Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwLJ_GeomW3W3_sse4_1_single.c
Location:line 1341, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LennardJones
56 * Geometry: Water3-Water3
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 int vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
94 __m128 jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
95 int vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
96 __m128 jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
97 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
98 __m128 dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
99 __m128 dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
100 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
101 __m128 dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
102 __m128 dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
103 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
104 __m128 dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
105 __m128 dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
106 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
107 real *charge;
108 int nvdwtype;
109 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
110 int *vdwtype;
111 real *vdwparam;
112 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
113 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
114 __m128i ewitab;
115 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
116 real *ewtab;
117 __m128 dummy_mask,cutoff_mask;
118 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
119 __m128 one = _mm_set1_ps(1.0);
120 __m128 two = _mm_set1_ps(2.0);
121 x = xx[0];
122 f = ff[0];
123
124 nri = nlist->nri;
125 iinr = nlist->iinr;
126 jindex = nlist->jindex;
127 jjnr = nlist->jjnr;
128 shiftidx = nlist->shift;
129 gid = nlist->gid;
130 shiftvec = fr->shift_vec[0];
131 fshift = fr->fshift[0];
132 facel = _mm_set1_ps(fr->epsfac);
133 charge = mdatoms->chargeA;
134 nvdwtype = fr->ntype;
135 vdwparam = fr->nbfp;
136 vdwtype = mdatoms->typeA;
137
138 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
139 ewtab = fr->ic->tabq_coul_FDV0;
140 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
141 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
142
143 /* Setup water-specific parameters */
144 inr = nlist->iinr[0];
145 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
146 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
147 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
148 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
149
150 jq0 = _mm_set1_ps(charge[inr+0]);
151 jq1 = _mm_set1_ps(charge[inr+1]);
152 jq2 = _mm_set1_ps(charge[inr+2]);
153 vdwjidx0A = 2*vdwtype[inr+0];
154 qq00 = _mm_mul_ps(iq0,jq0);
155 c6_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
156 c12_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
157 qq01 = _mm_mul_ps(iq0,jq1);
158 qq02 = _mm_mul_ps(iq0,jq2);
159 qq10 = _mm_mul_ps(iq1,jq0);
160 qq11 = _mm_mul_ps(iq1,jq1);
161 qq12 = _mm_mul_ps(iq1,jq2);
162 qq20 = _mm_mul_ps(iq2,jq0);
163 qq21 = _mm_mul_ps(iq2,jq1);
164 qq22 = _mm_mul_ps(iq2,jq2);
165
166 /* Avoid stupid compiler warnings */
167 jnrA = jnrB = jnrC = jnrD = 0;
168 j_coord_offsetA = 0;
169 j_coord_offsetB = 0;
170 j_coord_offsetC = 0;
171 j_coord_offsetD = 0;
172
173 outeriter = 0;
174 inneriter = 0;
175
176 for(iidx=0;iidx<4*DIM3;iidx++)
177 {
178 scratch[iidx] = 0.0;
179 }
180
181 /* Start outer loop over neighborlists */
182 for(iidx=0; iidx<nri; iidx++)
183 {
184 /* Load shift vector for this list */
185 i_shift_offset = DIM3*shiftidx[iidx];
186
187 /* Load limits for loop over neighbors */
188 j_index_start = jindex[iidx];
189 j_index_end = jindex[iidx+1];
190
191 /* Get outer coordinate index */
192 inr = iinr[iidx];
193 i_coord_offset = DIM3*inr;
194
195 /* Load i particle coords and add shift vector */
196 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
197 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
198
199 fix0 = _mm_setzero_ps();
200 fiy0 = _mm_setzero_ps();
201 fiz0 = _mm_setzero_ps();
202 fix1 = _mm_setzero_ps();
203 fiy1 = _mm_setzero_ps();
204 fiz1 = _mm_setzero_ps();
205 fix2 = _mm_setzero_ps();
206 fiy2 = _mm_setzero_ps();
207 fiz2 = _mm_setzero_ps();
208
209 /* Reset potential sums */
210 velecsum = _mm_setzero_ps();
211 vvdwsum = _mm_setzero_ps();
212
213 /* Start inner kernel loop */
214 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
215 {
216
217 /* Get j neighbor index, and coordinate index */
218 jnrA = jjnr[jidx];
219 jnrB = jjnr[jidx+1];
220 jnrC = jjnr[jidx+2];
221 jnrD = jjnr[jidx+3];
222 j_coord_offsetA = DIM3*jnrA;
223 j_coord_offsetB = DIM3*jnrB;
224 j_coord_offsetC = DIM3*jnrC;
225 j_coord_offsetD = DIM3*jnrD;
226
227 /* load j atom coordinates */
228 gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
229 x+j_coord_offsetC,x+j_coord_offsetD,
230 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
231
232 /* Calculate displacement vector */
233 dx00 = _mm_sub_ps(ix0,jx0);
234 dy00 = _mm_sub_ps(iy0,jy0);
235 dz00 = _mm_sub_ps(iz0,jz0);
236 dx01 = _mm_sub_ps(ix0,jx1);
237 dy01 = _mm_sub_ps(iy0,jy1);
238 dz01 = _mm_sub_ps(iz0,jz1);
239 dx02 = _mm_sub_ps(ix0,jx2);
240 dy02 = _mm_sub_ps(iy0,jy2);
241 dz02 = _mm_sub_ps(iz0,jz2);
242 dx10 = _mm_sub_ps(ix1,jx0);
243 dy10 = _mm_sub_ps(iy1,jy0);
244 dz10 = _mm_sub_ps(iz1,jz0);
245 dx11 = _mm_sub_ps(ix1,jx1);
246 dy11 = _mm_sub_ps(iy1,jy1);
247 dz11 = _mm_sub_ps(iz1,jz1);
248 dx12 = _mm_sub_ps(ix1,jx2);
249 dy12 = _mm_sub_ps(iy1,jy2);
250 dz12 = _mm_sub_ps(iz1,jz2);
251 dx20 = _mm_sub_ps(ix2,jx0);
252 dy20 = _mm_sub_ps(iy2,jy0);
253 dz20 = _mm_sub_ps(iz2,jz0);
254 dx21 = _mm_sub_ps(ix2,jx1);
255 dy21 = _mm_sub_ps(iy2,jy1);
256 dz21 = _mm_sub_ps(iz2,jz1);
257 dx22 = _mm_sub_ps(ix2,jx2);
258 dy22 = _mm_sub_ps(iy2,jy2);
259 dz22 = _mm_sub_ps(iz2,jz2);
260
261 /* Calculate squared distance and things based on it */
262 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
263 rsq01 = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
264 rsq02 = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
265 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
266 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
267 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
268 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
269 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
270 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
271
272 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
273 rinv01 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq01);
274 rinv02 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq02);
275 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
276 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
277 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
278 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
279 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
280 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
281
282 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
283 rinvsq01 = _mm_mul_ps(rinv01,rinv01);
284 rinvsq02 = _mm_mul_ps(rinv02,rinv02);
285 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
286 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
287 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
288 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
289 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
290 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
291
292 fjx0 = _mm_setzero_ps();
293 fjy0 = _mm_setzero_ps();
294 fjz0 = _mm_setzero_ps();
295 fjx1 = _mm_setzero_ps();
296 fjy1 = _mm_setzero_ps();
297 fjz1 = _mm_setzero_ps();
298 fjx2 = _mm_setzero_ps();
299 fjy2 = _mm_setzero_ps();
300 fjz2 = _mm_setzero_ps();
301
302 /**************************
303 * CALCULATE INTERACTIONS *
304 **************************/
305
306 r00 = _mm_mul_ps(rsq00,rinv00);
307
308 /* EWALD ELECTROSTATICS */
309
310 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
311 ewrt = _mm_mul_ps(r00,ewtabscale);
312 ewitab = _mm_cvttps_epi32(ewrt);
313 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
314 ewitab = _mm_slli_epi32(ewitab,2);
315 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
316 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
317 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
318 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
319 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
320 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
321 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
322 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
323 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
324
325 /* LENNARD-JONES DISPERSION/REPULSION */
326
327 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
328 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
329 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
330 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
331 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
332
333 /* Update potential sum for this i atom from the interaction with this j atom. */
334 velecsum = _mm_add_ps(velecsum,velec);
335 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
336
337 fscal = _mm_add_ps(felec,fvdw);
338
339 /* Calculate temporary vectorial force */
340 tx = _mm_mul_ps(fscal,dx00);
341 ty = _mm_mul_ps(fscal,dy00);
342 tz = _mm_mul_ps(fscal,dz00);
343
344 /* Update vectorial force */
345 fix0 = _mm_add_ps(fix0,tx);
346 fiy0 = _mm_add_ps(fiy0,ty);
347 fiz0 = _mm_add_ps(fiz0,tz);
348
349 fjx0 = _mm_add_ps(fjx0,tx);
350 fjy0 = _mm_add_ps(fjy0,ty);
351 fjz0 = _mm_add_ps(fjz0,tz);
352
353 /**************************
354 * CALCULATE INTERACTIONS *
355 **************************/
356
357 r01 = _mm_mul_ps(rsq01,rinv01);
358
359 /* EWALD ELECTROSTATICS */
360
361 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
362 ewrt = _mm_mul_ps(r01,ewtabscale);
363 ewitab = _mm_cvttps_epi32(ewrt);
364 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
365 ewitab = _mm_slli_epi32(ewitab,2);
366 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
367 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
368 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
369 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
370 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
371 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
372 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
373 velec = _mm_mul_ps(qq01,_mm_sub_ps(rinv01,velec));
374 felec = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
375
376 /* Update potential sum for this i atom from the interaction with this j atom. */
377 velecsum = _mm_add_ps(velecsum,velec);
378
379 fscal = felec;
380
381 /* Calculate temporary vectorial force */
382 tx = _mm_mul_ps(fscal,dx01);
383 ty = _mm_mul_ps(fscal,dy01);
384 tz = _mm_mul_ps(fscal,dz01);
385
386 /* Update vectorial force */
387 fix0 = _mm_add_ps(fix0,tx);
388 fiy0 = _mm_add_ps(fiy0,ty);
389 fiz0 = _mm_add_ps(fiz0,tz);
390
