Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwLJ_GeomW3W3_c.c
Location:line 746, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW3W3_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwLJ_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int vfitab;
100 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
101 real *vftab;
102
103 x = xx[0];
104 f = ff[0];
105
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = fr->epsfac;
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 vftab = kernel_data->table_elec->data;
121 vftabscale = kernel_data->table_elec->scale;
122
123 /* Setup water-specific parameters */
124 inr = nlist->iinr[0];
125 iq0 = facel*charge[inr+0];
126 iq1 = facel*charge[inr+1];
127 iq2 = facel*charge[inr+2];
128 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
129
130 jq0 = charge[inr+0];
131 jq1 = charge[inr+1];
132 jq2 = charge[inr+2];
133 vdwjidx0 = 2*vdwtype[inr+0];
134 qq00 = iq0*jq0;
135 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
136 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
137 qq01 = iq0*jq1;
138 qq02 = iq0*jq2;
139 qq10 = iq1*jq0;
140 qq11 = iq1*jq1;
141 qq12 = iq1*jq2;
142 qq20 = iq2*jq0;
143 qq21 = iq2*jq1;
144 qq22 = iq2*jq2;
145
146 outeriter = 0;
147 inneriter = 0;
148
149 /* Start outer loop over neighborlists */
150 for(iidx=0; iidx<nri; iidx++)
151 {
152 /* Load shift vector for this list */
153 i_shift_offset = DIM3*shiftidx[iidx];
154 shX = shiftvec[i_shift_offset+XX0];
155 shY = shiftvec[i_shift_offset+YY1];
156 shZ = shiftvec[i_shift_offset+ZZ2];
157
158 /* Load limits for loop over neighbors */
159 j_index_start = jindex[iidx];
160 j_index_end = jindex[iidx+1];
161
162 /* Get outer coordinate index */
163 inr = iinr[iidx];
164 i_coord_offset = DIM3*inr;
165
166 /* Load i particle coords and add shift vector */
167 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
168 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
169 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
170 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
171 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
172 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
173 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
174 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
175 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
176
177 fix0 = 0.0;
178 fiy0 = 0.0;
179 fiz0 = 0.0;
180 fix1 = 0.0;
181 fiy1 = 0.0;
182 fiz1 = 0.0;
183 fix2 = 0.0;
184 fiy2 = 0.0;
185 fiz2 = 0.0;
186
187 /* Reset potential sums */
188 velecsum = 0.0;
189 vvdwsum = 0.0;
190
191 /* Start inner kernel loop */
192 for(jidx=j_index_start; jidx<j_index_end; jidx++)
193 {
194 /* Get j neighbor index, and coordinate index */
195 jnr = jjnr[jidx];
196 j_coord_offset = DIM3*jnr;
197
198 /* load j atom coordinates */
199 jx0 = x[j_coord_offset+DIM3*0+XX0];
200 jy0 = x[j_coord_offset+DIM3*0+YY1];
201 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
202 jx1 = x[j_coord_offset+DIM3*1+XX0];
203 jy1 = x[j_coord_offset+DIM3*1+YY1];
204 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
205 jx2 = x[j_coord_offset+DIM3*2+XX0];
206 jy2 = x[j_coord_offset+DIM3*2+YY1];
207 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
208
209 /* Calculate displacement vector */
210 dx00 = ix0 - jx0;
211 dy00 = iy0 - jy0;
212 dz00 = iz0 - jz0;
213 dx01 = ix0 - jx1;
214 dy01 = iy0 - jy1;
215 dz01 = iz0 - jz1;
216 dx02 = ix0 - jx2;
217 dy02 = iy0 - jy2;
218 dz02 = iz0 - jz2;
219 dx10 = ix1 - jx0;
220 dy10 = iy1 - jy0;
221 dz10 = iz1 - jz0;
222 dx11 = ix1 - jx1;
223 dy11 = iy1 - jy1;
224 dz11 = iz1 - jz1;
225 dx12 = ix1 - jx2;
226 dy12 = iy1 - jy2;
227 dz12 = iz1 - jz2;
228 dx20 = ix2 - jx0;
229 dy20 = iy2 - jy0;
230 dz20 = iz2 - jz0;
231 dx21 = ix2 - jx1;
232 dy21 = iy2 - jy1;
233 dz21 = iz2 - jz1;
234 dx22 = ix2 - jx2;
235 dy22 = iy2 - jy2;
236 dz22 = iz2 - jz2;
237
238 /* Calculate squared distance and things based on it */
239 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
240 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
241 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
