Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_c.c
Location:line 467, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_c
51 * Electrostatics interaction: Coulomb
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 int vfitab;
93 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
94 real *vftab;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 vftab = kernel_data->table_vdw->data;
114 vftabscale = kernel_data->table_vdw->scale;
115
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq1 = facel*charge[inr+1];
119 iq2 = facel*charge[inr+2];
120 iq3 = facel*charge[inr+3];
121 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
122
123 outeriter = 0;
124 inneriter = 0;
125
126 /* Start outer loop over neighborlists */
127 for(iidx=0; iidx<nri; iidx++)
128 {
129 /* Load shift vector for this list */
130 i_shift_offset = DIM3*shiftidx[iidx];
131 shX = shiftvec[i_shift_offset+XX0];
132 shY = shiftvec[i_shift_offset+YY1];
133 shZ = shiftvec[i_shift_offset+ZZ2];
134
135 /* Load limits for loop over neighbors */
136 j_index_start = jindex[iidx];
137 j_index_end = jindex[iidx+1];
138
139 /* Get outer coordinate index */
140 inr = iinr[iidx];
141 i_coord_offset = DIM3*inr;
142
143 /* Load i particle coords and add shift vector */
144 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
145 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
146 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
147 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
148 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
149 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
150 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
151 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
152 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
153 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
154 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
155 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
156
157 fix0 = 0.0;
158 fiy0 = 0.0;
159 fiz0 = 0.0;
160 fix1 = 0.0;
161 fiy1 = 0.0;
162 fiz1 = 0.0;
163 fix2 = 0.0;
164 fiy2 = 0.0;
165 fiz2 = 0.0;
166 fix3 = 0.0;
167 fiy3 = 0.0;
168 fiz3 = 0.0;
169
170 /* Reset potential sums */
171 velecsum = 0.0;
172 vvdwsum = 0.0;
173
174 /* Start inner kernel loop */
175 for(jidx=j_index_start; jidx<j_index_end; jidx++)
176 {
177 /* Get j neighbor index, and coordinate index */
178 jnr = jjnr[jidx];
179 j_coord_offset = DIM3*jnr;
180
181 /* load j atom coordinates */
182 jx0 = x[j_coord_offset+DIM3*0+XX0];
183 jy0 = x[j_coord_offset+DIM3*0+YY1];
184 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
185
186 /* Calculate displacement vector */
187 dx00 = ix0 - jx0;
188 dy00 = iy0 - jy0;
189 dz00 = iz0 - jz0;
190 dx10 = ix1 - jx0;
191 dy10 = iy1 - jy0;
192 dz10 = iz1 - jz0;
193 dx20 = ix2 - jx0;
194 dy20 = iy2 - jy0;
195 dz20 = iz2 - jz0;
196 dx30 = ix3 - jx0;
197 dy30 = iy3 - jy0;
198 dz30 = iz3 - jz0;
199
200 /* Calculate squared distance and things based on it */
201 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
202 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
203 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
204 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
205
206 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
207 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
208 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
209 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
210
211 rinvsq10 = rinv10*rinv10;
212 rinvsq20 = rinv20*rinv20;
213 rinvsq30 = rinv30*rinv30;
214
215 /* Load parameters for j particles */
216 jq0 = charge[jnr+0];
217 vdwjidx0 = 2*vdwtype[jnr+0];
218
219 /**************************
