
721
722 /* Increment number of outer iterations */
723 outeriter += nri;
724
725 /* Update outer/inner flops */
726
727 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*401)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*401
;
728}
729/*
730 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW4W4_F_c
731 * Electrostatics interaction: CubicSplineTable
732 * VdW interaction: LennardJones
733 * Geometry: Water4-Water4
734 * Calculate force/pot: Force
735 */
736void
737nb_kernel_ElecCSTab_VdwLJ_GeomW4W4_F_c
738 (t_nblist * gmx_restrict__restrict nlist,
739 rvec * gmx_restrict__restrict xx,
740 rvec * gmx_restrict__restrict ff,
741 t_forcerec * gmx_restrict__restrict fr,
742 t_mdatoms * gmx_restrict__restrict mdatoms,
743 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
744 t_nrnb * gmx_restrict__restrict nrnb)
745{
746 int i_shift_offset,i_coord_offset,j_coord_offset;
747 int j_index_start,j_index_end;
748 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
749 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
750 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
751 real *shiftvec,*fshift,*x,*f;
752 int vdwioffset0;
753 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
754 int vdwioffset1;
755 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
756 int vdwioffset2;
757 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
758 int vdwioffset3;
759 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
760 int vdwjidx0;
761 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
762 int vdwjidx1;
763 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
764 int vdwjidx2;
765 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
766 int vdwjidx3;
767 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
768 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
769 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
770 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
771 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
772 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
773 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
774 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
775 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
776 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
777 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
778 real velec,felec,velecsum,facel,crf,krf,krf2;
779 real *charge;
780 int nvdwtype;
781 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
782 int *vdwtype;
783 real *vdwparam;
784 int vfitab;
785 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
786 real *vftab;
787
788 x = xx[0];
789 f = ff[0];
790
791 nri = nlist->nri;
792 iinr = nlist->iinr;
793 jindex = nlist->jindex;
794 jjnr = nlist->jjnr;
795 shiftidx = nlist->shift;
796 gid = nlist->gid;
Value stored to 'gid' is never read
797 shiftvec = fr->shift_vec[0];
798 fshift = fr->fshift[0];
799 facel = fr->epsfac;
800 charge = mdatoms->chargeA;
801 nvdwtype = fr->ntype;
802 vdwparam = fr->nbfp;
803 vdwtype = mdatoms->typeA;
804
805 vftab = kernel_data->table_elec->data;
806 vftabscale = kernel_data->table_elec->scale;
807
808 /* Setup water-specific parameters */
809 inr = nlist->iinr[0];
810 iq1 = facel*charge[inr+1];
811 iq2 = facel*charge[inr+2];
812 iq3 = facel*charge[inr+3];
813 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
814
815 jq1 = charge[inr+1];
816 jq2 = charge[inr+2];
817 jq3 = charge[inr+3];
818 vdwjidx0 = 2*vdwtype[inr+0];
819 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
820 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
821 qq11 = iq1*jq1;
822 qq12 = iq1*jq2;
823 qq13 = iq1*jq3;
824 qq21 = iq2*jq1;
825 qq22 = iq2*jq2;
826 qq23 = iq2*jq3;
827 qq31 = iq3*jq1;
828 qq32 = iq3*jq2;