242 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
243 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
244 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
245 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
246 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
247 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
248
249 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
250 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
251 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
252 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
253 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
254 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
255 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
256 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
257 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
258
259 rinvsq00 = rinv00*rinv00;
260
261 /**************************
262 * CALCULATE INTERACTIONS *
263 **************************/
264
265 r00 = rsq00*rinv00;
266
267 /* Calculate table index by multiplying r with table scale and truncate to integer */
268 rt = r00*vftabscale;
269 vfitab = rt;
270 vfeps = rt-vfitab;
271 vfitab = 1*4*vfitab;
272
273 /* CUBIC SPLINE TABLE ELECTROSTATICS */
274 Y = vftab[vfitab];
275 F = vftab[vfitab+1];
276 Geps = vfeps*vftab[vfitab+2];
277 Heps2 = vfeps*vfeps*vftab[vfitab+3];
278 Fp = F+Geps+Heps2;
279 VV = Y+vfeps*Fp;
280 velec = qq00*VV;
281 FF = Fp+Geps+2.0*Heps2;
282 felec = -qq00*FF*vftabscale*rinv00;
283
284 /* LENNARD-JONES DISPERSION/REPULSION */
285
286 rinvsix = rinvsq00*rinvsq00*rinvsq00;
287 vvdw6 = c6_00*rinvsix;
288 vvdw12 = c12_00*rinvsix*rinvsix;
289 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
290 fvdw = (vvdw12-vvdw6)*rinvsq00;
291
292 /* Update potential sums from outer loop */
293 velecsum += velec;
294 vvdwsum += vvdw;
295
296 fscal = felec+fvdw;
297
298 /* Calculate temporary vectorial force */
299 tx = fscal*dx00;
300 ty = fscal*dy00;
301 tz = fscal*dz00;
302
303 /* Update vectorial force */
304 fix0 += tx;
305 fiy0 += ty;
306 fiz0 += tz;
307 f[j_coord_offset+DIM3*0+XX0] -= tx;
308 f[j_coord_offset+DIM3*0+YY1] -= ty;
309 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
310
311 /**************************
312 * CALCULATE INTERACTIONS *
313 **************************/
314
315 r01 = rsq01*rinv01;
316
317 /* Calculate table index by multiplying r with table scale and truncate to integer */
318 rt = r01*vftabscale;
319 vfitab = rt;
320 vfeps = rt-vfitab;
321 vfitab = 1*4*vfitab;
322
323 /* CUBIC SPLINE TABLE ELECTROSTATICS */
324 Y = vftab[vfitab];
325 F = vftab[vfitab+1];
326 Geps = vfeps*vftab[vfitab+2];
327 Heps2 = vfeps*vfeps*vftab[vfitab+3];
328 Fp = F+Geps+Heps2;
329 VV = Y+vfeps*Fp;
330 velec = qq01*VV;
331 FF = Fp+Geps+2.0*Heps2;
332 felec = -qq01*FF*vftabscale*rinv01;
333
334 /* Update potential sums from outer loop */
335 velecsum += velec;
336
337 fscal = felec;
338
339 /* Calculate temporary vectorial force */
340 tx = fscal*dx01;
341 ty = fscal*dy01;
342 tz = fscal*dz01;
343
344 /* Update vectorial force */
345 fix0 += tx;
346 fiy0 += ty;
347 fiz0 += tz;
348 f[j_coord_offset+DIM3*1+XX0] -= tx;
349 f[j_coord_offset+DIM3*1+YY1] -= ty;
350 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
351
352 /**************************
353 * CALCULATE INTERACTIONS *
354 **************************/
355
356 r02 = rsq02*rinv02;
357
358 /* Calculate table index by multiplying r with table scale and truncate to integer */
359 rt = r02*vftabscale;
360 vfitab = rt;
361 vfeps = rt-vfitab;
362 vfitab = 1*4*vfitab;
363
364 /* CUBIC SPLINE TABLE ELECTROSTATICS */
365 Y = vftab[vfitab];
366 F = vftab[vfitab+1];
367 Geps = vfeps*vftab[vfitab+2];
368 Heps2 = vfeps*vfeps*vftab[vfitab+3];
369 Fp = F+Geps+Heps2;
370 VV = Y+vfeps*Fp;
371 velec = qq02*VV;
372 FF = Fp+Geps+2.0*Heps2;
373 felec = -qq02*FF*vftabscale*rinv02;
374
375 /* Update potential sums from outer loop */
376 velecsum += velec;
377
378 fscal = felec;
379
380 /* Calculate temporary vectorial force */
381 tx = fscal*dx02;
382 ty = fscal*dy02;
383 tz = fscal*dz02;
384
385 /* Update vectorial force */
386 fix0 += tx;