220 * CALCULATE INTERACTIONS *
221 **************************/
222
223 r00 = rsq00*rinv00;
224
225 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
226 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
227
228 /* Calculate table index by multiplying r with table scale and truncate to integer */
229 rt = r00*vftabscale;
230 vfitab = rt;
231 vfeps = rt-vfitab;
232 vfitab = 2*4*vfitab;
233
234 /* CUBIC SPLINE TABLE DISPERSION */
235 vfitab += 0;
236 Y = vftab[vfitab];
237 F = vftab[vfitab+1];
238 Geps = vfeps*vftab[vfitab+2];
239 Heps2 = vfeps*vfeps*vftab[vfitab+3];
240 Fp = F+Geps+Heps2;
241 VV = Y+vfeps*Fp;
242 vvdw6 = c6_00*VV;
243 FF = Fp+Geps+2.0*Heps2;
244 fvdw6 = c6_00*FF;
245
246 /* CUBIC SPLINE TABLE REPULSION */
247 Y = vftab[vfitab+4];
248 F = vftab[vfitab+5];
249 Geps = vfeps*vftab[vfitab+6];
250 Heps2 = vfeps*vfeps*vftab[vfitab+7];
251 Fp = F+Geps+Heps2;
252 VV = Y+vfeps*Fp;
253 vvdw12 = c12_00*VV;
254 FF = Fp+Geps+2.0*Heps2;
255 fvdw12 = c12_00*FF;
256 vvdw = vvdw12+vvdw6;
257 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
258
259 /* Update potential sums from outer loop */
260 vvdwsum += vvdw;
261
262 fscal = fvdw;
263
264 /* Calculate temporary vectorial force */
265 tx = fscal*dx00;
266 ty = fscal*dy00;
267 tz = fscal*dz00;
268
269 /* Update vectorial force */
270 fix0 += tx;
271 fiy0 += ty;
272 fiz0 += tz;
273 f[j_coord_offset+DIM3*0+XX0] -= tx;
274 f[j_coord_offset+DIM3*0+YY1] -= ty;
275 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
276
277 /**************************
278 * CALCULATE INTERACTIONS *
279 **************************/
280
281 qq10 = iq1*jq0;
282
283 /* COULOMB ELECTROSTATICS */
284 velec = qq10*rinv10;
285 felec = velec*rinvsq10;
286
287 /* Update potential sums from outer loop */
288 velecsum += velec;
289
290 fscal = felec;
291
292 /* Calculate temporary vectorial force */
293 tx = fscal*dx10;
294 ty = fscal*dy10;
295 tz = fscal*dz10;
296
297 /* Update vectorial force */
298 fix1 += tx;
299 fiy1 += ty;
300 fiz1 += tz;
301 f[j_coord_offset+DIM3*0+XX0] -= tx;
302 f[j_coord_offset+DIM3*0+YY1] -= ty;
303 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
304
305 /**************************
306 * CALCULATE INTERACTIONS *
307 **************************/
308
309 qq20 = iq2*jq0;
310
311 /* COULOMB ELECTROSTATICS */
312 velec = qq20*rinv20;
313 felec = velec*rinvsq20;
314
315 /* Update potential sums from outer loop */
316 velecsum += velec;
317
318 fscal = felec;
319
320 /* Calculate temporary vectorial force */
321 tx = fscal*dx20;
322 ty = fscal*dy20;
323 tz = fscal*dz20;
324
325 /* Update vectorial force */
326 fix2 += tx;
327 fiy2 += ty;
328 fiz2 += tz;
329 f[j_coord_offset+DIM3*0+XX0] -= tx;
330 f[j_coord_offset+DIM3*0+YY1] -= ty;
331 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
332
333 /**************************
334 * CALCULATE INTERACTIONS *
335 **************************/
336
337 qq30 = iq3*jq0;
338
339 /* COULOMB ELECTROSTATICS */
340 velec = qq30*rinv30;
341 felec = velec*rinvsq30;
342
343 /* Update potential sums from outer loop */
344 velecsum += velec;
345
346 fscal = felec;
347
348 /* Calculate temporary vectorial force */
349 tx = fscal*dx30;
350 ty = fscal*dy30;
351 tz = fscal*dz30;
352
353 /* Update vectorial force */
354 fix3 += tx;
355 fiy3 += ty;
356 fiz3 += tz;
357 f[j_coord_offset+DIM3*0+XX0] -= tx;
358 f[j_coord_offset+DIM3*0+YY1] -= ty;
359 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
360
361 /* Inner loop uses 139 flops */
362 }
363 /* End of innermost loop */
364
365 tx = ty = tz = 0;
366 f[i_coord_offset+DIM3*0+XX0] += fix0;
367 f[i_coord_offset+DIM3*0+YY1] += fiy0;
368 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
369 tx += fix0;
370 ty += fiy0;