391 fjx1 = _mm_add_ps(fjx1,tx);
392 fjy1 = _mm_add_ps(fjy1,ty);
393 fjz1 = _mm_add_ps(fjz1,tz);
394
395 /**************************
396 * CALCULATE INTERACTIONS *
397 **************************/
398
399 r02 = _mm_mul_ps(rsq02,rinv02);
400
401 /* EWALD ELECTROSTATICS */
402
403 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
404 ewrt = _mm_mul_ps(r02,ewtabscale);
405 ewitab = _mm_cvttps_epi32(ewrt);
406 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
407 ewitab = _mm_slli_epi32(ewitab,2);
408 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
409 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
410 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
411 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
412 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
413 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
414 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
415 velec = _mm_mul_ps(qq02,_mm_sub_ps(rinv02,velec));
416 felec = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
417
418 /* Update potential sum for this i atom from the interaction with this j atom. */
419 velecsum = _mm_add_ps(velecsum,velec);
420
421 fscal = felec;
422
423 /* Calculate temporary vectorial force */
424 tx = _mm_mul_ps(fscal,dx02);
425 ty = _mm_mul_ps(fscal,dy02);
426 tz = _mm_mul_ps(fscal,dz02);
427
428 /* Update vectorial force */
429 fix0 = _mm_add_ps(fix0,tx);
430 fiy0 = _mm_add_ps(fiy0,ty);
431 fiz0 = _mm_add_ps(fiz0,tz);
432
433 fjx2 = _mm_add_ps(fjx2,tx);
434 fjy2 = _mm_add_ps(fjy2,ty);
435 fjz2 = _mm_add_ps(fjz2,tz);
436
437 /**************************
438 * CALCULATE INTERACTIONS *
439 **************************/
440
441 r10 = _mm_mul_ps(rsq10,rinv10);
442
443 /* EWALD ELECTROSTATICS */
444
445 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
446 ewrt = _mm_mul_ps(r10,ewtabscale);
447 ewitab = _mm_cvttps_epi32(ewrt);
448 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
449 ewitab = _mm_slli_epi32(ewitab,2);
450 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
451 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
452 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
453 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
454 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
455 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
456 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
457 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
458 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
459
460 /* Update potential sum for this i atom from the interaction with this j atom. */
461 velecsum = _mm_add_ps(velecsum,velec);
462
463 fscal = felec;
464
465 /* Calculate temporary vectorial force */
466 tx = _mm_mul_ps(fscal,dx10);
467 ty = _mm_mul_ps(fscal,dy10);
468 tz = _mm_mul_ps(fscal,dz10);
469
470 /* Update vectorial force */
471 fix1 = _mm_add_ps(fix1,tx);
472 fiy1 = _mm_add_ps(fiy1,ty);
473 fiz1 = _mm_add_ps(fiz1,tz);
474
475 fjx0 = _mm_add_ps(fjx0,tx);
476 fjy0 = _mm_add_ps(fjy0,ty);
477 fjz0 = _mm_add_ps(fjz0,tz);
478
479 /**************************
480 * CALCULATE INTERACTIONS *
481 **************************/
482
483 r11 = _mm_mul_ps(rsq11,rinv11);
484
485 /* EWALD ELECTROSTATICS */
486
487 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
488 ewrt = _mm_mul_ps(r11,ewtabscale);
489 ewitab = _mm_cvttps_epi32(ewrt);
490 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
491 ewitab = _mm_slli_epi32(ewitab,2);
492 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
493 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
494 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
495 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
496 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
497 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
498 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
499 velec = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
500 felec = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
501
502 /* Update potential sum for this i atom from the interaction with this j atom. */
503 velecsum = _mm_add_ps(velecsum,velec);
504
505 fscal = felec;
506
507 /* Calculate temporary vectorial force */
508 tx = _mm_mul_ps(fscal,dx11);
509 ty = _mm_mul_ps(fscal,dy11);
510 tz = _mm_mul_ps(fscal,dz11);
511
512 /* Update vectorial force */
513 fix1 = _mm_add_ps(fix1,tx);
514 fiy1 = _mm_add_ps(fiy1,ty);
515 fiz1 = _mm_add_ps(fiz1,tz);
516
517 fjx1 = _mm_add_ps(fjx1,tx);
518 fjy1 = _mm_add_ps(fjy1,ty);
519 fjz1 = _mm_add_ps(fjz1,tz);
520
521 /**************************
522 * CALCULATE INTERACTIONS *
523 **************************/
524
525 r12 = _mm_mul_ps(rsq12,rinv12);
526
527 /* EWALD ELECTROSTATICS */
528
529 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
530 ewrt = _mm_mul_ps(r12,ewtabscale);
531 ewitab = _mm_cvttps_epi32(ewrt);
532 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
533 ewitab = _mm_slli_epi32(ewitab,2);
534 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
535 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
536 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
537 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
538 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
539 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
540 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
541 velec = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
542 felec = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
543
544 /* Update potential sum for this i atom from the interaction with this j atom. */
545 velecsum = _mm_add_ps(velecsum,velec);
546
547 fscal = felec;
548
549 /* Calculate temporary vectorial force */
550 tx = _mm_mul_ps(fscal,dx12);
551 ty = _mm_mul_ps(fscal,dy12);
552 tz = _mm_mul_ps(fscal,dz12);
553
554 /* Update vectorial force */
555 fix1 = _mm_add_ps(fix1,tx);
556 fiy1 = _mm_add_ps(fiy1,ty);
557 fiz1 = _mm_add_ps(fiz1,tz);
558
559 fjx2 = _mm_add_ps(fjx2,tx);
560 fjy2 = _mm_add_ps(fjy2,ty);
561 fjz2 = _mm_add_ps(fjz2,tz);
562
563 /**************************
564 * CALCULATE INTERACTIONS *
565 **************************/
566
567 r20 = _mm_mul_ps(rsq20,rinv20);
568
569 /* EWALD ELECTROSTATICS */
570
571 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572 ewrt = _mm_mul_ps(r20,ewtabscale);
573 ewitab = _mm_cvttps_epi32(ewrt);
574 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
575 ewitab = _mm_slli_epi32(ewitab,2);
576 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
577 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
578 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
579 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
580 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
581 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
582 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
583 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
584 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
585
586 /* Update potential sum for this i atom from the interaction with this j atom. */
587 velecsum = _mm_add_ps(velecsum,velec);
588
589 fscal = felec;
590
591 /* Calculate temporary vectorial force */
592 tx = _mm_mul_ps(fscal,dx20);
593 ty = _mm_mul_ps(fscal,dy20);
594 tz = _mm_mul_ps(fscal,dz20);
595
596 /* Update vectorial force */
597 fix2 = _mm_add_ps(fix2,tx);
598 fiy2 = _mm_add_ps(fiy2,ty);
599 fiz2 = _mm_add_ps(fiz2,tz);
600
601 fjx0 = _mm_add_ps(fjx0,tx);
602 fjy0 = _mm_add_ps(fjy0,ty);
603 fjz0 = _mm_add_ps(fjz0,tz);
604
605 /**************************
606 * CALCULATE INTERACTIONS *
607 **************************/
608
609 r21 = _mm_mul_ps(rsq21,rinv21);
610
611 /* EWALD ELECTROSTATICS */
612
613 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
614 ewrt = _mm_mul_ps(r21,ewtabscale);
615 ewitab = _mm_cvttps_epi32(ewrt);
616 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
617 ewitab = _mm_slli_epi32(ewitab,2);
618 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
619 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
620 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
621 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
622 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
623 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
624 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
625 velec = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
626 felec = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
627
628 /* Update potential sum for this i atom from the interaction with this j atom. */
629 velecsum = _mm_add_ps(velecsum,velec);
630
631 fscal = felec;
632
633 /* Calculate temporary vectorial force */
634 tx = _mm_mul_ps(fscal,dx21);
635 ty = _mm_mul_ps(fscal,dy21);
636 tz = _mm_mul_ps(fscal,dz21);
637
638 /* Update vectorial force */
639 fix2 = _mm_add_ps(fix2,tx);
640 fiy2 = _mm_add_ps(fiy2,ty);
641 fiz2 = _mm_add_ps(fiz2,tz);
642
643 fjx1 = _mm_add_ps(fjx1,tx);
644 fjy1 = _mm_add_ps(fjy1,ty);
645 fjz1 = _mm_add_ps(fjz1,tz);
646
647 /**************************
648 * CALCULATE INTERACTIONS *
649 **************************/
650
651 r22 = _mm_mul_ps(rsq22,rinv22);
652
653 /* EWALD ELECTROSTATICS */
654
655 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
656 ewrt = _mm_mul_ps(r22,ewtabscale);
657 ewitab = _mm_cvttps_epi32(ewrt);
658 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
659 ewitab = _mm_slli_epi32(ewitab,2);
660 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
661 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
662 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
663 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
664 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
665 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
666 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
667 velec = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
668 felec = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
669
670 /* Update potential sum for this i atom from the interaction with this j atom. */
671 velecsum = _mm_add_ps(velecsum,velec);
672
673 fscal = felec;
674
675 /* Calculate temporary vectorial force */
676 tx = _mm_mul_ps(fscal,dx22);
677 ty = _mm_mul_ps(fscal,dy22);
678 tz = _mm_mul_ps(fscal,dz22);
679
680 /* Update vectorial force */
681 fix2 = _mm_add_ps(fix2,tx);
682 fiy2 = _mm_add_ps(fiy2,ty);
683 fiz2 = _mm_add_ps(fiz2,tz);
684
685 fjx2 = _mm_add_ps(fjx2,tx);
686 fjy2 = _mm_add_ps(fjy2,ty);
687 fjz2 = _mm_add_ps(fjz2,tz);
688
689 fjptrA = f+j_coord_offsetA;
690 fjptrB = f+j_coord_offsetB;
691 fjptrC = f+j_coord_offsetC;
692 fjptrD = f+j_coord_offsetD;
693
694 gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
695 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
696
697 /* Inner loop uses 381 flops */
698 }
699
700 if(jidx<j_index_end)
701 {
702
703 /* Get j neighbor index, and coordinate index */
704 jnrlistA = jjnr[jidx];
705 jnrlistB = jjnr[jidx+1];
706 jnrlistC = jjnr[jidx+2];
707 jnrlistD = jjnr[jidx+3];
708 /* Sign of each element will be negative for non-real atoms.
