Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwNone_GeomP1P1_c.c
Location:line 293, column 5
Description:Value stored to 'ewtabhalfspace' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int ewitab;
80 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
81 real *ewtab;
82
83 x = xx[0];
84 f = ff[0];
85
86 nri = nlist->nri;
87 iinr = nlist->iinr;
88 jindex = nlist->jindex;
89 jjnr = nlist->jjnr;
90 shiftidx = nlist->shift;
91 gid = nlist->gid;
92 shiftvec = fr->shift_vec[0];
93 fshift = fr->fshift[0];
94 facel = fr->epsfac;
95 charge = mdatoms->chargeA;
96
97 sh_ewald = fr->ic->sh_ewald;
98 ewtab = fr->ic->tabq_coul_FDV0;
99 ewtabscale = fr->ic->tabq_scale;
100 ewtabhalfspace = 0.5/ewtabscale;
101
102 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
103 rcutoff = fr->rcoulomb;
104 rcutoff2 = rcutoff*rcutoff;
105
106 outeriter = 0;
107 inneriter = 0;
108
109 /* Start outer loop over neighborlists */
110 for(iidx=0; iidx<nri; iidx++)
111 {
112 /* Load shift vector for this list */
113 i_shift_offset = DIM3*shiftidx[iidx];
114 shX = shiftvec[i_shift_offset+XX0];
115 shY = shiftvec[i_shift_offset+YY1];
116 shZ = shiftvec[i_shift_offset+ZZ2];
117
118 /* Load limits for loop over neighbors */
119 j_index_start = jindex[iidx];
120 j_index_end = jindex[iidx+1];
121
122 /* Get outer coordinate index */
123 inr = iinr[iidx];
124 i_coord_offset = DIM3*inr;
125
126 /* Load i particle coords and add shift vector */
127 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
128 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
129 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
130
131 fix0 = 0.0;
132 fiy0 = 0.0;
133 fiz0 = 0.0;
134
135 /* Load parameters for i particles */
136 iq0 = facel*charge[inr+0];
137
138 /* Reset potential sums */
139 velecsum = 0.0;
140
141 /* Start inner kernel loop */
142 for(jidx=j_index_start; jidx<j_index_end; jidx++)
143 {
144 /* Get j neighbor index, and coordinate index */
145 jnr = jjnr[jidx];
146 j_coord_offset = DIM3*jnr;
147
148 /* load j atom coordinates */
149 jx0 = x[j_coord_offset+DIM3*0+XX0];
150 jy0 = x[j_coord_offset+DIM3*0+YY1];
151 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
152
153 /* Calculate displacement vector */
154 dx00 = ix0 - jx0;
155 dy00 = iy0 - jy0;
156 dz00 = iz0 - jz0;
157
158 /* Calculate squared distance and things based on it */
159 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
160
161 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
162
163 rinvsq00 = rinv00*rinv00;
164
165 /* Load parameters for j particles */
166 jq0 = charge[jnr+0];
167
168 /**************************
169 * CALCULATE INTERACTIONS *
170 **************************/
171
172 if (rsq00<rcutoff2)
173 {
174
175 r00 = rsq00*rinv00;
176
177 qq00 = iq0*jq0;
178
179 /* EWALD ELECTROSTATICS */
180
181 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
182 ewrt = r00*ewtabscale;
183 ewitab = ewrt;
184 eweps = ewrt-ewitab;
185 ewitab = 4*ewitab;
186 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
187 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
188 felec = qq00*rinv00*(rinvsq00-felec);
189
190 /* Update potential sums from outer loop */
191 velecsum += velec;
192
193 fscal = felec;
194
195 /* Calculate temporary vectorial force */
196 tx = fscal*dx00;
197 ty = fscal*dy00;
198 tz = fscal*dz00;
199
200 /* Update vectorial force */
201 fix0 += tx;
202 fiy0 += ty;
203 fiz0 += tz;
204 f[j_coord_offset+DIM3*0+XX0] -= tx;
205 f[j_coord_offset+DIM3*0+YY1] -= ty;
206 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
207
208 }
209
210 /* Inner loop uses 42 flops */
211 }
212 /* End of innermost loop */
213
214 tx = ty = tz = 0;
215 f[i_coord_offset+DIM3*0+XX0] += fix0;
216 f[i_coord_offset+DIM3*0+YY1] += fiy0;
217 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
218 tx += fix0;
219 ty += fiy0;
220 tz += fiz0;
221 fshift[i_shift_offset+XX0] += tx;
222 fshift[i_shift_offset+YY1] += ty;
223 fshift[i_shift_offset+ZZ2] += tz;
224
225 ggid = gid[iidx];
226 /* Update potential energies */
227 kernel_data->energygrp_elec[ggid] += velecsum;
228
229 /* Increment number of inner iterations */
230 inneriter += j_index_end - j_index_start;
231
232 /* Outer loop uses 14 flops */
233 }
234
235 /* Increment number of outer iterations */
236 outeriter += nri;
237
238 /* Update outer/inner flops */
239
240 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*14 + inneriter*42)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*14 + inneriter
*42
;
241}
242/*
243 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_c
244 * Electrostatics interaction: Ewald
245 * VdW interaction: None
246 * Geometry: Particle-Particle
247 * Calculate force/pot: Force
248 */
249void
250nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_c
251 (t_nblist * gmx_restrict__restrict nlist,
252 rvec * gmx_restrict__restrict xx,