371 tz += fiz0;
372 f[i_coord_offset+DIM3*1+XX0] += fix1;
373 f[i_coord_offset+DIM3*1+YY1] += fiy1;
374 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
375 tx += fix1;
376 ty += fiy1;
377 tz += fiz1;
378 f[i_coord_offset+DIM3*2+XX0] += fix2;
379 f[i_coord_offset+DIM3*2+YY1] += fiy2;
380 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
381 tx += fix2;
382 ty += fiy2;
383 tz += fiz2;
384 f[i_coord_offset+DIM3*3+XX0] += fix3;
385 f[i_coord_offset+DIM3*3+YY1] += fiy3;
386 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
387 tx += fix3;
388 ty += fiy3;
389 tz += fiz3;
390 fshift[i_shift_offset+XX0] += tx;
391 fshift[i_shift_offset+YY1] += ty;
392 fshift[i_shift_offset+ZZ2] += tz;
393
394 ggid = gid[iidx];
395 /* Update potential energies */
396 kernel_data->energygrp_elec[ggid] += velecsum;
397 kernel_data->energygrp_vdw[ggid] += vvdwsum;
398
399 /* Increment number of inner iterations */
400 inneriter += j_index_end - j_index_start;
401
402 /* Outer loop uses 41 flops */
403 }
404
405 /* Increment number of outer iterations */
406 outeriter += nri;
407
408 /* Update outer/inner flops */
409
410 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*139)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*139
;
411}
412/*
413 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_c
414 * Electrostatics interaction: Coulomb
415 * VdW interaction: CubicSplineTable
416 * Geometry: Water4-Particle
417 * Calculate force/pot: Force
418 */
419void
420nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_c
421 (t_nblist * gmx_restrict__restrict nlist,
422 rvec * gmx_restrict__restrict xx,
423 rvec * gmx_restrict__restrict ff,
424 t_forcerec * gmx_restrict__restrict fr,
425 t_mdatoms * gmx_restrict__restrict mdatoms,
426 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
427 t_nrnb * gmx_restrict__restrict nrnb)
428{
429 int i_shift_offset,i_coord_offset,j_coord_offset;
430 int j_index_start,j_index_end;
431 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
432 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
433 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
434 real *shiftvec,*fshift,*x,*f;
435 int vdwioffset0;
436 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
437 int vdwioffset1;
438 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
439 int vdwioffset2;
440 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
441 int vdwioffset3;
442 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
443 int vdwjidx0;
444 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
445 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
446 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
447 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
448 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
449 real velec,felec,velecsum,facel,crf,krf,krf2;
450 real *charge;
451 int nvdwtype;
452 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
453 int *vdwtype;
454 real *vdwparam;
455 int vfitab;
456 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
457 real *vftab;
458
459 x = xx[0];
460 f = ff[0];
461
462 nri = nlist->nri;
463 iinr = nlist->iinr;
464 jindex = nlist->jindex;
465 jjnr = nlist->jjnr;
466 shiftidx = nlist->shift;
467 gid = nlist->gid;
Value stored to 'gid' is never read
468 shiftvec = fr->shift_vec[0];
469 fshift = fr->fshift[0];
470 facel = fr->epsfac;
471 charge = mdatoms->chargeA;
472 nvdwtype = fr->ntype;
473 vdwparam = fr->nbfp;
474 vdwtype = mdatoms->typeA;
475
476 vftab = kernel_data->table_vdw->data;
477 vftabscale = kernel_data->table_vdw->scale;
478
479 /* Setup water-specific parameters */
480 inr = nlist->iinr[0];
481 iq1 = facel*charge[inr+1];
482 iq2 = facel*charge[inr+2];