709 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
710 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
711 */
712 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
713 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
714 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
715 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
716 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
717 j_coord_offsetA = DIM3*jnrA;
718 j_coord_offsetB = DIM3*jnrB;
719 j_coord_offsetC = DIM3*jnrC;
720 j_coord_offsetD = DIM3*jnrD;
721
722 /* load j atom coordinates */
723 gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
724 x+j_coord_offsetC,x+j_coord_offsetD,
725 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
726
727 /* Calculate displacement vector */
728 dx00 = _mm_sub_ps(ix0,jx0);
729 dy00 = _mm_sub_ps(iy0,jy0);
730 dz00 = _mm_sub_ps(iz0,jz0);
731 dx01 = _mm_sub_ps(ix0,jx1);
732 dy01 = _mm_sub_ps(iy0,jy1);
733 dz01 = _mm_sub_ps(iz0,jz1);
734 dx02 = _mm_sub_ps(ix0,jx2);
735 dy02 = _mm_sub_ps(iy0,jy2);
736 dz02 = _mm_sub_ps(iz0,jz2);
737 dx10 = _mm_sub_ps(ix1,jx0);
738 dy10 = _mm_sub_ps(iy1,jy0);
739 dz10 = _mm_sub_ps(iz1,jz0);
740 dx11 = _mm_sub_ps(ix1,jx1);
741 dy11 = _mm_sub_ps(iy1,jy1);
742 dz11 = _mm_sub_ps(iz1,jz1);
743 dx12 = _mm_sub_ps(ix1,jx2);
744 dy12 = _mm_sub_ps(iy1,jy2);
745 dz12 = _mm_sub_ps(iz1,jz2);
746 dx20 = _mm_sub_ps(ix2,jx0);
747 dy20 = _mm_sub_ps(iy2,jy0);
748 dz20 = _mm_sub_ps(iz2,jz0);
749 dx21 = _mm_sub_ps(ix2,jx1);
750 dy21 = _mm_sub_ps(iy2,jy1);
751 dz21 = _mm_sub_ps(iz2,jz1);
752 dx22 = _mm_sub_ps(ix2,jx2);
753 dy22 = _mm_sub_ps(iy2,jy2);
754 dz22 = _mm_sub_ps(iz2,jz2);
755
756 /* Calculate squared distance and things based on it */
757 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
758 rsq01 = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
759 rsq02 = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
760 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
761 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
762 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
763 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
764 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
765 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
766
767 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
768 rinv01 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq01);
769 rinv02 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq02);
770 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
771 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
772 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
773 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
774 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
775 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
776
777 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
778 rinvsq01 = _mm_mul_ps(rinv01,rinv01);
779 rinvsq02 = _mm_mul_ps(rinv02,rinv02);
780 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
781 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
782 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
783 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
784 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
785 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
786
787 fjx0 = _mm_setzero_ps();
788 fjy0 = _mm_setzero_ps();
789 fjz0 = _mm_setzero_ps();
790 fjx1 = _mm_setzero_ps();
791 fjy1 = _mm_setzero_ps();
792 fjz1 = _mm_setzero_ps();
793 fjx2 = _mm_setzero_ps();
794 fjy2 = _mm_setzero_ps();
795 fjz2 = _mm_setzero_ps();
796
797 /**************************
798 * CALCULATE INTERACTIONS *
799 **************************/
800
801 r00 = _mm_mul_ps(rsq00,rinv00);
802 r00 = _mm_andnot_ps(dummy_mask,r00);
803
804 /* EWALD ELECTROSTATICS */
805
806 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
807 ewrt = _mm_mul_ps(r00,ewtabscale);
808 ewitab = _mm_cvttps_epi32(ewrt);
809 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
810 ewitab = _mm_slli_epi32(ewitab,2);
811 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
812 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
813 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
814 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
815 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
816 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
817 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
818 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
819 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
820
821 /* LENNARD-JONES DISPERSION/REPULSION */
822
823 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
824 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
825 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
826 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
827 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
828
829 /* Update potential sum for this i atom from the interaction with this j atom. */
830 velec = _mm_andnot_ps(dummy_mask,velec);
831 velecsum = _mm_add_ps(velecsum,velec);
832 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
833 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
834
835 fscal = _mm_add_ps(felec,fvdw);
836
837 fscal = _mm_andnot_ps(dummy_mask,fscal);
838
839 /* Calculate temporary vectorial force */
840 tx = _mm_mul_ps(fscal,dx00);
841 ty = _mm_mul_ps(fscal,dy00);
842 tz = _mm_mul_ps(fscal,dz00);
843
844 /* Update vectorial force */
845 fix0 = _mm_add_ps(fix0,tx);
846 fiy0 = _mm_add_ps(fiy0,ty);
847 fiz0 = _mm_add_ps(fiz0,tz);
848
849 fjx0 = _mm_add_ps(fjx0,tx);
850 fjy0 = _mm_add_ps(fjy0,ty);
851 fjz0 = _mm_add_ps(fjz0,tz);
852
853 /**************************
854 * CALCULATE INTERACTIONS *
855 **************************/
856
857 r01 = _mm_mul_ps(rsq01,rinv01);
858 r01 = _mm_andnot_ps(dummy_mask,r01);
859
860 /* EWALD ELECTROSTATICS */
861
862 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
863 ewrt = _mm_mul_ps(r01,ewtabscale);
864 ewitab = _mm_cvttps_epi32(ewrt);
865 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
866 ewitab = _mm_slli_epi32(ewitab,2);
867 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
868 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
869 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
870 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
871 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
872 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
873 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
874 velec = _mm_mul_ps(qq01,_mm_sub_ps(rinv01,velec));
875 felec = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
876
877 /* Update potential sum for this i atom from the interaction with this j atom. */
878 velec = _mm_andnot_ps(dummy_mask,velec);
879 velecsum = _mm_add_ps(velecsum,velec);
880
881 fscal = felec;
882
883 fscal = _mm_andnot_ps(dummy_mask,fscal);
884
885 /* Calculate temporary vectorial force */
886 tx = _mm_mul_ps(fscal,dx01);
887 ty = _mm_mul_ps(fscal,dy01);
888 tz = _mm_mul_ps(fscal,dz01);
889
890 /* Update vectorial force */
891 fix0 = _mm_add_ps(fix0,tx);
892 fiy0 = _mm_add_ps(fiy0,ty);
893 fiz0 = _mm_add_ps(fiz0,tz);
894
895 fjx1 = _mm_add_ps(fjx1,tx);
896 fjy1 = _mm_add_ps(fjy1,ty);
897 fjz1 = _mm_add_ps(fjz1,tz);
898
899 /**************************
900 * CALCULATE INTERACTIONS *
901 **************************/
902
903 r02 = _mm_mul_ps(rsq02,rinv02);
904 r02 = _mm_andnot_ps(dummy_mask,r02);
905
906 /* EWALD ELECTROSTATICS */
907
908 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
909 ewrt = _mm_mul_ps(r02,ewtabscale);
910 ewitab = _mm_cvttps_epi32(ewrt);
911 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
912 ewitab = _mm_slli_epi32(ewitab,2);
913 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
914 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
915 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
916 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
917 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
918 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
919 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
920 velec = _mm_mul_ps(qq02,_mm_sub_ps(rinv02,velec));
921 felec = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
922
923 /* Update potential sum for this i atom from the interaction with this j atom. */
924 velec = _mm_andnot_ps(dummy_mask,velec);
925 velecsum = _mm_add_ps(velecsum,velec);
926
927 fscal = felec;
928
929 fscal = _mm_andnot_ps(dummy_mask,fscal);
930
931 /* Calculate temporary vectorial force */
932 tx = _mm_mul_ps(fscal,dx02);
933 ty = _mm_mul_ps(fscal,dy02);
934 tz = _mm_mul_ps(fscal,dz02);
935
936 /* Update vectorial force */
937 fix0 = _mm_add_ps(fix0,tx);
938 fiy0 = _mm_add_ps(fiy0,ty);
939 fiz0 = _mm_add_ps(fiz0,tz);
940
941 fjx2 = _mm_add_ps(fjx2,tx);
942 fjy2 = _mm_add_ps(fjy2,ty);
943 fjz2 = _mm_add_ps(fjz2,tz);
944
945 /**************************
946 * CALCULATE INTERACTIONS *
947 **************************/
948
949 r10 = _mm_mul_ps(rsq10,rinv10);
950 r10 = _mm_andnot_ps(dummy_mask,r10);
951
952 /* EWALD ELECTROSTATICS */
953
954 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
955 ewrt = _mm_mul_ps(r10,ewtabscale);
956 ewitab = _mm_cvttps_epi32(ewrt);
957 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
958 ewitab = _mm_slli_epi32(ewitab,2);
959 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
960 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
961 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
962 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
963 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
964 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
965 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
966 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
967 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
968
969 /* Update potential sum for this i atom from the interaction with this j atom. */
970 velec = _mm_andnot_ps(dummy_mask,velec);
971 velecsum = _mm_add_ps(velecsum,velec);
972
973 fscal = felec;
974
975 fscal = _mm_andnot_ps(dummy_mask,fscal);
976
977 /* Calculate temporary vectorial force */
978 tx = _mm_mul_ps(fscal,dx10);
979 ty = _mm_mul_ps(fscal,dy10);
980 tz = _mm_mul_ps(fscal,dz10);
981
982 /* Update vectorial force */