829 qq33 = iq3*jq3;
830
831 outeriter = 0;
832 inneriter = 0;
833
834 /* Start outer loop over neighborlists */
835 for(iidx=0; iidx<nri; iidx++)
836 {
837 /* Load shift vector for this list */
838 i_shift_offset = DIM3*shiftidx[iidx];
839 shX = shiftvec[i_shift_offset+XX0];
840 shY = shiftvec[i_shift_offset+YY1];
841 shZ = shiftvec[i_shift_offset+ZZ2];
842
843 /* Load limits for loop over neighbors */
844 j_index_start = jindex[iidx];
845 j_index_end = jindex[iidx+1];
846
847 /* Get outer coordinate index */
848 inr = iinr[iidx];
849 i_coord_offset = DIM3*inr;
850
851 /* Load i particle coords and add shift vector */
852 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
853 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
854 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
855 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
856 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
857 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
858 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
859 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
860 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
861 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
862 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
863 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
864
865 fix0 = 0.0;
866 fiy0 = 0.0;
867 fiz0 = 0.0;
868 fix1 = 0.0;
869 fiy1 = 0.0;
870 fiz1 = 0.0;
871 fix2 = 0.0;
872 fiy2 = 0.0;
873 fiz2 = 0.0;
874 fix3 = 0.0;
875 fiy3 = 0.0;
876 fiz3 = 0.0;
877
878 /* Start inner kernel loop */
879 for(jidx=j_index_start; jidx<j_index_end; jidx++)
880 {
881 /* Get j neighbor index, and coordinate index */
882 jnr = jjnr[jidx];
883 j_coord_offset = DIM3*jnr;
884
885 /* load j atom coordinates */
886 jx0 = x[j_coord_offset+DIM3*0+XX0];
887 jy0 = x[j_coord_offset+DIM3*0+YY1];
888 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
889 jx1 = x[j_coord_offset+DIM3*1+XX0];
890 jy1 = x[j_coord_offset+DIM3*1+YY1];
891 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
892 jx2 = x[j_coord_offset+DIM3*2+XX0];
893 jy2 = x[j_coord_offset+DIM3*2+YY1];
894 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
895 jx3 = x[j_coord_offset+DIM3*3+XX0];
896 jy3 = x[j_coord_offset+DIM3*3+YY1];
897 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
898
899 /* Calculate displacement vector */
900 dx00 = ix0 - jx0;
901 dy00 = iy0 - jy0;
902 dz00 = iz0 - jz0;
903 dx11 = ix1 - jx1;
904 dy11 = iy1 - jy1;
905 dz11 = iz1 - jz1;
906 dx12 = ix1 - jx2;
907 dy12 = iy1 - jy2;
908 dz12 = iz1 - jz2;
909 dx13 = ix1 - jx3;
910 dy13 = iy1 - jy3;
911 dz13 = iz1 - jz3;
912 dx21 = ix2 - jx1;
913 dy21 = iy2 - jy1;
914 dz21 = iz2 - jz1;
915 dx22 = ix2 - jx2;
916 dy22 = iy2 - jy2;
917 dz22 = iz2 - jz2;
918 dx23 = ix2 - jx3;
919 dy23 = iy2 - jy3;
920 dz23 = iz2 - jz3;
921 dx31 = ix3 - jx1;
922 dy31 = iy3 - jy1;
923 dz31 = iz3 - jz1;
924 dx32 = ix3 - jx2;
925 dy32 = iy3 - jy2;
926 dz32 = iz3 - jz2;
927 dx33 = ix3 - jx3;
928 dy33 = iy3 - jy3;
929 dz33 = iz3 - jz3;
930
931 /* Calculate squared distance and things based on it */
932 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
933 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
934 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
935 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
936 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
937 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
938 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
939 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
940 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
941 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
942
943 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
944 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