483 iq3 = facel*charge[inr+3];
484 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
485
486 outeriter = 0;
487 inneriter = 0;
488
489 /* Start outer loop over neighborlists */
490 for(iidx=0; iidx<nri; iidx++)
491 {
492 /* Load shift vector for this list */
493 i_shift_offset = DIM3*shiftidx[iidx];
494 shX = shiftvec[i_shift_offset+XX0];
495 shY = shiftvec[i_shift_offset+YY1];
496 shZ = shiftvec[i_shift_offset+ZZ2];
497
498 /* Load limits for loop over neighbors */
499 j_index_start = jindex[iidx];
500 j_index_end = jindex[iidx+1];
501
502 /* Get outer coordinate index */
503 inr = iinr[iidx];
504 i_coord_offset = DIM3*inr;
505
506 /* Load i particle coords and add shift vector */
507 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
508 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
509 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
510 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
511 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
512 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
513 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
514 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
515 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
516 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
517 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
518 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
519
520 fix0 = 0.0;
521 fiy0 = 0.0;
522 fiz0 = 0.0;
523 fix1 = 0.0;
524 fiy1 = 0.0;
525 fiz1 = 0.0;
526 fix2 = 0.0;
527 fiy2 = 0.0;
528 fiz2 = 0.0;
529 fix3 = 0.0;
530 fiy3 = 0.0;
531 fiz3 = 0.0;
532
533 /* Start inner kernel loop */
534 for(jidx=j_index_start; jidx<j_index_end; jidx++)
535 {
536 /* Get j neighbor index, and coordinate index */
537 jnr = jjnr[jidx];
538 j_coord_offset = DIM3*jnr;
539
540 /* load j atom coordinates */
541 jx0 = x[j_coord_offset+DIM3*0+XX0];
542 jy0 = x[j_coord_offset+DIM3*0+YY1];
543 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
544
545 /* Calculate displacement vector */
546 dx00 = ix0 - jx0;
547 dy00 = iy0 - jy0;
548 dz00 = iz0 - jz0;
549 dx10 = ix1 - jx0;
550 dy10 = iy1 - jy0;
551 dz10 = iz1 - jz0;
552 dx20 = ix2 - jx0;
553 dy20 = iy2 - jy0;
554 dz20 = iz2 - jz0;
555 dx30 = ix3 - jx0;
556 dy30 = iy3 - jy0;
557 dz30 = iz3 - jz0;
558
559 /* Calculate squared distance and things based on it */
560 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
561 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
562 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
563 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
564
565 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
566 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
567 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
568 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
569
570 rinvsq10 = rinv10*rinv10;
571 rinvsq20 = rinv20*rinv20;
572 rinvsq30 = rinv30*rinv30;
573
574 /* Load parameters for j particles */
575 jq0 = charge[jnr+0];
576 vdwjidx0 = 2*vdwtype[jnr+0];
577
578 /**************************
579 * CALCULATE INTERACTIONS *
580 **************************/
581
582 r00 = rsq00*rinv00;
583
584 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
585 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
586
587 /* Calculate table index by multiplying r with table scale and truncate to integer */
588 rt = r00*vftabscale;
589 vfitab = rt;
590 vfeps = rt-vfitab;
591 vfitab = 2*4*vfitab;
592
593 /* CUBIC SPLINE TABLE DISPERSION */
594 vfitab += 0;
595 F = vftab[vfitab+1];
596 Geps = vfeps*vftab[vfitab+2];
597 Heps2 = vfeps*vfeps*vftab[vfitab+3];
598 Fp = F+Geps+Heps2;
599 FF = Fp+Geps+2.0*Heps2;
600 fvdw6 = c6_00*FF;
601