983 fix1 = _mm_add_ps(fix1,tx);
984 fiy1 = _mm_add_ps(fiy1,ty);
985 fiz1 = _mm_add_ps(fiz1,tz);
986
987 fjx0 = _mm_add_ps(fjx0,tx);
988 fjy0 = _mm_add_ps(fjy0,ty);
989 fjz0 = _mm_add_ps(fjz0,tz);
990
991 /**************************
992 * CALCULATE INTERACTIONS *
993 **************************/
994
995 r11 = _mm_mul_ps(rsq11,rinv11);
996 r11 = _mm_andnot_ps(dummy_mask,r11);
997
998 /* EWALD ELECTROSTATICS */
999
1000 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1001 ewrt = _mm_mul_ps(r11,ewtabscale);
1002 ewitab = _mm_cvttps_epi32(ewrt);
1003 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1004 ewitab = _mm_slli_epi32(ewitab,2);
1005 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1006 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1007 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1008 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1009 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1010 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1011 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1012 velec = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
1013 felec = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1014
1015 /* Update potential sum for this i atom from the interaction with this j atom. */
1016 velec = _mm_andnot_ps(dummy_mask,velec);
1017 velecsum = _mm_add_ps(velecsum,velec);
1018
1019 fscal = felec;
1020
1021 fscal = _mm_andnot_ps(dummy_mask,fscal);
1022
1023 /* Calculate temporary vectorial force */
1024 tx = _mm_mul_ps(fscal,dx11);
1025 ty = _mm_mul_ps(fscal,dy11);
1026 tz = _mm_mul_ps(fscal,dz11);
1027
1028 /* Update vectorial force */
1029 fix1 = _mm_add_ps(fix1,tx);
1030 fiy1 = _mm_add_ps(fiy1,ty);
1031 fiz1 = _mm_add_ps(fiz1,tz);
1032
1033 fjx1 = _mm_add_ps(fjx1,tx);
1034 fjy1 = _mm_add_ps(fjy1,ty);
1035 fjz1 = _mm_add_ps(fjz1,tz);
1036
1037 /**************************
1038 * CALCULATE INTERACTIONS *
1039 **************************/
1040
1041 r12 = _mm_mul_ps(rsq12,rinv12);
1042 r12 = _mm_andnot_ps(dummy_mask,r12);
1043
1044 /* EWALD ELECTROSTATICS */
1045
1046 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1047 ewrt = _mm_mul_ps(r12,ewtabscale);
1048 ewitab = _mm_cvttps_epi32(ewrt);
1049 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1050 ewitab = _mm_slli_epi32(ewitab,2);
1051 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1052 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1053 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1054 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1055 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1056 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1057 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1058 velec = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
1059 felec = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1060
1061 /* Update potential sum for this i atom from the interaction with this j atom. */
1062 velec = _mm_andnot_ps(dummy_mask,velec);
1063 velecsum = _mm_add_ps(velecsum,velec);
1064
1065 fscal = felec;
1066
1067 fscal = _mm_andnot_ps(dummy_mask,fscal);
1068
1069 /* Calculate temporary vectorial force */
1070 tx = _mm_mul_ps(fscal,dx12);
1071 ty = _mm_mul_ps(fscal,dy12);
1072 tz = _mm_mul_ps(fscal,dz12);
1073
1074 /* Update vectorial force */
1075 fix1 = _mm_add_ps(fix1,tx);
1076 fiy1 = _mm_add_ps(fiy1,ty);
1077 fiz1 = _mm_add_ps(fiz1,tz);
1078
1079 fjx2 = _mm_add_ps(fjx2,tx);
1080 fjy2 = _mm_add_ps(fjy2,ty);
1081 fjz2 = _mm_add_ps(fjz2,tz);
1082
1083 /**************************
1084 * CALCULATE INTERACTIONS *
1085 **************************/
1086
1087 r20 = _mm_mul_ps(rsq20,rinv20);
1088 r20 = _mm_andnot_ps(dummy_mask,r20);
1089
1090 /* EWALD ELECTROSTATICS */
1091
1092 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1093 ewrt = _mm_mul_ps(r20,ewtabscale);
1094 ewitab = _mm_cvttps_epi32(ewrt);
1095 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1096 ewitab = _mm_slli_epi32(ewitab,2);
1097 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1098 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1099 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1100 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1101 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1102 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1103 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1104 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1105 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1106
1107 /* Update potential sum for this i atom from the interaction with this j atom. */
1108 velec = _mm_andnot_ps(dummy_mask,velec);
1109 velecsum = _mm_add_ps(velecsum,velec);
1110
1111 fscal = felec;
1112
1113 fscal = _mm_andnot_ps(dummy_mask,fscal);
1114
1115 /* Calculate temporary vectorial force */
1116 tx = _mm_mul_ps(fscal,dx20);
1117 ty = _mm_mul_ps(fscal,dy20);
1118 tz = _mm_mul_ps(fscal,dz20);
1119
1120 /* Update vectorial force */
1121 fix2 = _mm_add_ps(fix2,tx);
1122 fiy2 = _mm_add_ps(fiy2,ty);
1123 fiz2 = _mm_add_ps(fiz2,tz);
1124
1125 fjx0 = _mm_add_ps(fjx0,tx);
1126 fjy0 = _mm_add_ps(fjy0,ty);
1127 fjz0 = _mm_add_ps(fjz0,tz);
1128
1129 /**************************
1130 * CALCULATE INTERACTIONS *
1131 **************************/
1132
1133 r21 = _mm_mul_ps(rsq21,rinv21);
1134 r21 = _mm_andnot_ps(dummy_mask,r21);
1135
1136 /* EWALD ELECTROSTATICS */
1137
1138 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1139 ewrt = _mm_mul_ps(r21,ewtabscale);
1140 ewitab = _mm_cvttps_epi32(ewrt);
1141 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1142 ewitab = _mm_slli_epi32(ewitab,2);
1143 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1144 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1145 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1146 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1147 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1148 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1149 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1150 velec = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
1151 felec = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1152
1153 /* Update potential sum for this i atom from the interaction with this j atom. */
1154 velec = _mm_andnot_ps(dummy_mask,velec);
1155 velecsum = _mm_add_ps(velecsum,velec);
1156
1157 fscal = felec;
1158
1159 fscal = _mm_andnot_ps(dummy_mask,fscal);
1160
1161 /* Calculate temporary vectorial force */
1162 tx = _mm_mul_ps(fscal,dx21);
1163 ty = _mm_mul_ps(fscal,dy21);
1164 tz = _mm_mul_ps(fscal,dz21);
1165
1166 /* Update vectorial force */
1167 fix2 = _mm_add_ps(fix2,tx);
1168 fiy2 = _mm_add_ps(fiy2,ty);
1169 fiz2 = _mm_add_ps(fiz2,tz);
1170
1171 fjx1 = _mm_add_ps(fjx1,tx);
1172 fjy1 = _mm_add_ps(fjy1,ty);
1173 fjz1 = _mm_add_ps(fjz1,tz);
1174
1175 /**************************
1176 * CALCULATE INTERACTIONS *
1177 **************************/
1178
1179 r22 = _mm_mul_ps(rsq22,rinv22);
1180 r22 = _mm_andnot_ps(dummy_mask,r22);
1181
1182 /* EWALD ELECTROSTATICS */
1183
1184 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1185 ewrt = _mm_mul_ps(r22,ewtabscale);
1186 ewitab = _mm_cvttps_epi32(ewrt);
1187 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1188 ewitab = _mm_slli_epi32(ewitab,2);
1189 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1190 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1191 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1192 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1193 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1194 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1195 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1196 velec = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
1197 felec = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1198
1199 /* Update potential sum for this i atom from the interaction with this j atom. */
1200 velec = _mm_andnot_ps(dummy_mask,velec);
1201 velecsum = _mm_add_ps(velecsum,velec);
1202
1203 fscal = felec;
1204
1205 fscal = _mm_andnot_ps(dummy_mask,fscal);
1206
1207 /* Calculate temporary vectorial force */
1208 tx = _mm_mul_ps(fscal,dx22);
1209 ty = _mm_mul_ps(fscal,dy22);
1210 tz = _mm_mul_ps(fscal,dz22);
1211
1212 /* Update vectorial force */
1213 fix2 = _mm_add_ps(fix2,tx);
1214 fiy2 = _mm_add_ps(fiy2,ty);
1215 fiz2 = _mm_add_ps(fiz2,tz);
1216
1217 fjx2 = _mm_add_ps(fjx2,tx);
1218 fjy2 = _mm_add_ps(fjy2,ty);
1219 fjz2 = _mm_add_ps(fjz2,tz);
1220
1221 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1222 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1223 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1224 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1225
1226 gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1227 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1228
1229 /* Inner loop uses 390 flops */
1230 }
1231
1232 /* End of innermost loop */
1233
1234 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1235 f+i_coord_offset,fshift+i_shift_offset);
1236
1237 ggid = gid[iidx];
1238 /* Update potential energies */
1239 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1240 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1241
1242 /* Increment number of inner iterations */
1243 inneriter += j_index_end - j_index_start;
1244
1245 /* Outer loop uses 20 flops */
1246 }
1247
1248 /* Increment number of outer iterations */
1249 outeriter += nri;
1250
1251 /* Update outer/inner flops */
1252
1253 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*390)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*20 +
inneriter*390
;
1254}
1255/*
1256 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_sse4_1_single
1257 * Electrostatics interaction: Ewald
1258 * VdW interaction: LennardJones
1259 * Geometry: Water3-Water3
1260 * Calculate force/pot: Force
1261 */
1262void
1263nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_sse4_1_single
1264 (t_nblist * gmx_restrict nlist,
1265 rvec * gmx_restrict xx,
1266 rvec * gmx_restrict ff,
1267 t_forcerec * gmx_restrict fr,
1268 t_mdatoms * gmx_restrict mdatoms,
1269 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
1270 t_nrnb * gmx_restrict nrnb)
1271{
1272 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1273 * just 0 for non-waters.