387 fiy0 += ty;
388 fiz0 += tz;
389 f[j_coord_offset+DIM3*2+XX0] -= tx;
390 f[j_coord_offset+DIM3*2+YY1] -= ty;
391 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
392
393 /**************************
394 * CALCULATE INTERACTIONS *
395 **************************/
396
397 r10 = rsq10*rinv10;
398
399 /* Calculate table index by multiplying r with table scale and truncate to integer */
400 rt = r10*vftabscale;
401 vfitab = rt;
402 vfeps = rt-vfitab;
403 vfitab = 1*4*vfitab;
404
405 /* CUBIC SPLINE TABLE ELECTROSTATICS */
406 Y = vftab[vfitab];
407 F = vftab[vfitab+1];
408 Geps = vfeps*vftab[vfitab+2];
409 Heps2 = vfeps*vfeps*vftab[vfitab+3];
410 Fp = F+Geps+Heps2;
411 VV = Y+vfeps*Fp;
412 velec = qq10*VV;
413 FF = Fp+Geps+2.0*Heps2;
414 felec = -qq10*FF*vftabscale*rinv10;
415
416 /* Update potential sums from outer loop */
417 velecsum += velec;
418
419 fscal = felec;
420
421 /* Calculate temporary vectorial force */
422 tx = fscal*dx10;
423 ty = fscal*dy10;
424 tz = fscal*dz10;
425
426 /* Update vectorial force */
427 fix1 += tx;
428 fiy1 += ty;
429 fiz1 += tz;
430 f[j_coord_offset+DIM3*0+XX0] -= tx;
431 f[j_coord_offset+DIM3*0+YY1] -= ty;
432 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
433
434 /**************************
435 * CALCULATE INTERACTIONS *
436 **************************/
437
438 r11 = rsq11*rinv11;
439
440 /* Calculate table index by multiplying r with table scale and truncate to integer */
441 rt = r11*vftabscale;
442 vfitab = rt;
443 vfeps = rt-vfitab;
444 vfitab = 1*4*vfitab;
445
446 /* CUBIC SPLINE TABLE ELECTROSTATICS */
447 Y = vftab[vfitab];
448 F = vftab[vfitab+1];
449 Geps = vfeps*vftab[vfitab+2];
450 Heps2 = vfeps*vfeps*vftab[vfitab+3];
451 Fp = F+Geps+Heps2;
452 VV = Y+vfeps*Fp;
453 velec = qq11*VV;
454 FF = Fp+Geps+2.0*Heps2;
455 felec = -qq11*FF*vftabscale*rinv11;
456
457 /* Update potential sums from outer loop */
458 velecsum += velec;
459
460 fscal = felec;
461
462 /* Calculate temporary vectorial force */
463 tx = fscal*dx11;
464 ty = fscal*dy11;
465 tz = fscal*dz11;
466
467 /* Update vectorial force */
468 fix1 += tx;
469 fiy1 += ty;
470 fiz1 += tz;
471 f[j_coord_offset+DIM3*1+XX0] -= tx;
472 f[j_coord_offset+DIM3*1+YY1] -= ty;
473 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
474
475 /**************************
476 * CALCULATE INTERACTIONS *
477 **************************/
478
479 r12 = rsq12*rinv12;
480
481 /* Calculate table index by multiplying r with table scale and truncate to integer */
482 rt = r12*vftabscale;
483 vfitab = rt;
484 vfeps = rt-vfitab;
485 vfitab = 1*4*vfitab;
486
487 /* CUBIC SPLINE TABLE ELECTROSTATICS */
488 Y = vftab[vfitab];
489 F = vftab[vfitab+1];
490 Geps = vfeps*vftab[vfitab+2];
491 Heps2 = vfeps*vfeps*vftab[vfitab+3];
492 Fp = F+Geps+Heps2;
493 VV = Y+vfeps*Fp;
494 velec = qq12*VV;
495 FF = Fp+Geps+2.0*Heps2;
496 felec = -qq12*FF*vftabscale*rinv12;
497
498 /* Update potential sums from outer loop */
499 velecsum += velec;
500
501 fscal = felec;
502
503 /* Calculate temporary vectorial force */
504 tx = fscal*dx12;
505 ty = fscal*dy12;
506 tz = fscal*dz12;
507
508 /* Update vectorial force */
509 fix1 += tx;
510 fiy1 += ty;
511 fiz1 += tz;
512 f[j_coord_offset+DIM3*2+XX0] -= tx;
513 f[j_coord_offset+DIM3*2+YY1] -= ty;
514 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
515
516 /**************************
517 * CALCULATE INTERACTIONS *
518 **************************/
519
520 r20 = rsq20*rinv20;
521
522 /* Calculate table index by multiplying r with table scale and truncate to integer */
523 rt = r20*vftabscale;
524 vfitab = rt;
525 vfeps = rt-vfitab;
526 vfitab = 1*4*vfitab;
527
528 /* CUBIC SPLINE TABLE ELECTROSTATICS */
529 Y = vftab[vfitab];
530 F = vftab[vfitab+1];
531 Geps = vfeps*vftab[vfitab+2];
532 Heps2 = vfeps*vfeps*vftab[vfitab+3];
533 Fp = F+Geps+Heps2;
534 VV = Y+vfeps*Fp;
535 velec = qq20*VV;
536 FF = Fp+Geps+2.0*Heps2;
537 felec = -qq20*FF*vftabscale*rinv20;
538
539 /* Update potential sums from outer loop */
540 velecsum += velec;
541
542 fscal = felec;
543
544 /* Calculate temporary vectorial force */
545 tx = fscal*dx20;
546 ty = fscal*dy20;