253 rvec * gmx_restrict__restrict ff,
254 t_forcerec * gmx_restrict__restrict fr,
255 t_mdatoms * gmx_restrict__restrict mdatoms,
256 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
257 t_nrnb * gmx_restrict__restrict nrnb)
258{
259 int i_shift_offset,i_coord_offset,j_coord_offset;
260 int j_index_start,j_index_end;
261 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
262 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
263 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
264 real *shiftvec,*fshift,*x,*f;
265 int vdwioffset0;
266 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
267 int vdwjidx0;
268 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
269 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
270 real velec,felec,velecsum,facel,crf,krf,krf2;
271 real *charge;
272 int ewitab;
273 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
274 real *ewtab;
275
276 x = xx[0];
277 f = ff[0];
278
279 nri = nlist->nri;
280 iinr = nlist->iinr;
281 jindex = nlist->jindex;
282 jjnr = nlist->jjnr;
283 shiftidx = nlist->shift;
284 gid = nlist->gid;
285 shiftvec = fr->shift_vec[0];
286 fshift = fr->fshift[0];
287 facel = fr->epsfac;
288 charge = mdatoms->chargeA;
289
290 sh_ewald = fr->ic->sh_ewald;
291 ewtab = fr->ic->tabq_coul_F;
292 ewtabscale = fr->ic->tabq_scale;
293 ewtabhalfspace = 0.5/ewtabscale;
Value stored to 'ewtabhalfspace' is never read
294
295 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
296 rcutoff = fr->rcoulomb;
297 rcutoff2 = rcutoff*rcutoff;
298
299 outeriter = 0;
300 inneriter = 0;
301
302 /* Start outer loop over neighborlists */
303 for(iidx=0; iidx<nri; iidx++)
304 {
305 /* Load shift vector for this list */
306 i_shift_offset = DIM3*shiftidx[iidx];
307 shX = shiftvec[i_shift_offset+XX0];
308 shY = shiftvec[i_shift_offset+YY1];
309 shZ = shiftvec[i_shift_offset+ZZ2];
310
311 /* Load limits for loop over neighbors */
312 j_index_start = jindex[iidx];
313 j_index_end = jindex[iidx+1];
314
315 /* Get outer coordinate index */
316 inr = iinr[iidx];
317 i_coord_offset = DIM3*inr;
318
319 /* Load i particle coords and add shift vector */
320 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
321 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
322 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
323
324 fix0 = 0.0;
325 fiy0 = 0.0;
326 fiz0 = 0.0;
327
328 /* Load parameters for i particles */
329 iq0 = facel*charge[inr+0];
330
331 /* Start inner kernel loop */
332 for(jidx=j_index_start; jidx<j_index_end; jidx++)
333 {
334 /* Get j neighbor index, and coordinate index */
335 jnr = jjnr[jidx];
336 j_coord_offset = DIM3*jnr;
337
338 /* load j atom coordinates */
339 jx0 = x[j_coord_offset+DIM3*0+XX0];
340 jy0 = x[j_coord_offset+DIM3*0+YY1];
341 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
342
343 /* Calculate displacement vector */
344 dx00 = ix0 - jx0;
345 dy00 = iy0 - jy0;
346 dz00 = iz0 - jz0;
347
348 /* Calculate squared distance and things based on it */
349 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
350
351 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
352
353 rinvsq00 = rinv00*rinv00;
354
355 /* Load parameters for j particles */
356 jq0 = charge[jnr+0];
357
358 /**************************
359 * CALCULATE INTERACTIONS *
360 **************************/
361
362 if (rsq00<rcutoff2)
363 {
364
365 r00 = rsq00*rinv00;
366
367 qq00 = iq0*jq0;
368
369 /* EWALD ELECTROSTATICS */
370
371 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372 ewrt = r00*ewtabscale;
373 ewitab = ewrt;
374 eweps = ewrt-ewitab;
375 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
376 felec = qq00*rinv00*(rinvsq00-felec);
377
378 fscal = felec;
379
380 /* Calculate temporary vectorial force */
381 tx = fscal*dx00;
382 ty = fscal*dy00;
383 tz = fscal*dz00;
384
385 /* Update vectorial force */
386 fix0 += tx;
387 fiy0 += ty;
388 fiz0 += tz;
389 f[j_coord_offset+DIM3*0+XX0] -= tx;
390 f[j_coord_offset+DIM3*0+YY1] -= ty;
391 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
392
393 }
394
395 /* Inner loop uses 34 flops */
396 }
397 /* End of innermost loop */
398
399 tx = ty = tz = 0;
400 f[i_coord_offset+DIM3*0+XX0] += fix0;
401 f[i_coord_offset+DIM3*0+YY1] += fiy0;
402 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
403 tx += fix0;
404 ty += fiy0;
405 tz += fiz0;
406 fshift[i_shift_offset+XX0] += tx;
407 fshift[i_shift_offset+YY1] += ty;
408 fshift[i_shift_offset+ZZ2] += tz;
409
410 /* Increment number of inner iterations */
411 inneriter += j_index_end - j_index_start;
412
413 /* Outer loop uses 13 flops */
414 }
415
416 /* Increment number of outer iterations */
417 outeriter += nri;
418
419 /* Update outer/inner flops */
420
421 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*13 + inneriter*34)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*13 + inneriter
*34
;
422}