1274 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1275 * jnr indices corresponding to data put in the four positions in the SIMD register.
1276 */
1277 int i_shift_offset,i_coord_offset,outeriter,inneriter;
1278 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1279 int jnrA,jnrB,jnrC,jnrD;
1280 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1281 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1282 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
1283 real rcutoff_scalar;
1284 real *shiftvec,*fshift,*x,*f;
1285 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1286 real scratch[4*DIM3];
1287 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1288 int vdwioffset0;
1289 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1290 int vdwioffset1;
1291 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1292 int vdwioffset2;
1293 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1294 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1295 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1296 int vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1297 __m128 jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1298 int vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1299 __m128 jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1300 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1301 __m128 dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1302 __m128 dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1303 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1304 __m128 dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1305 __m128 dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1306 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1307 __m128 dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1308 __m128 dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1309 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
1310 real *charge;
1311 int nvdwtype;
1312 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1313 int *vdwtype;
1314 real *vdwparam;
1315 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
1316 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
1317 __m128i ewitab;
1318 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1319 real *ewtab;
1320 __m128 dummy_mask,cutoff_mask;
1321 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1322 __m128 one = _mm_set1_ps(1.0);
1323 __m128 two = _mm_set1_ps(2.0);
1324 x = xx[0];
1325 f = ff[0];
1326
1327 nri = nlist->nri;
1328 iinr = nlist->iinr;
1329 jindex = nlist->jindex;
1330 jjnr = nlist->jjnr;
1331 shiftidx = nlist->shift;
1332 gid = nlist->gid;
1333 shiftvec = fr->shift_vec[0];
1334 fshift = fr->fshift[0];
1335 facel = _mm_set1_ps(fr->epsfac);
1336 charge = mdatoms->chargeA;
1337 nvdwtype = fr->ntype;
1338 vdwparam = fr->nbfp;
1339 vdwtype = mdatoms->typeA;
1340
1341 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
Value stored to 'sh_ewald' is never read
1342 ewtab = fr->ic->tabq_coul_F;
1343 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
1344 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1345
1346 /* Setup water-specific parameters */
1347 inr = nlist->iinr[0];
1348 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
1349 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1350 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1351 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
1352
1353 jq0 = _mm_set1_ps(charge[inr+0]);
1354 jq1 = _mm_set1_ps(charge[inr+1]);
1355 jq2 = _mm_set1_ps(charge[inr+2]);
1356 vdwjidx0A = 2*vdwtype[inr+0];
1357 qq00 = _mm_mul_ps(iq0,jq0);
1358 c6_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1359 c12_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1360 qq01 = _mm_mul_ps(iq0,jq1);
1361 qq02 = _mm_mul_ps(iq0,jq2);
1362 qq10 = _mm_mul_ps(iq1,jq0);
1363 qq11 = _mm_mul_ps(iq1,jq1);
1364 qq12 = _mm_mul_ps(iq1,jq2);
1365 qq20 = _mm_mul_ps(iq2,jq0);
1366 qq21 = _mm_mul_ps(iq2,jq1);
1367 qq22 = _mm_mul_ps(iq2,jq2);
1368
1369 /* Avoid stupid compiler warnings */
1370 jnrA = jnrB = jnrC = jnrD = 0;
1371 j_coord_offsetA = 0;
1372 j_coord_offsetB = 0;
1373 j_coord_offsetC = 0;
1374 j_coord_offsetD = 0;
1375
1376 outeriter = 0;
1377 inneriter = 0;
1378
1379 for(iidx=0;iidx<4*DIM3;iidx++)
1380 {
1381 scratch[iidx] = 0.0;
1382 }
1383
1384 /* Start outer loop over neighborlists */
1385 for(iidx=0; iidx<nri; iidx++)
1386 {
1387 /* Load shift vector for this list */
1388 i_shift_offset = DIM3*shiftidx[iidx];
1389
1390 /* Load limits for loop over neighbors */
1391 j_index_start = jindex[iidx];
1392 j_index_end = jindex[iidx+1];
1393
1394 /* Get outer coordinate index */
1395 inr = iinr[iidx];
1396 i_coord_offset = DIM3*inr;
1397
1398 /* Load i particle coords and add shift vector */
1399 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1400 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1401
1402 fix0 = _mm_setzero_ps();
1403 fiy0 = _mm_setzero_ps();
1404 fiz0 = _mm_setzero_ps();
1405 fix1 = _mm_setzero_ps();
1406 fiy1 = _mm_setzero_ps();
1407 fiz1 = _mm_setzero_ps();
1408 fix2 = _mm_setzero_ps();
1409 fiy2 = _mm_setzero_ps();
1410 fiz2 = _mm_setzero_ps();
1411
1412 /* Start inner kernel loop */
1413 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1414 {
1415
1416 /* Get j neighbor index, and coordinate index */
1417 jnrA = jjnr[jidx];
1418 jnrB = jjnr[jidx+1];
1419 jnrC = jjnr[jidx+2];
1420 jnrD = jjnr[jidx+3];
1421 j_coord_offsetA = DIM3*jnrA;
1422 j_coord_offsetB = DIM3*jnrB;
1423 j_coord_offsetC = DIM3*jnrC;
1424 j_coord_offsetD = DIM3*jnrD;
1425
1426 /* load j atom coordinates */
1427 gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1428 x+j_coord_offsetC,x+j_coord_offsetD,
1429 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1430
1431 /* Calculate displacement vector */
1432 dx00 = _mm_sub_ps(ix0,jx0);
1433 dy00 = _mm_sub_ps(iy0,jy0);
1434 dz00 = _mm_sub_ps(iz0,jz0);
1435 dx01 = _mm_sub_ps(ix0,jx1);
1436 dy01 = _mm_sub_ps(iy0,jy1);
1437 dz01 = _mm_sub_ps(iz0,jz1);
1438 dx02 = _mm_sub_ps(ix0,jx2);
1439 dy02 = _mm_sub_ps(iy0,jy2);
1440 dz02 = _mm_sub_ps(iz0,jz2);
1441 dx10 = _mm_sub_ps(ix1,jx0);
1442 dy10 = _mm_sub_ps(iy1,jy0);
1443 dz10 = _mm_sub_ps(iz1,jz0);
1444 dx11 = _mm_sub_ps(ix1,jx1);
1445 dy11 = _mm_sub_ps(iy1,jy1);
1446 dz11 = _mm_sub_ps(iz1,jz1);
1447 dx12 = _mm_sub_ps(ix1,jx2);
1448 dy12 = _mm_sub_ps(iy1,jy2);
1449 dz12 = _mm_sub_ps(iz1,jz2);
1450 dx20 = _mm_sub_ps(ix2,jx0);
1451 dy20 = _mm_sub_ps(iy2,jy0);
1452 dz20 = _mm_sub_ps(iz2,jz0);
1453 dx21 = _mm_sub_ps(ix2,jx1);
1454 dy21 = _mm_sub_ps(iy2,jy1);
1455 dz21 = _mm_sub_ps(iz2,jz1);
1456 dx22 = _mm_sub_ps(ix2,jx2);
1457 dy22 = _mm_sub_ps(iy2,jy2);
1458 dz22 = _mm_sub_ps(iz2,jz2);
1459
1460 /* Calculate squared distance and things based on it */
1461 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1462 rsq01 = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
1463 rsq02 = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
1464 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1465 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1466 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1467 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1468 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1469 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1470
1471 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1472 rinv01 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq01);
1473 rinv02 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq02);
1474 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1475 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
1476 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
1477 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1478 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
1479 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
1480
1481 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
1482 rinvsq01 = _mm_mul_ps(rinv01,rinv01);
1483 rinvsq02 = _mm_mul_ps(rinv02,rinv02);
1484 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1485 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
1486 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
1487 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1488 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
1489 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
1490
1491 fjx0 = _mm_setzero_ps();
1492 fjy0 = _mm_setzero_ps();
1493 fjz0 = _mm_setzero_ps();
1494 fjx1 = _mm_setzero_ps();
1495 fjy1 = _mm_setzero_ps();
1496 fjz1 = _mm_setzero_ps();
1497 fjx2 = _mm_setzero_ps();
1498 fjy2 = _mm_setzero_ps();
1499 fjz2 = _mm_setzero_ps();
1500
1501 /**************************
1502 * CALCULATE INTERACTIONS *
1503 **************************/
1504
1505 r00 = _mm_mul_ps(rsq00,rinv00);
1506
1507 /* EWALD ELECTROSTATICS */
1508
1509 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1510 ewrt = _mm_mul_ps(r00,ewtabscale);
1511 ewitab = _mm_cvttps_epi32(ewrt);
1512 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1513 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1514 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1515 &ewtabF,&ewtabFn);
1516 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1517 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1518
1519 /* LENNARD-JONES DISPERSION/REPULSION */
1520
1521 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1522 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1523
1524 fscal = _mm_add_ps(felec,fvdw);
1525