547 tz = fscal*dz20;
548
549 /* Update vectorial force */
550 fix2 += tx;
551 fiy2 += ty;
552 fiz2 += tz;
553 f[j_coord_offset+DIM3*0+XX0] -= tx;
554 f[j_coord_offset+DIM3*0+YY1] -= ty;
555 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
556
557 /**************************
558 * CALCULATE INTERACTIONS *
559 **************************/
560
561 r21 = rsq21*rinv21;
562
563 /* Calculate table index by multiplying r with table scale and truncate to integer */
564 rt = r21*vftabscale;
565 vfitab = rt;
566 vfeps = rt-vfitab;
567 vfitab = 1*4*vfitab;
568
569 /* CUBIC SPLINE TABLE ELECTROSTATICS */
570 Y = vftab[vfitab];
571 F = vftab[vfitab+1];
572 Geps = vfeps*vftab[vfitab+2];
573 Heps2 = vfeps*vfeps*vftab[vfitab+3];
574 Fp = F+Geps+Heps2;
575 VV = Y+vfeps*Fp;
576 velec = qq21*VV;
577 FF = Fp+Geps+2.0*Heps2;
578 felec = -qq21*FF*vftabscale*rinv21;
579
580 /* Update potential sums from outer loop */
581 velecsum += velec;
582
583 fscal = felec;
584
585 /* Calculate temporary vectorial force */
586 tx = fscal*dx21;
587 ty = fscal*dy21;
588 tz = fscal*dz21;
589
590 /* Update vectorial force */
591 fix2 += tx;
592 fiy2 += ty;
593 fiz2 += tz;
594 f[j_coord_offset+DIM3*1+XX0] -= tx;
595 f[j_coord_offset+DIM3*1+YY1] -= ty;
596 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
597
598 /**************************
599 * CALCULATE INTERACTIONS *
600 **************************/
601
602 r22 = rsq22*rinv22;
603
604 /* Calculate table index by multiplying r with table scale and truncate to integer */
605 rt = r22*vftabscale;
606 vfitab = rt;
607 vfeps = rt-vfitab;
608 vfitab = 1*4*vfitab;
609
610 /* CUBIC SPLINE TABLE ELECTROSTATICS */
611 Y = vftab[vfitab];
612 F = vftab[vfitab+1];
613 Geps = vfeps*vftab[vfitab+2];
614 Heps2 = vfeps*vfeps*vftab[vfitab+3];
615 Fp = F+Geps+Heps2;
616 VV = Y+vfeps*Fp;
617 velec = qq22*VV;
618 FF = Fp+Geps+2.0*Heps2;
619 felec = -qq22*FF*vftabscale*rinv22;
620
621 /* Update potential sums from outer loop */
622 velecsum += velec;
623
624 fscal = felec;
625
626 /* Calculate temporary vectorial force */
627 tx = fscal*dx22;
628 ty = fscal*dy22;
629 tz = fscal*dz22;
630
631 /* Update vectorial force */
632 fix2 += tx;
633 fiy2 += ty;
634 fiz2 += tz;
635 f[j_coord_offset+DIM3*2+XX0] -= tx;
636 f[j_coord_offset+DIM3*2+YY1] -= ty;
637 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
638
639 /* Inner loop uses 382 flops */
640 }
641 /* End of innermost loop */
642
643 tx = ty = tz = 0;
644 f[i_coord_offset+DIM3*0+XX0] += fix0;
645 f[i_coord_offset+DIM3*0+YY1] += fiy0;
646 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
647 tx += fix0;
648 ty += fiy0;
649 tz += fiz0;
650 f[i_coord_offset+DIM3*1+XX0] += fix1;
651 f[i_coord_offset+DIM3*1+YY1] += fiy1;
652 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
653 tx += fix1;
654 ty += fiy1;
655 tz += fiz1;
656 f[i_coord_offset+DIM3*2+XX0] += fix2;
657 f[i_coord_offset+DIM3*2+YY1] += fiy2;
658 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
659 tx += fix2;
660 ty += fiy2;
661 tz += fiz2;
662 fshift[i_shift_offset+XX0] += tx;
663 fshift[i_shift_offset+YY1] += ty;
664 fshift[i_shift_offset+ZZ2] += tz;
665
666 ggid = gid[iidx];
667 /* Update potential energies */
668 kernel_data->energygrp_elec[ggid] += velecsum;
669 kernel_data->energygrp_vdw[ggid] += vvdwsum;
670
671 /* Increment number of inner iterations */
672 inneriter += j_index_end - j_index_start;
673
674 /* Outer loop uses 32 flops */
675 }
676
677 /* Increment number of outer iterations */
678 outeriter += nri;
679
680 /* Update outer/inner flops */
681
682 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*382)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*382
;
683}
684/*
685 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW3W3_F_c
686 * Electrostatics interaction: CubicSplineTable
687 * VdW interaction: LennardJones
688 * Geometry: Water3-Water3
689 * Calculate force/pot: Force
690 */
691void
692nb_kernel_ElecCSTab_VdwLJ_GeomW3W3_F_c
693 (t_nblist * gmx_restrict__restrict nlist,
694 rvec * gmx_restrict__restrict xx,
695 rvec * gmx_restrict__restrict ff,
696 t_forcerec * gmx_restrict__restrict fr,