945 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
946 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
947 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
948 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
949 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
950 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
951 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
952
953 rinvsq00 = 1.0/rsq00;
954
955 /**************************
956 * CALCULATE INTERACTIONS *
957 **************************/
958
959 /* LENNARD-JONES DISPERSION/REPULSION */
960
961 rinvsix = rinvsq00*rinvsq00*rinvsq00;
962 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
963
964 fscal = fvdw;
965
966 /* Calculate temporary vectorial force */
967 tx = fscal*dx00;
968 ty = fscal*dy00;
969 tz = fscal*dz00;
970
971 /* Update vectorial force */
972 fix0 += tx;
973 fiy0 += ty;
974 fiz0 += tz;
975 f[j_coord_offset+DIM3*0+XX0] -= tx;
976 f[j_coord_offset+DIM3*0+YY1] -= ty;
977 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
978
979 /**************************
980 * CALCULATE INTERACTIONS *
981 **************************/
982
983 r11 = rsq11*rinv11;
984
985 /* Calculate table index by multiplying r with table scale and truncate to integer */
986 rt = r11*vftabscale;
987 vfitab = rt;
988 vfeps = rt-vfitab;
989 vfitab = 1*4*vfitab;
990
991 /* CUBIC SPLINE TABLE ELECTROSTATICS */
992 F = vftab[vfitab+1];
993 Geps = vfeps*vftab[vfitab+2];
994 Heps2 = vfeps*vfeps*vftab[vfitab+3];
995 Fp = F+Geps+Heps2;
996 FF = Fp+Geps+2.0*Heps2;
997 felec = -qq11*FF*vftabscale*rinv11;
998
999 fscal = felec;
1000
1001 /* Calculate temporary vectorial force */
1002 tx = fscal*dx11;
1003 ty = fscal*dy11;
1004 tz = fscal*dz11;
1005
1006 /* Update vectorial force */
1007 fix1 += tx;
1008 fiy1 += ty;
1009 fiz1 += tz;
1010 f[j_coord_offset+DIM3*1+XX0] -= tx;
1011 f[j_coord_offset+DIM3*1+YY1] -= ty;
1012 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1013
1014 /**************************
1015 * CALCULATE INTERACTIONS *
1016 **************************/
1017
1018 r12 = rsq12*rinv12;
1019
1020 /* Calculate table index by multiplying r with table scale and truncate to integer */
1021 rt = r12*vftabscale;
1022 vfitab = rt;
1023 vfeps = rt-vfitab;
1024 vfitab = 1*4*vfitab;
1025
1026 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1027 F = vftab[vfitab+1];
1028 Geps = vfeps*vftab[vfitab+2];
1029 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1030 Fp = F+Geps+Heps2;
1031 FF = Fp+Geps+2.0*Heps2;
1032 felec = -qq12*FF*vftabscale*rinv12;
1033
1034 fscal = felec;
1035
1036 /* Calculate temporary vectorial force */
1037 tx = fscal*dx12;
1038 ty = fscal*dy12;
1039 tz = fscal*dz12;
1040
1041 /* Update vectorial force */
1042 fix1 += tx;
1043 fiy1 += ty;
1044 fiz1 += tz;
1045 f[j_coord_offset+DIM3*2+XX0] -= tx;
1046 f[j_coord_offset+DIM3*2+YY1] -= ty;
1047 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1048
1049 /**************************
1050 * CALCULATE INTERACTIONS *
1051 **************************/
1052
1053 r13 = rsq13*rinv13;
1054
1055 /* Calculate table index by multiplying r with table scale and truncate to integer */
1056 rt = r13*vftabscale;
1057 vfitab = rt;
1058 vfeps = rt-vfitab;
1059 vfitab = 1*4*vfitab;
1060
1061 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1062 F = vftab[vfitab+1];
1063 Geps = vfeps*vftab[vfitab+2];
1064 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1065 Fp = F+Geps+Heps2;
1066 FF = Fp+Geps+2.0*Heps2;
1067 felec = -qq13*FF*vftabscale*rinv13;
1068
1069 fscal = felec;
1070
1071 /* Calculate temporary vectorial force */
1072 tx = fscal*dx13;
1073 ty = fscal*dy13;
1074 tz = fscal*dz13;
1075
1076 /* Update vectorial force */