1526 /* Calculate temporary vectorial force */
1527 tx = _mm_mul_ps(fscal,dx00);
1528 ty = _mm_mul_ps(fscal,dy00);
1529 tz = _mm_mul_ps(fscal,dz00);
1530
1531 /* Update vectorial force */
1532 fix0 = _mm_add_ps(fix0,tx);
1533 fiy0 = _mm_add_ps(fiy0,ty);
1534 fiz0 = _mm_add_ps(fiz0,tz);
1535
1536 fjx0 = _mm_add_ps(fjx0,tx);
1537 fjy0 = _mm_add_ps(fjy0,ty);
1538 fjz0 = _mm_add_ps(fjz0,tz);
1539
1540 /**************************
1541 * CALCULATE INTERACTIONS *
1542 **************************/
1543
1544 r01 = _mm_mul_ps(rsq01,rinv01);
1545
1546 /* EWALD ELECTROSTATICS */
1547
1548 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1549 ewrt = _mm_mul_ps(r01,ewtabscale);
1550 ewitab = _mm_cvttps_epi32(ewrt);
1551 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1552 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1553 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1554 &ewtabF,&ewtabFn);
1555 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1556 felec = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
1557
1558 fscal = felec;
1559
1560 /* Calculate temporary vectorial force */
1561 tx = _mm_mul_ps(fscal,dx01);
1562 ty = _mm_mul_ps(fscal,dy01);
1563 tz = _mm_mul_ps(fscal,dz01);
1564
1565 /* Update vectorial force */
1566 fix0 = _mm_add_ps(fix0,tx);
1567 fiy0 = _mm_add_ps(fiy0,ty);
1568 fiz0 = _mm_add_ps(fiz0,tz);
1569
1570 fjx1 = _mm_add_ps(fjx1,tx);
1571 fjy1 = _mm_add_ps(fjy1,ty);
1572 fjz1 = _mm_add_ps(fjz1,tz);
1573
1574 /**************************
1575 * CALCULATE INTERACTIONS *
1576 **************************/
1577
1578 r02 = _mm_mul_ps(rsq02,rinv02);
1579
1580 /* EWALD ELECTROSTATICS */
1581
1582 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1583 ewrt = _mm_mul_ps(r02,ewtabscale);
1584 ewitab = _mm_cvttps_epi32(ewrt);
1585 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1586 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1587 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1588 &ewtabF,&ewtabFn);
1589 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1590 felec = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
1591
1592 fscal = felec;
1593
1594 /* Calculate temporary vectorial force */
1595 tx = _mm_mul_ps(fscal,dx02);
1596 ty = _mm_mul_ps(fscal,dy02);
1597 tz = _mm_mul_ps(fscal,dz02);
1598
1599 /* Update vectorial force */
1600 fix0 = _mm_add_ps(fix0,tx);
1601 fiy0 = _mm_add_ps(fiy0,ty);
1602 fiz0 = _mm_add_ps(fiz0,tz);
1603
1604 fjx2 = _mm_add_ps(fjx2,tx);
1605 fjy2 = _mm_add_ps(fjy2,ty);
1606 fjz2 = _mm_add_ps(fjz2,tz);
1607
1608 /**************************
1609 * CALCULATE INTERACTIONS *
1610 **************************/
1611
1612 r10 = _mm_mul_ps(rsq10,rinv10);
1613
1614 /* EWALD ELECTROSTATICS */
1615
1616 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1617 ewrt = _mm_mul_ps(r10,ewtabscale);
1618 ewitab = _mm_cvttps_epi32(ewrt);
1619 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1620 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1621 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1622 &ewtabF,&ewtabFn);
1623 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1624 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1625
1626 fscal = felec;
1627
1628 /* Calculate temporary vectorial force */
1629 tx = _mm_mul_ps(fscal,dx10);
1630 ty = _mm_mul_ps(fscal,dy10);
1631 tz = _mm_mul_ps(fscal,dz10);
1632
1633 /* Update vectorial force */
1634 fix1 = _mm_add_ps(fix1,tx);
1635 fiy1 = _mm_add_ps(fiy1,ty);
1636 fiz1 = _mm_add_ps(fiz1,tz);
1637
1638 fjx0 = _mm_add_ps(fjx0,tx);
1639 fjy0 = _mm_add_ps(fjy0,ty);
1640 fjz0 = _mm_add_ps(fjz0,tz);
1641
1642 /**************************
1643 * CALCULATE INTERACTIONS *
1644 **************************/
1645
1646 r11 = _mm_mul_ps(rsq11,rinv11);
1647
1648 /* EWALD ELECTROSTATICS */
1649
1650 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1651 ewrt = _mm_mul_ps(r11,ewtabscale);
1652 ewitab = _mm_cvttps_epi32(ewrt);
1653 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1654 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1655 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1656 &ewtabF,&ewtabFn);
1657 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1658 felec = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1659
1660 fscal = felec;
1661
1662 /* Calculate temporary vectorial force */
1663 tx = _mm_mul_ps(fscal,dx11);
1664 ty = _mm_mul_ps(fscal,dy11);
1665 tz = _mm_mul_ps(fscal,dz11);
1666
1667 /* Update vectorial force */
1668 fix1 = _mm_add_ps(fix1,tx);
1669 fiy1 = _mm_add_ps(fiy1,ty);
1670 fiz1 = _mm_add_ps(fiz1,tz);
1671
1672 fjx1 = _mm_add_ps(fjx1,tx);
1673 fjy1 = _mm_add_ps(fjy1,ty);
1674 fjz1 = _mm_add_ps(fjz1,tz);
1675
1676 /**************************
1677 * CALCULATE INTERACTIONS *
1678 **************************/
1679
1680 r12 = _mm_mul_ps(rsq12,rinv12);
1681
1682 /* EWALD ELECTROSTATICS */
1683
1684 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1685 ewrt = _mm_mul_ps(r12,ewtabscale);
1686 ewitab = _mm_cvttps_epi32(ewrt);
1687 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1688 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1689 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1690 &ewtabF,&ewtabFn);
1691 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1692 felec = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1693
1694 fscal = felec;
1695
1696 /* Calculate temporary vectorial force */
1697 tx = _mm_mul_ps(fscal,dx12);
1698 ty = _mm_mul_ps(fscal,dy12);
1699 tz = _mm_mul_ps(fscal,dz12);
1700
1701 /* Update vectorial force */
1702 fix1 = _mm_add_ps(fix1,tx);
1703 fiy1 = _mm_add_ps(fiy1,ty);
1704 fiz1 = _mm_add_ps(fiz1,tz);
1705
1706 fjx2 = _mm_add_ps(fjx2,tx);
1707 fjy2 = _mm_add_ps(fjy2,ty);
1708 fjz2 = _mm_add_ps(fjz2,tz);
1709
1710 /**************************
1711 * CALCULATE INTERACTIONS *
1712 **************************/
1713
1714 r20 = _mm_mul_ps(rsq20,rinv20);
1715
1716 /* EWALD ELECTROSTATICS */
1717
1718 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1719 ewrt = _mm_mul_ps(r20,ewtabscale);
1720 ewitab = _mm_cvttps_epi32(ewrt);
1721 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1722 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1723 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1724 &ewtabF,&ewtabFn);
1725 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1726 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1727
1728 fscal = felec;
1729
1730 /* Calculate temporary vectorial force */
1731 tx = _mm_mul_ps(fscal,dx20);
1732 ty = _mm_mul_ps(fscal,dy20);
1733 tz = _mm_mul_ps(fscal,dz20);
1734
1735 /* Update vectorial force */
1736 fix2 = _mm_add_ps(fix2,tx);
1737 fiy2 = _mm_add_ps(fiy2,ty);
1738 fiz2 = _mm_add_ps(fiz2,tz);
1739
1740 fjx0 = _mm_add_ps(fjx0,tx);
1741 fjy0 = _mm_add_ps(fjy0,ty);
1742 fjz0 = _mm_add_ps(fjz0,tz);
1743
1744 /**************************
1745 * CALCULATE INTERACTIONS *
1746 **************************/
1747
1748 r21 = _mm_mul_ps(rsq21,rinv21);
1749
1750 /* EWALD ELECTROSTATICS */
1751
1752 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1753 ewrt = _mm_mul_ps(r21,ewtabscale);
1754 ewitab = _mm_cvttps_epi32(ewrt);
1755 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1756 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1757 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1758 &ewtabF,&ewtabFn);
1759 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1760 felec = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1761
1762 fscal = felec;
1763
1764 /* Calculate temporary vectorial force */
1765 tx = _mm_mul_ps(fscal,dx21);
1766 ty = _mm_mul_ps(fscal,dy21);
1767 tz = _mm_mul_ps(fscal,dz21);
1768
1769 /* Update vectorial force */
1770 fix2 = _mm_add_ps(fix2,tx);
1771 fiy2 = _mm_add_ps(fiy2,ty);
1772 fiz2 = _mm_add_ps(fiz2,tz);
1773
1774 fjx1 = _mm_add_ps(fjx1,tx);
1775 fjy1 = _mm_add_ps(fjy1,ty);
1776 fjz1 = _mm_add_ps(fjz1,tz);
1777
1778 /**************************
1779 * CALCULATE INTERACTIONS *
1780 **************************/
1781
1782 r22 = _mm_mul_ps(rsq22,rinv22);
1783
1784 /* EWALD ELECTROSTATICS */
1785
1786 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1787 ewrt = _mm_mul_ps(r22,ewtabscale);
1788 ewitab = _mm_cvttps_epi32(ewrt);
1789 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1790 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1791 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1792 &ewtabF,&ewtabFn);
1793 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1794 felec = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1795
1796 fscal = felec;
1797
1798 /* Calculate temporary vectorial force */
1799 tx = _mm_mul_ps(fscal,dx22);
1800 ty = _mm_mul_ps(fscal,dy22);
1801 tz = _mm_mul_ps(fscal,dz22);
1802
1803 /* Update vectorial force */
1804 fix2 = _mm_add_ps(fix2,tx);
1805 fiy2 = _mm_add_ps(fiy2,ty);
1806 fiz2 = _mm_add_ps(fiz2,tz);
1807
1808 fjx2 = _mm_add_ps(fjx2,tx);
1809 fjy2 = _mm_add_ps(fjy2,ty);
1810 fjz2 = _mm_add_ps(fjz2,tz);
1811
1812 fjptrA = f+j_coord_offsetA;
1813 fjptrB = f+j_coord_offsetB;
1814 fjptrC = f+j_coord_offsetC;
1815 fjptrD = f+j_coord_offsetD;
1816
1817 gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1818 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1819
1820 /* Inner loop uses 331 flops */
1821 }
1822
1823 if(jidx<j_index_end)
1824 {
1825
1826 /* Get j neighbor index, and coordinate index */
1827 jnrlistA = jjnr[jidx];
1828 jnrlistB = jjnr[jidx+1];
1829 jnrlistC = jjnr[jidx+2];
1830 jnrlistD = jjnr[jidx+3];
1831 /* Sign of each element will be negative for non-real atoms.