697 t_mdatoms * gmx_restrict__restrict mdatoms,
698 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
699 t_nrnb * gmx_restrict__restrict nrnb)
700{
701 int i_shift_offset,i_coord_offset,j_coord_offset;
702 int j_index_start,j_index_end;
703 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
704 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
705 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
706 real *shiftvec,*fshift,*x,*f;
707 int vdwioffset0;
708 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
709 int vdwioffset1;
710 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
711 int vdwioffset2;
712 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
713 int vdwjidx0;
714 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
715 int vdwjidx1;
716 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
717 int vdwjidx2;
718 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
719 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
720 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
721 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
722 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
723 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
724 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
725 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
726 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
727 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
728 real velec,felec,velecsum,facel,crf,krf,krf2;
729 real *charge;
730 int nvdwtype;
731 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
732 int *vdwtype;
733 real *vdwparam;
734 int vfitab;
735 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
736 real *vftab;
737
738 x = xx[0];
739 f = ff[0];
740
741 nri = nlist->nri;
742 iinr = nlist->iinr;
743 jindex = nlist->jindex;
744 jjnr = nlist->jjnr;
745 shiftidx = nlist->shift;
746 gid = nlist->gid;
Value stored to 'gid' is never read
747 shiftvec = fr->shift_vec[0];
748 fshift = fr->fshift[0];
749 facel = fr->epsfac;
750 charge = mdatoms->chargeA;
751 nvdwtype = fr->ntype;
752 vdwparam = fr->nbfp;
753 vdwtype = mdatoms->typeA;
754
755 vftab = kernel_data->table_elec->data;
756 vftabscale = kernel_data->table_elec->scale;
757
758 /* Setup water-specific parameters */
759 inr = nlist->iinr[0];
760 iq0 = facel*charge[inr+0];
761 iq1 = facel*charge[inr+1];
762 iq2 = facel*charge[inr+2];
763 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
764
765 jq0 = charge[inr+0];
766 jq1 = charge[inr+1];
767 jq2 = charge[inr+2];
768 vdwjidx0 = 2*vdwtype[inr+0];
769 qq00 = iq0*jq0;
770 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
771 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
772 qq01 = iq0*jq1;
773 qq02 = iq0*jq2;
774 qq10 = iq1*jq0;
775 qq11 = iq1*jq1;
776 qq12 = iq1*jq2;
777 qq20 = iq2*jq0;
778 qq21 = iq2*jq1;
779 qq22 = iq2*jq2;
780
781 outeriter = 0;
782 inneriter = 0;
783
784 /* Start outer loop over neighborlists */
785 for(iidx=0; iidx<nri; iidx++)
786 {
787 /* Load shift vector for this list */
788 i_shift_offset = DIM3*shiftidx[iidx];
789 shX = shiftvec[i_shift_offset+XX0];
790 shY = shiftvec[i_shift_offset+YY1];
791 shZ = shiftvec[i_shift_offset+ZZ2];
792
793 /* Load limits for loop over neighbors */
794 j_index_start = jindex[iidx];
795 j_index_end = jindex[iidx+1];
796
797 /* Get outer coordinate index */
798 inr = iinr[iidx];
799 i_coord_offset = DIM3*inr;
800
801 /* Load i particle coords and add shift vector */
802 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
803 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
804 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
805 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
806 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
807 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
808 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
809 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
810 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
811
812 fix0 = 0.0;
813 fiy0 = 0.0;
814 fiz0 = 0.0;
815 fix1 = 0.0;
816 fiy1 = 0.0;
817 fiz1 = 0.0;
818 fix2 = 0.0;
819 fiy2 = 0.0;
820 fiz2 = 0.0;
821