1077 fix1 += tx;
1078 fiy1 += ty;
1079 fiz1 += tz;
1080 f[j_coord_offset+DIM3*3+XX0] -= tx;
1081 f[j_coord_offset+DIM3*3+YY1] -= ty;
1082 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1083
1084 /**************************
1085 * CALCULATE INTERACTIONS *
1086 **************************/
1087
1088 r21 = rsq21*rinv21;
1089
1090 /* Calculate table index by multiplying r with table scale and truncate to integer */
1091 rt = r21*vftabscale;
1092 vfitab = rt;
1093 vfeps = rt-vfitab;
1094 vfitab = 1*4*vfitab;
1095
1096 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1097 F = vftab[vfitab+1];
1098 Geps = vfeps*vftab[vfitab+2];
1099 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1100 Fp = F+Geps+Heps2;
1101 FF = Fp+Geps+2.0*Heps2;
1102 felec = -qq21*FF*vftabscale*rinv21;
1103
1104 fscal = felec;
1105
1106 /* Calculate temporary vectorial force */
1107 tx = fscal*dx21;
1108 ty = fscal*dy21;
1109 tz = fscal*dz21;
1110
1111 /* Update vectorial force */
1112 fix2 += tx;
1113 fiy2 += ty;
1114 fiz2 += tz;
1115 f[j_coord_offset+DIM3*1+XX0] -= tx;
1116 f[j_coord_offset+DIM3*1+YY1] -= ty;
1117 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1118
1119 /**************************
1120 * CALCULATE INTERACTIONS *
1121 **************************/
1122
1123 r22 = rsq22*rinv22;
1124
1125 /* Calculate table index by multiplying r with table scale and truncate to integer */
1126 rt = r22*vftabscale;
1127 vfitab = rt;
1128 vfeps = rt-vfitab;
1129 vfitab = 1*4*vfitab;
1130
1131 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1132 F = vftab[vfitab+1];
1133 Geps = vfeps*vftab[vfitab+2];
1134 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1135 Fp = F+Geps+Heps2;
1136 FF = Fp+Geps+2.0*Heps2;
1137 felec = -qq22*FF*vftabscale*rinv22;
1138
1139 fscal = felec;
1140
1141 /* Calculate temporary vectorial force */
1142 tx = fscal*dx22;
1143 ty = fscal*dy22;
1144 tz = fscal*dz22;
1145
1146 /* Update vectorial force */
1147 fix2 += tx;
1148 fiy2 += ty;
1149 fiz2 += tz;
1150 f[j_coord_offset+DIM3*2+XX0] -= tx;
1151 f[j_coord_offset+DIM3*2+YY1] -= ty;
1152 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1153
1154 /**************************
1155 * CALCULATE INTERACTIONS *
1156 **************************/
1157
1158 r23 = rsq23*rinv23;
1159
1160 /* Calculate table index by multiplying r with table scale and truncate to integer */
1161 rt = r23*vftabscale;
1162 vfitab = rt;
1163 vfeps = rt-vfitab;
1164 vfitab = 1*4*vfitab;
1165
1166 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1167 F = vftab[vfitab+1];
1168 Geps = vfeps*vftab[vfitab+2];
1169 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1170 Fp = F+Geps+Heps2;
1171 FF = Fp+Geps+2.0*Heps2;
1172 felec = -qq23*FF*vftabscale*rinv23;
1173
1174 fscal = felec;
1175
1176 /* Calculate temporary vectorial force */
1177 tx = fscal*dx23;
1178 ty = fscal*dy23;
1179 tz = fscal*dz23;
1180
1181 /* Update vectorial force */
1182 fix2 += tx;
1183 fiy2 += ty;
1184 fiz2 += tz;
1185 f[j_coord_offset+DIM3*3+XX0] -= tx;
1186 f[j_coord_offset+DIM3*3+YY1] -= ty;
1187 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1188
1189 /**************************
1190 * CALCULATE INTERACTIONS *
1191 **************************/
1192
1193 r31 = rsq31*rinv31;
1194
1195 /* Calculate table index by multiplying r with table scale and truncate to integer */
1196 rt = r31*vftabscale;
1197 vfitab = rt;
1198 vfeps = rt-vfitab;
1199 vfitab = 1*4*vfitab;
1200
1201 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1202 F = vftab[vfitab+1];
1203 Geps = vfeps*vftab[vfitab+2];
1204 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1205 Fp = F+Geps+Heps2;
1206 FF = Fp+Geps+2.0*Heps2;
1207 felec = -qq31*FF*vftabscale*rinv31;
1208
1209 fscal = felec;
1210