1832 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1833 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1834 */
1835 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1836 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1837 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1838 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1839 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1840 j_coord_offsetA = DIM3*jnrA;
1841 j_coord_offsetB = DIM3*jnrB;
1842 j_coord_offsetC = DIM3*jnrC;
1843 j_coord_offsetD = DIM3*jnrD;
1844
1845 /* load j atom coordinates */
1846 gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1847 x+j_coord_offsetC,x+j_coord_offsetD,
1848 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1849
1850 /* Calculate displacement vector */
1851 dx00 = _mm_sub_ps(ix0,jx0);
1852 dy00 = _mm_sub_ps(iy0,jy0);
1853 dz00 = _mm_sub_ps(iz0,jz0);
1854 dx01 = _mm_sub_ps(ix0,jx1);
1855 dy01 = _mm_sub_ps(iy0,jy1);
1856 dz01 = _mm_sub_ps(iz0,jz1);
1857 dx02 = _mm_sub_ps(ix0,jx2);
1858 dy02 = _mm_sub_ps(iy0,jy2);
1859 dz02 = _mm_sub_ps(iz0,jz2);
1860 dx10 = _mm_sub_ps(ix1,jx0);
1861 dy10 = _mm_sub_ps(iy1,jy0);
1862 dz10 = _mm_sub_ps(iz1,jz0);
1863 dx11 = _mm_sub_ps(ix1,jx1);
1864 dy11 = _mm_sub_ps(iy1,jy1);
1865 dz11 = _mm_sub_ps(iz1,jz1);
1866 dx12 = _mm_sub_ps(ix1,jx2);
1867 dy12 = _mm_sub_ps(iy1,jy2);
1868 dz12 = _mm_sub_ps(iz1,jz2);
1869 dx20 = _mm_sub_ps(ix2,jx0);
1870 dy20 = _mm_sub_ps(iy2,jy0);
1871 dz20 = _mm_sub_ps(iz2,jz0);
1872 dx21 = _mm_sub_ps(ix2,jx1);
1873 dy21 = _mm_sub_ps(iy2,jy1);
1874 dz21 = _mm_sub_ps(iz2,jz1);
1875 dx22 = _mm_sub_ps(ix2,jx2);
1876 dy22 = _mm_sub_ps(iy2,jy2);
1877 dz22 = _mm_sub_ps(iz2,jz2);
1878
1879 /* Calculate squared distance and things based on it */
1880 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1881 rsq01 = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
1882 rsq02 = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
1883 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1884 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1885 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1886 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1887 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1888 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1889
1890 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1891 rinv01 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq01);
1892 rinv02 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq02);
1893 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1894 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
1895 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
1896 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1897 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
1898 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
1899
1900 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
1901 rinvsq01 = _mm_mul_ps(rinv01,rinv01);
1902 rinvsq02 = _mm_mul_ps(rinv02,rinv02);
1903 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1904 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
1905 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
1906 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1907 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
1908 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
1909
1910 fjx0 = _mm_setzero_ps();
1911 fjy0 = _mm_setzero_ps();
1912 fjz0 = _mm_setzero_ps();
1913 fjx1 = _mm_setzero_ps();
1914 fjy1 = _mm_setzero_ps();
1915 fjz1 = _mm_setzero_ps();
1916 fjx2 = _mm_setzero_ps();
1917 fjy2 = _mm_setzero_ps();
1918 fjz2 = _mm_setzero_ps();
1919
1920 /**************************
1921 * CALCULATE INTERACTIONS *
1922 **************************/
1923
1924 r00 = _mm_mul_ps(rsq00,rinv00);
1925 r00 = _mm_andnot_ps(dummy_mask,r00);
1926
1927 /* EWALD ELECTROSTATICS */
1928
1929 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1930 ewrt = _mm_mul_ps(r00,ewtabscale);
1931 ewitab = _mm_cvttps_epi32(ewrt);
1932 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1933 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1934 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1935 &ewtabF,&ewtabFn);
1936 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1937 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1938
1939 /* LENNARD-JONES DISPERSION/REPULSION */
1940
1941 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1942 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1943
1944 fscal = _mm_add_ps(felec,fvdw);
1945
1946 fscal = _mm_andnot_ps(dummy_mask,fscal);
1947
1948 /* Calculate temporary vectorial force */
1949 tx = _mm_mul_ps(fscal,dx00);
1950 ty = _mm_mul_ps(fscal,dy00);
1951 tz = _mm_mul_ps(fscal,dz00);
1952
1953 /* Update vectorial force */
1954 fix0 = _mm_add_ps(fix0,tx);
1955 fiy0 = _mm_add_ps(fiy0,ty);
1956 fiz0 = _mm_add_ps(fiz0,tz);
1957
1958 fjx0 = _mm_add_ps(fjx0,tx);
1959 fjy0 = _mm_add_ps(fjy0,ty);
1960 fjz0 = _mm_add_ps(fjz0,tz);
1961
1962 /**************************
1963 * CALCULATE INTERACTIONS *
1964 **************************/
1965
1966 r01 = _mm_mul_ps(rsq01,rinv01);
1967 r01 = _mm_andnot_ps(dummy_mask,r01);
1968
1969 /* EWALD ELECTROSTATICS */
1970
1971 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1972 ewrt = _mm_mul_ps(r01,ewtabscale);
1973 ewitab = _mm_cvttps_epi32(ewrt);
1974 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1975 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1976 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1977 &ewtabF,&ewtabFn);
1978 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1979 felec = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
1980
1981 fscal = felec;
1982
1983 fscal = _mm_andnot_ps(dummy_mask,fscal);
1984
1985 /* Calculate temporary vectorial force */
1986 tx = _mm_mul_ps(fscal,dx01);
1987 ty = _mm_mul_ps(fscal,dy01);
1988 tz = _mm_mul_ps(fscal,dz01);
1989
1990 /* Update vectorial force */
1991 fix0 = _mm_add_ps(fix0,tx);
1992 fiy0 = _mm_add_ps(fiy0,ty);
1993 fiz0 = _mm_add_ps(fiz0,tz);
1994
1995 fjx1 = _mm_add_ps(fjx1,tx);
1996 fjy1 = _mm_add_ps(fjy1,ty);
1997 fjz1 = _mm_add_ps(fjz1,tz);
1998
1999 /**************************
2000 * CALCULATE INTERACTIONS *
2001 **************************/
2002
2003 r02 = _mm_mul_ps(rsq02,rinv02);
2004 r02 = _mm_andnot_ps(dummy_mask,r02);
2005
2006 /* EWALD ELECTROSTATICS */
2007
2008 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2009 ewrt = _mm_mul_ps(r02,ewtabscale);
2010 ewitab = _mm_cvttps_epi32(ewrt);
2011 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2012 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2013 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2014 &ewtabF,&ewtabFn);
2015 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2016 felec = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
2017
2018 fscal = felec;
2019
2020 fscal = _mm_andnot_ps(dummy_mask,fscal);
2021
2022 /* Calculate temporary vectorial force */
2023 tx = _mm_mul_ps(fscal,dx02);
2024 ty = _mm_mul_ps(fscal,dy02);
2025 tz = _mm_mul_ps(fscal,dz02);
2026
2027 /* Update vectorial force */
2028 fix0 = _mm_add_ps(fix0,tx);
2029 fiy0 = _mm_add_ps(fiy0,ty);
2030 fiz0 = _mm_add_ps(fiz0,tz);
2031
2032 fjx2 = _mm_add_ps(fjx2,tx);
2033 fjy2 = _mm_add_ps(fjy2,ty);
2034 fjz2 = _mm_add_ps(fjz2,tz);
2035
2036 /**************************
2037 * CALCULATE INTERACTIONS *
2038 **************************/
2039
2040 r10 = _mm_mul_ps(rsq10,rinv10);
2041 r10 = _mm_andnot_ps(dummy_mask,r10);
2042
2043 /* EWALD ELECTROSTATICS */
2044
2045 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2046 ewrt = _mm_mul_ps(r10,ewtabscale);