822 /* Start inner kernel loop */
823 for(jidx=j_index_start; jidx<j_index_end; jidx++)
824 {
825 /* Get j neighbor index, and coordinate index */
826 jnr = jjnr[jidx];
827 j_coord_offset = DIM3*jnr;
828
829 /* load j atom coordinates */
830 jx0 = x[j_coord_offset+DIM3*0+XX0];
831 jy0 = x[j_coord_offset+DIM3*0+YY1];
832 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
833 jx1 = x[j_coord_offset+DIM3*1+XX0];
834 jy1 = x[j_coord_offset+DIM3*1+YY1];
835 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
836 jx2 = x[j_coord_offset+DIM3*2+XX0];
837 jy2 = x[j_coord_offset+DIM3*2+YY1];
838 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
839
840 /* Calculate displacement vector */
841 dx00 = ix0 - jx0;
842 dy00 = iy0 - jy0;
843 dz00 = iz0 - jz0;
844 dx01 = ix0 - jx1;
845 dy01 = iy0 - jy1;
846 dz01 = iz0 - jz1;
847 dx02 = ix0 - jx2;
848 dy02 = iy0 - jy2;
849 dz02 = iz0 - jz2;
850 dx10 = ix1 - jx0;
851 dy10 = iy1 - jy0;
852 dz10 = iz1 - jz0;
853 dx11 = ix1 - jx1;
854 dy11 = iy1 - jy1;
855 dz11 = iz1 - jz1;
856 dx12 = ix1 - jx2;
857 dy12 = iy1 - jy2;
858 dz12 = iz1 - jz2;
859 dx20 = ix2 - jx0;
860 dy20 = iy2 - jy0;
861 dz20 = iz2 - jz0;
862 dx21 = ix2 - jx1;
863 dy21 = iy2 - jy1;
864 dz21 = iz2 - jz1;
865 dx22 = ix2 - jx2;
866 dy22 = iy2 - jy2;
867 dz22 = iz2 - jz2;
868
869 /* Calculate squared distance and things based on it */
870 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
871 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
872 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
873 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
874 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
875 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
876 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
877 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
878 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
879
880 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
881 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
882 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
883 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
884 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
885 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
886 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
887 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
888 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
889
890 rinvsq00 = rinv00*rinv00;
891
892 /**************************
893 * CALCULATE INTERACTIONS *
894 **************************/
895
896 r00 = rsq00*rinv00;
897
898 /* Calculate table index by multiplying r with table scale and truncate to integer */
899 rt = r00*vftabscale;
900 vfitab = rt;
901 vfeps = rt-vfitab;
902 vfitab = 1*4*vfitab;
903
904 /* CUBIC SPLINE TABLE ELECTROSTATICS */
905 F = vftab[vfitab+1];
906 Geps = vfeps*vftab[vfitab+2];
907 Heps2 = vfeps*vfeps*vftab[vfitab+3];
908 Fp = F+Geps+Heps2;
909 FF = Fp+Geps+2.0*Heps2;
910 felec = -qq00*FF*vftabscale*rinv00;
911
912 /* LENNARD-JONES DISPERSION/REPULSION */
913
914 rinvsix = rinvsq00*rinvsq00*rinvsq00;
915 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
916
917 fscal = felec+fvdw;
918
919 /* Calculate temporary vectorial force */
920 tx = fscal*dx00;
921 ty = fscal*dy00;
922 tz = fscal*dz00;
923
924 /* Update vectorial force */
925 fix0 += tx;
926 fiy0 += ty;
927 fiz0 += tz;
928 f[j_coord_offset+DIM3*0+XX0] -= tx;
929 f[j_coord_offset+DIM3*0+YY1] -= ty;
930 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
931
932 /**************************
933 * CALCULATE INTERACTIONS *
934 **************************/
935
936 r01 = rsq01*rinv01;
937
938 /* Calculate table index by multiplying r with table scale and truncate to integer */
939 rt = r01*vftabscale;
940 vfitab = rt;
941 vfeps = rt-vfitab;
942 vfitab = 1*4*vfitab;
943
944 /* CUBIC SPLINE TABLE ELECTROSTATICS */
945 F = vftab[vfitab+1];
946 Geps = vfeps*vftab[vfitab+2];
947 Heps2 = vfeps*vfeps*vftab[vfitab+3];
948 Fp = F+Geps+Heps2;
949 FF = Fp+Geps+2.0*Heps2;
950 felec = -qq01*FF*vftabscale*rinv01;
951
952 fscal = felec;
953
954 /* Calculate temporary vectorial force */
955 tx = fscal*dx01;