602 /* CUBIC SPLINE TABLE REPULSION */
603 F = vftab[vfitab+5];
604 Geps = vfeps*vftab[vfitab+6];
605 Heps2 = vfeps*vfeps*vftab[vfitab+7];
606 Fp = F+Geps+Heps2;
607 FF = Fp+Geps+2.0*Heps2;
608 fvdw12 = c12_00*FF;
609 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
610
611 fscal = fvdw;
612
613 /* Calculate temporary vectorial force */
614 tx = fscal*dx00;
615 ty = fscal*dy00;
616 tz = fscal*dz00;
617
618 /* Update vectorial force */
619 fix0 += tx;
620 fiy0 += ty;
621 fiz0 += tz;
622 f[j_coord_offset+DIM3*0+XX0] -= tx;
623 f[j_coord_offset+DIM3*0+YY1] -= ty;
624 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
625
626 /**************************
627 * CALCULATE INTERACTIONS *
628 **************************/
629
630 qq10 = iq1*jq0;
631
632 /* COULOMB ELECTROSTATICS */
633 velec = qq10*rinv10;
634 felec = velec*rinvsq10;
635
636 fscal = felec;
637
638 /* Calculate temporary vectorial force */
639 tx = fscal*dx10;
640 ty = fscal*dy10;
641 tz = fscal*dz10;
642
643 /* Update vectorial force */
644 fix1 += tx;
645 fiy1 += ty;
646 fiz1 += tz;
647 f[j_coord_offset+DIM3*0+XX0] -= tx;
648 f[j_coord_offset+DIM3*0+YY1] -= ty;
649 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
650
651 /**************************
652 * CALCULATE INTERACTIONS *
653 **************************/
654
655 qq20 = iq2*jq0;
656
657 /* COULOMB ELECTROSTATICS */
658 velec = qq20*rinv20;
659 felec = velec*rinvsq20;
660
661 fscal = felec;
662
663 /* Calculate temporary vectorial force */
664 tx = fscal*dx20;
665 ty = fscal*dy20;
666 tz = fscal*dz20;
667
668 /* Update vectorial force */
669 fix2 += tx;
670 fiy2 += ty;
671 fiz2 += tz;
672 f[j_coord_offset+DIM3*0+XX0] -= tx;
673 f[j_coord_offset+DIM3*0+YY1] -= ty;
674 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
675
676 /**************************
677 * CALCULATE INTERACTIONS *
678 **************************/
679
680 qq30 = iq3*jq0;
681
682 /* COULOMB ELECTROSTATICS */
683 velec = qq30*rinv30;
684 felec = velec*rinvsq30;
685
686 fscal = felec;
687
688 /* Calculate temporary vectorial force */
689 tx = fscal*dx30;
690 ty = fscal*dy30;
691 tz = fscal*dz30;
692
693 /* Update vectorial force */
694 fix3 += tx;
695 fiy3 += ty;
696 fiz3 += tz;
697 f[j_coord_offset+DIM3*0+XX0] -= tx;
698 f[j_coord_offset+DIM3*0+YY1] -= ty;
699 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
700
701 /* Inner loop uses 128 flops */
702 }
703 /* End of innermost loop */
704
705 tx = ty = tz = 0;
706 f[i_coord_offset+DIM3*0+XX0] += fix0;
707 f[i_coord_offset+DIM3*0+YY1] += fiy0;
708 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
709 tx += fix0;
710 ty += fiy0;
711 tz += fiz0;
712 f[i_coord_offset+DIM3*1+XX0] += fix1;
713 f[i_coord_offset+DIM3*1+YY1] += fiy1;
714 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
715 tx += fix1;
716 ty += fiy1;
717 tz += fiz1;
718 f[i_coord_offset+DIM3*2+XX0] += fix2;
719 f[i_coord_offset+DIM3*2+YY1] += fiy2;
720 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
721 tx += fix2;
722 ty += fiy2;
723 tz += fiz2;
724 f[i_coord_offset+DIM3*3+XX0] += fix3;
725 f[i_coord_offset+DIM3*3+YY1] += fiy3;
726 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
727 tx += fix3;
728 ty += fiy3;
729 tz += fiz3;
730 fshift[i_shift_offset+XX0] += tx;
731 fshift[i_shift_offset+YY1] += ty;
732 fshift[i_shift_offset+ZZ2] += tz;
733
734 /* Increment number of inner iterations */
735 inneriter += j_index_end - j_index_start;
736
737 /* Outer loop uses 39 flops */
738 }
739
740 /* Increment number of outer iterations */
741 outeriter += nri;
742
743 /* Update outer/inner flops */
744
745 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*128)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*128
;
746}