1211 /* Calculate temporary vectorial force */
1212 tx = fscal*dx31;
1213 ty = fscal*dy31;
1214 tz = fscal*dz31;
1215
1216 /* Update vectorial force */
1217 fix3 += tx;
1218 fiy3 += ty;
1219 fiz3 += tz;
1220 f[j_coord_offset+DIM3*1+XX0] -= tx;
1221 f[j_coord_offset+DIM3*1+YY1] -= ty;
1222 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1223
1224 /**************************
1225 * CALCULATE INTERACTIONS *
1226 **************************/
1227
1228 r32 = rsq32*rinv32;
1229
1230 /* Calculate table index by multiplying r with table scale and truncate to integer */
1231 rt = r32*vftabscale;
1232 vfitab = rt;
1233 vfeps = rt-vfitab;
1234 vfitab = 1*4*vfitab;
1235
1236 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1237 F = vftab[vfitab+1];
1238 Geps = vfeps*vftab[vfitab+2];
1239 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1240 Fp = F+Geps+Heps2;
1241 FF = Fp+Geps+2.0*Heps2;
1242 felec = -qq32*FF*vftabscale*rinv32;
1243
1244 fscal = felec;
1245
1246 /* Calculate temporary vectorial force */
1247 tx = fscal*dx32;
1248 ty = fscal*dy32;
1249 tz = fscal*dz32;
1250
1251 /* Update vectorial force */
1252 fix3 += tx;
1253 fiy3 += ty;
1254 fiz3 += tz;
1255 f[j_coord_offset+DIM3*2+XX0] -= tx;
1256 f[j_coord_offset+DIM3*2+YY1] -= ty;
1257 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1258
1259 /**************************
1260 * CALCULATE INTERACTIONS *
1261 **************************/
1262
1263 r33 = rsq33*rinv33;
1264
1265 /* Calculate table index by multiplying r with table scale and truncate to integer */
1266 rt = r33*vftabscale;
1267 vfitab = rt;
1268 vfeps = rt-vfitab;
1269 vfitab = 1*4*vfitab;
1270
1271 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1272 F = vftab[vfitab+1];
1273 Geps = vfeps*vftab[vfitab+2];
1274 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1275 Fp = F+Geps+Heps2;
1276 FF = Fp+Geps+2.0*Heps2;
1277 felec = -qq33*FF*vftabscale*rinv33;
1278
1279 fscal = felec;
1280
1281 /* Calculate temporary vectorial force */
1282 tx = fscal*dx33;
1283 ty = fscal*dy33;
1284 tz = fscal*dz33;
1285
1286 /* Update vectorial force */
1287 fix3 += tx;
1288 fiy3 += ty;
1289 fiz3 += tz;
1290 f[j_coord_offset+DIM3*3+XX0] -= tx;
1291 f[j_coord_offset+DIM3*3+YY1] -= ty;
1292 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1293
1294 /* Inner loop uses 360 flops */
1295 }
1296 /* End of innermost loop */
1297
1298 tx = ty = tz = 0;
1299 f[i_coord_offset+DIM3*0+XX0] += fix0;
1300 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1301 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1302 tx += fix0;
1303 ty += fiy0;
1304 tz += fiz0;
1305 f[i_coord_offset+DIM3*1+XX0] += fix1;
1306 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1307 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1308 tx += fix1;
1309 ty += fiy1;
1310 tz += fiz1;
1311 f[i_coord_offset+DIM3*2+XX0] += fix2;
1312 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1313 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1314 tx += fix2;
1315 ty += fiy2;
1316 tz += fiz2;
1317 f[i_coord_offset+DIM3*3+XX0] += fix3;
1318 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1319 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1320 tx += fix3;
1321 ty += fiy3;
1322 tz += fiz3;
1323 fshift[i_shift_offset+XX0] += tx;
1324 fshift[i_shift_offset+YY1] += ty;
1325 fshift[i_shift_offset+ZZ2] += tz;
1326
1327 /* Increment number of inner iterations */
1328 inneriter += j_index_end - j_index_start;
1329
1330 /* Outer loop uses 39 flops */
1331 }
1332
1333 /* Increment number of outer iterations */
1334 outeriter += nri;
1335
1336 /* Update outer/inner flops */
1337
1338 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*360)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*360
;
1339}