956 ty = fscal*dy01;
957 tz = fscal*dz01;
958
959 /* Update vectorial force */
960 fix0 += tx;
961 fiy0 += ty;
962 fiz0 += tz;
963 f[j_coord_offset+DIM3*1+XX0] -= tx;
964 f[j_coord_offset+DIM3*1+YY1] -= ty;
965 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
966
967 /**************************
968 * CALCULATE INTERACTIONS *
969 **************************/
970
971 r02 = rsq02*rinv02;
972
973 /* Calculate table index by multiplying r with table scale and truncate to integer */
974 rt = r02*vftabscale;
975 vfitab = rt;
976 vfeps = rt-vfitab;
977 vfitab = 1*4*vfitab;
978
979 /* CUBIC SPLINE TABLE ELECTROSTATICS */
980 F = vftab[vfitab+1];
981 Geps = vfeps*vftab[vfitab+2];
982 Heps2 = vfeps*vfeps*vftab[vfitab+3];
983 Fp = F+Geps+Heps2;
984 FF = Fp+Geps+2.0*Heps2;
985 felec = -qq02*FF*vftabscale*rinv02;
986
987 fscal = felec;
988
989 /* Calculate temporary vectorial force */
990 tx = fscal*dx02;
991 ty = fscal*dy02;
992 tz = fscal*dz02;
993
994 /* Update vectorial force */
995 fix0 += tx;
996 fiy0 += ty;
997 fiz0 += tz;
998 f[j_coord_offset+DIM3*2+XX0] -= tx;
999 f[j_coord_offset+DIM3*2+YY1] -= ty;
1000 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1001
1002 /**************************
1003 * CALCULATE INTERACTIONS *
1004 **************************/
1005
1006 r10 = rsq10*rinv10;
1007
1008 /* Calculate table index by multiplying r with table scale and truncate to integer */
1009 rt = r10*vftabscale;
1010 vfitab = rt;
1011 vfeps = rt-vfitab;
1012 vfitab = 1*4*vfitab;
1013
1014 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1015 F = vftab[vfitab+1];
1016 Geps = vfeps*vftab[vfitab+2];
1017 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1018 Fp = F+Geps+Heps2;
1019 FF = Fp+Geps+2.0*Heps2;
1020 felec = -qq10*FF*vftabscale*rinv10;
1021
1022 fscal = felec;
1023
1024 /* Calculate temporary vectorial force */
1025 tx = fscal*dx10;
1026 ty = fscal*dy10;
1027 tz = fscal*dz10;
1028
1029 /* Update vectorial force */
1030 fix1 += tx;
1031 fiy1 += ty;
1032 fiz1 += tz;
1033 f[j_coord_offset+DIM3*0+XX0] -= tx;
1034 f[j_coord_offset+DIM3*0+YY1] -= ty;
1035 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1036
1037 /**************************
1038 * CALCULATE INTERACTIONS *
1039 **************************/
1040
1041 r11 = rsq11*rinv11;
1042
1043 /* Calculate table index by multiplying r with table scale and truncate to integer */
1044 rt = r11*vftabscale;
1045 vfitab = rt;
1046 vfeps = rt-vfitab;
1047 vfitab = 1*4*vfitab;
1048
1049 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1050 F = vftab[vfitab+1];
1051 Geps = vfeps*vftab[vfitab+2];
1052 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1053 Fp = F+Geps+Heps2;
1054 FF = Fp+Geps+2.0*Heps2;
1055 felec = -qq11*FF*vftabscale*rinv11;
1056
1057 fscal = felec;
1058
1059 /* Calculate temporary vectorial force */
1060 tx = fscal*dx11;
1061 ty = fscal*dy11;
1062 tz = fscal*dz11;
1063
1064 /* Update vectorial force */
1065 fix1 += tx;
1066 fiy1 += ty;
1067 fiz1 += tz;
1068 f[j_coord_offset+DIM3*1+XX0] -= tx;
1069 f[j_coord_offset+DIM3*1+YY1] -= ty;
1070 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1071
1072 /**************************
1073 * CALCULATE INTERACTIONS *
1074 **************************/
1075
1076 r12 = rsq12*rinv12;
1077
1078 /* Calculate table index by multiplying r with table scale and truncate to integer */
1079 rt = r12*vftabscale;
1080 vfitab = rt;
1081 vfeps = rt-vfitab;
1082 vfitab = 1*4*vfitab;
1083
1084 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1085 F = vftab[vfitab+1];
1086 Geps = vfeps*vftab[vfitab+2];
1087 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1088 Fp = F+Geps+Heps2;
1089 FF = Fp+Geps+2.0*Heps2;
1090 felec = -qq12*FF*vftabscale*rinv12;
1091
1092 fscal = felec;
1093
1094 /* Calculate temporary vectorial force */
1095 tx = fscal*dx12;
1096 ty = fscal*dy12;
1097 tz = fscal*dz12;
1098
1099 /* Update vectorial force */
1100 fix1 += tx;
1101 fiy1 += ty;
1102 fiz1 += tz;
1103 f[j_coord_offset+DIM3*2+XX0] -= tx;
1104 f[j_coord_offset+DIM3*2+YY1] -= ty;
1105 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1106
1107 /**************************