2047 ewitab = _mm_cvttps_epi32(ewrt);
2048 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2049 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2050 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2051 &ewtabF,&ewtabFn);
2052 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2053 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
2054
2055 fscal = felec;
2056
2057 fscal = _mm_andnot_ps(dummy_mask,fscal);
2058
2059 /* Calculate temporary vectorial force */
2060 tx = _mm_mul_ps(fscal,dx10);
2061 ty = _mm_mul_ps(fscal,dy10);
2062 tz = _mm_mul_ps(fscal,dz10);
2063
2064 /* Update vectorial force */
2065 fix1 = _mm_add_ps(fix1,tx);
2066 fiy1 = _mm_add_ps(fiy1,ty);
2067 fiz1 = _mm_add_ps(fiz1,tz);
2068
2069 fjx0 = _mm_add_ps(fjx0,tx);
2070 fjy0 = _mm_add_ps(fjy0,ty);
2071 fjz0 = _mm_add_ps(fjz0,tz);
2072
2073 /**************************
2074 * CALCULATE INTERACTIONS *
2075 **************************/
2076
2077 r11 = _mm_mul_ps(rsq11,rinv11);
2078 r11 = _mm_andnot_ps(dummy_mask,r11);
2079
2080 /* EWALD ELECTROSTATICS */
2081
2082 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2083 ewrt = _mm_mul_ps(r11,ewtabscale);
2084 ewitab = _mm_cvttps_epi32(ewrt);
2085 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2086 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2087 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2088 &ewtabF,&ewtabFn);
2089 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2090 felec = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
2091
2092 fscal = felec;
2093
2094 fscal = _mm_andnot_ps(dummy_mask,fscal);
2095
2096 /* Calculate temporary vectorial force */
2097 tx = _mm_mul_ps(fscal,dx11);
2098 ty = _mm_mul_ps(fscal,dy11);
2099 tz = _mm_mul_ps(fscal,dz11);
2100
2101 /* Update vectorial force */
2102 fix1 = _mm_add_ps(fix1,tx);
2103 fiy1 = _mm_add_ps(fiy1,ty);
2104 fiz1 = _mm_add_ps(fiz1,tz);
2105
2106 fjx1 = _mm_add_ps(fjx1,tx);
2107 fjy1 = _mm_add_ps(fjy1,ty);
2108 fjz1 = _mm_add_ps(fjz1,tz);
2109
2110 /**************************
2111 * CALCULATE INTERACTIONS *
2112 **************************/
2113
2114 r12 = _mm_mul_ps(rsq12,rinv12);
2115 r12 = _mm_andnot_ps(dummy_mask,r12);
2116
2117 /* EWALD ELECTROSTATICS */
2118
2119 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2120 ewrt = _mm_mul_ps(r12,ewtabscale);
2121 ewitab = _mm_cvttps_epi32(ewrt);
2122 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2123 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2124 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2125 &ewtabF,&ewtabFn);
2126 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2127 felec = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
2128
2129 fscal = felec;
2130
2131 fscal = _mm_andnot_ps(dummy_mask,fscal);
2132
2133 /* Calculate temporary vectorial force */
2134 tx = _mm_mul_ps(fscal,dx12);
2135 ty = _mm_mul_ps(fscal,dy12);
2136 tz = _mm_mul_ps(fscal,dz12);
2137
2138 /* Update vectorial force */
2139 fix1 = _mm_add_ps(fix1,tx);
2140 fiy1 = _mm_add_ps(fiy1,ty);
2141 fiz1 = _mm_add_ps(fiz1,tz);
2142
2143 fjx2 = _mm_add_ps(fjx2,tx);
2144 fjy2 = _mm_add_ps(fjy2,ty);
2145 fjz2 = _mm_add_ps(fjz2,tz);
2146
2147 /**************************
2148 * CALCULATE INTERACTIONS *
2149 **************************/
2150
2151 r20 = _mm_mul_ps(rsq20,rinv20);
2152 r20 = _mm_andnot_ps(dummy_mask,r20);
2153
2154 /* EWALD ELECTROSTATICS */
2155
2156 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2157 ewrt = _mm_mul_ps(r20,ewtabscale);
2158 ewitab = _mm_cvttps_epi32(ewrt);
2159 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2160 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2161 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2162 &ewtabF,&ewtabFn);
2163 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2164 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
2165
2166 fscal = felec;
2167
2168 fscal = _mm_andnot_ps(dummy_mask,fscal);
2169
2170 /* Calculate temporary vectorial force */
2171 tx = _mm_mul_ps(fscal,dx20);
2172 ty = _mm_mul_ps(fscal,dy20);
2173 tz = _mm_mul_ps(fscal,dz20);
2174
2175 /* Update vectorial force */
2176 fix2 = _mm_add_ps(fix2,tx);
2177 fiy2 = _mm_add_ps(fiy2,ty);
2178 fiz2 = _mm_add_ps(fiz2,tz);
2179
2180 fjx0 = _mm_add_ps(fjx0,tx);
2181 fjy0 = _mm_add_ps(fjy0,ty);
2182 fjz0 = _mm_add_ps(fjz0,tz);
2183
2184 /**************************
2185 * CALCULATE INTERACTIONS *
2186 **************************/
2187
2188 r21 = _mm_mul_ps(rsq21,rinv21);
2189 r21 = _mm_andnot_ps(dummy_mask,r21);
2190
2191 /* EWALD ELECTROSTATICS */
2192
2193 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2194 ewrt = _mm_mul_ps(r21,ewtabscale);
2195 ewitab = _mm_cvttps_epi32(ewrt);
2196 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2197 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2198 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2199 &ewtabF,&ewtabFn);
2200 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2201 felec = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2202
2203 fscal = felec;
2204
2205 fscal = _mm_andnot_ps(dummy_mask,fscal);
2206
2207 /* Calculate temporary vectorial force */
2208 tx = _mm_mul_ps(fscal,dx21);
2209 ty = _mm_mul_ps(fscal,dy21);
2210 tz = _mm_mul_ps(fscal,dz21);
2211
2212 /* Update vectorial force */
2213 fix2 = _mm_add_ps(fix2,tx);
2214 fiy2 = _mm_add_ps(fiy2,ty);
2215 fiz2 = _mm_add_ps(fiz2,tz);
2216
2217 fjx1 = _mm_add_ps(fjx1,tx);
2218 fjy1 = _mm_add_ps(fjy1,ty);
2219 fjz1 = _mm_add_ps(fjz1,tz);
2220
2221 /**************************
2222 * CALCULATE INTERACTIONS *
2223 **************************/
2224
2225 r22 = _mm_mul_ps(rsq22,rinv22);
2226 r22 = _mm_andnot_ps(dummy_mask,r22);
2227
2228 /* EWALD ELECTROSTATICS */
2229
2230 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2231 ewrt = _mm_mul_ps(r22,ewtabscale);
2232 ewitab = _mm_cvttps_epi32(ewrt);
2233 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2234 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2235 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2236 &ewtabF,&ewtabFn);
2237 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2238 felec = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2239
2240 fscal = felec;
2241
2242 fscal = _mm_andnot_ps(dummy_mask,fscal);
2243
2244 /* Calculate temporary vectorial force */
2245 tx = _mm_mul_ps(fscal,dx22);
2246 ty = _mm_mul_ps(fscal,dy22);
2247 tz = _mm_mul_ps(fscal,dz22);
2248
2249 /* Update vectorial force */
2250 fix2 = _mm_add_ps(fix2,tx);
2251 fiy2 = _mm_add_ps(fiy2,ty);
2252 fiz2 = _mm_add_ps(fiz2,tz);
2253
2254 fjx2 = _mm_add_ps(fjx2,tx);
2255 fjy2 = _mm_add_ps(fjy2,ty);
2256 fjz2 = _mm_add_ps(fjz2,tz);
2257
2258 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2259 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2260 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2261 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2262
2263 gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2264 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2265
2266 /* Inner loop uses 340 flops */
2267 }
2268
2269 /* End of innermost loop */
2270
2271 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2272 f+i_coord_offset,fshift+i_shift_offset);
2273
2274 /* Increment number of inner iterations */
2275 inneriter += j_index_end - j_index_start;
2276
2277 /* Outer loop uses 18 flops */
2278 }
2279
2280 /* Increment number of outer iterations */
2281 outeriter += nri;
2282
2283 /* Update outer/inner flops */
2284
2285 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*340)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*18 + inneriter
*340
;
2286}