1108 * CALCULATE INTERACTIONS *
1109 **************************/
1110
1111 r20 = rsq20*rinv20;
1112
1113 /* Calculate table index by multiplying r with table scale and truncate to integer */
1114 rt = r20*vftabscale;
1115 vfitab = rt;
1116 vfeps = rt-vfitab;
1117 vfitab = 1*4*vfitab;
1118
1119 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1120 F = vftab[vfitab+1];
1121 Geps = vfeps*vftab[vfitab+2];
1122 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1123 Fp = F+Geps+Heps2;
1124 FF = Fp+Geps+2.0*Heps2;
1125 felec = -qq20*FF*vftabscale*rinv20;
1126
1127 fscal = felec;
1128
1129 /* Calculate temporary vectorial force */
1130 tx = fscal*dx20;
1131 ty = fscal*dy20;
1132 tz = fscal*dz20;
1133
1134 /* Update vectorial force */
1135 fix2 += tx;
1136 fiy2 += ty;
1137 fiz2 += tz;
1138 f[j_coord_offset+DIM3*0+XX0] -= tx;
1139 f[j_coord_offset+DIM3*0+YY1] -= ty;
1140 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1141
1142 /**************************
1143 * CALCULATE INTERACTIONS *
1144 **************************/
1145
1146 r21 = rsq21*rinv21;
1147
1148 /* Calculate table index by multiplying r with table scale and truncate to integer */
1149 rt = r21*vftabscale;
1150 vfitab = rt;
1151 vfeps = rt-vfitab;
1152 vfitab = 1*4*vfitab;
1153
1154 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1155 F = vftab[vfitab+1];
1156 Geps = vfeps*vftab[vfitab+2];
1157 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1158 Fp = F+Geps+Heps2;
1159 FF = Fp+Geps+2.0*Heps2;
1160 felec = -qq21*FF*vftabscale*rinv21;
1161
1162 fscal = felec;
1163
1164 /* Calculate temporary vectorial force */
1165 tx = fscal*dx21;
1166 ty = fscal*dy21;
1167 tz = fscal*dz21;
1168
1169 /* Update vectorial force */
1170 fix2 += tx;
1171 fiy2 += ty;
1172 fiz2 += tz;
1173 f[j_coord_offset+DIM3*1+XX0] -= tx;
1174 f[j_coord_offset+DIM3*1+YY1] -= ty;
1175 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1176
1177 /**************************
1178 * CALCULATE INTERACTIONS *
1179 **************************/
1180
1181 r22 = rsq22*rinv22;
1182
1183 /* Calculate table index by multiplying r with table scale and truncate to integer */
1184 rt = r22*vftabscale;
1185 vfitab = rt;
1186 vfeps = rt-vfitab;
1187 vfitab = 1*4*vfitab;
1188
1189 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1190 F = vftab[vfitab+1];
1191 Geps = vfeps*vftab[vfitab+2];
1192 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1193 Fp = F+Geps+Heps2;
1194 FF = Fp+Geps+2.0*Heps2;
1195 felec = -qq22*FF*vftabscale*rinv22;
1196
1197 fscal = felec;
1198
1199 /* Calculate temporary vectorial force */
1200 tx = fscal*dx22;
1201 ty = fscal*dy22;
1202 tz = fscal*dz22;
1203
1204 /* Update vectorial force */
1205 fix2 += tx;
1206 fiy2 += ty;
1207 fiz2 += tz;
1208 f[j_coord_offset+DIM3*2+XX0] -= tx;
1209 f[j_coord_offset+DIM3*2+YY1] -= ty;
1210 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1211
1212 /* Inner loop uses 341 flops */
1213 }
1214 /* End of innermost loop */
1215
1216 tx = ty = tz = 0;
1217 f[i_coord_offset+DIM3*0+XX0] += fix0;
1218 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1219 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1220 tx += fix0;
1221 ty += fiy0;
1222 tz += fiz0;
1223 f[i_coord_offset+DIM3*1+XX0] += fix1;
1224 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1225 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1226 tx += fix1;
1227 ty += fiy1;
1228 tz += fiz1;
1229 f[i_coord_offset+DIM3*2+XX0] += fix2;
1230 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1231 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1232 tx += fix2;
1233 ty += fiy2;
1234 tz += fiz2;
1235 fshift[i_shift_offset+XX0] += tx;
1236 fshift[i_shift_offset+YY1] += ty;
1237 fshift[i_shift_offset+ZZ2] += tz;
1238
1239 /* Increment number of inner iterations */
1240 inneriter += j_index_end - j_index_start;
1241
1242 /* Outer loop uses 30 flops */
1243 }
1244
1245 /* Increment number of outer iterations */
1246 outeriter += nri;
1247
1248 /* Update outer/inner flops */
1249
1250 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*341)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*341
;
1251}