Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_c.c
Location:line 857, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 int ewitab;
105 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
106 real *ewtab;
107
108 x = xx[0];
109 f = ff[0];
110
111 nri = nlist->nri;
112 iinr = nlist->iinr;
113 jindex = nlist->jindex;
114 jjnr = nlist->jjnr;
115 shiftidx = nlist->shift;
116 gid = nlist->gid;
117 shiftvec = fr->shift_vec[0];
118 fshift = fr->fshift[0];
119 facel = fr->epsfac;
120 charge = mdatoms->chargeA;
121 nvdwtype = fr->ntype;
122 vdwparam = fr->nbfp;
123 vdwtype = mdatoms->typeA;
124
125 sh_ewald = fr->ic->sh_ewald;
126 ewtab = fr->ic->tabq_coul_FDV0;
127 ewtabscale = fr->ic->tabq_scale;
128 ewtabhalfspace = 0.5/ewtabscale;
129
130 /* Setup water-specific parameters */
131 inr = nlist->iinr[0];
132 iq1 = facel*charge[inr+1];
133 iq2 = facel*charge[inr+2];
134 iq3 = facel*charge[inr+3];
135 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
136
137 jq1 = charge[inr+1];
138 jq2 = charge[inr+2];
139 jq3 = charge[inr+3];
140 vdwjidx0 = 3*vdwtype[inr+0];
141 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
142 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
143 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
144 qq11 = iq1*jq1;
145 qq12 = iq1*jq2;
146 qq13 = iq1*jq3;
147 qq21 = iq2*jq1;
148 qq22 = iq2*jq2;
149 qq23 = iq2*jq3;
150 qq31 = iq3*jq1;
151 qq32 = iq3*jq2;
152 qq33 = iq3*jq3;
153
154 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
155 rcutoff = fr->rcoulomb;
156 rcutoff2 = rcutoff*rcutoff;
157
158 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
159 rvdw = fr->rvdw;
160
161 outeriter = 0;
162 inneriter = 0;
163
164 /* Start outer loop over neighborlists */
165 for(iidx=0; iidx<nri; iidx++)
166 {
167 /* Load shift vector for this list */
168 i_shift_offset = DIM3*shiftidx[iidx];
169 shX = shiftvec[i_shift_offset+XX0];
170 shY = shiftvec[i_shift_offset+YY1];
171 shZ = shiftvec[i_shift_offset+ZZ2];
172
173 /* Load limits for loop over neighbors */
174 j_index_start = jindex[iidx];
175 j_index_end = jindex[iidx+1];
176
177 /* Get outer coordinate index */
178 inr = iinr[iidx];
179 i_coord_offset = DIM3*inr;
180
181 /* Load i particle coords and add shift vector */
182 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
183 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
184 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
185 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
186 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
187 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
188 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
189 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
190 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
191 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
192 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
193 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
194
195 fix0 = 0.0;
196 fiy0 = 0.0;
197 fiz0 = 0.0;
198 fix1 = 0.0;
199 fiy1 = 0.0;
200 fiz1 = 0.0;
201 fix2 = 0.0;
202 fiy2 = 0.0;
203 fiz2 = 0.0;
204 fix3 = 0.0;
205 fiy3 = 0.0;
206 fiz3 = 0.0;
207
208 /* Reset potential sums */
209 velecsum = 0.0;
210 vvdwsum = 0.0;
211
212 /* Start inner kernel loop */
213 for(jidx=j_index_start; jidx<j_index_end; jidx++)
214 {
215 /* Get j neighbor index, and coordinate index */
216 jnr = jjnr[jidx];
217 j_coord_offset = DIM3*jnr;
218
219 /* load j atom coordinates */
220 jx0 = x[j_coord_offset+DIM3*0+XX0];
221 jy0 = x[j_coord_offset+DIM3*0+YY1];
222 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
223 jx1 = x[j_coord_offset+DIM3*1+XX0];
224 jy1 = x[j_coord_offset+DIM3*1+YY1];
225 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
226 jx2 = x[j_coord_offset+DIM3*2+XX0];
227 jy2 = x[j_coord_offset+DIM3*2+YY1];
228 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
229 jx3 = x[j_coord_offset+DIM3*3+XX0];
230 jy3 = x[j_coord_offset+DIM3*3+YY1];
231 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
232
233 /* Calculate displacement vector */
234 dx00 = ix0 - jx0;
235 dy00 = iy0 - jy0;
236 dz00 = iz0 - jz0;
237 dx11 = ix1 - jx1;
238 dy11 = iy1 - jy1;
239 dz11 = iz1 - jz1;
240 dx12 = ix1 - jx2;
241 dy12 = iy1 - jy2;
242 dz12 = iz1 - jz2;
243 dx13 = ix1 - jx3;
244 dy13 = iy1 - jy3;
245 dz13 = iz1 - jz3;
246 dx21 = ix2 - jx1;
247 dy21 = iy2 - jy1;
248 dz21 = iz2 - jz1;
249 dx22 = ix2 - jx2;
250 dy22 = iy2 - jy2;
251 dz22 = iz2 - jz2;
252 dx23 = ix2 - jx3;
253 dy23 = iy2 - jy3;
254 dz23 = iz2 - jz3;
255 dx31 = ix3 - jx1;
256 dy31 = iy3 - jy1;
257 dz31 = iz3 - jz1;
258 dx32 = ix3 - jx2;
259 dy32 = iy3 - jy2;
260 dz32 = iz3 - jz2;
261 dx33 = ix3 - jx3;
262 dy33 = iy3 - jy3;
263 dz33 = iz3 - jz3;
264
265 /* Calculate squared distance and things based on it */
266 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
267 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
268 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
269 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
270 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
271 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
272 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
273 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
274 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
275 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
276
277 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
278 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
279 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
280 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
281 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
282 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
283 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
284 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
285 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
286 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
287
288 rinvsq00 = rinv00*rinv00;
289 rinvsq11 = rinv11*rinv11;
290 rinvsq12 = rinv12*rinv12;
291 rinvsq13 = rinv13*rinv13;
292 rinvsq21 = rinv21*rinv21;
293 rinvsq22 = rinv22*rinv22;
294 rinvsq23 = rinv23*rinv23;
295 rinvsq31 = rinv31*rinv31;
296 rinvsq32 = rinv32*rinv32;
297 rinvsq33 = rinv33*rinv33;
298
299 /**************************
300 * CALCULATE INTERACTIONS *
301 **************************/
302
303 if (rsq00<rcutoff2)
304 {
305
306 r00 = rsq00*rinv00;
307
308 /* BUCKINGHAM DISPERSION/REPULSION */
309 rinvsix = rinvsq00*rinvsq00*rinvsq00;
310 vvdw6 = c6_00*rinvsix;
311 br = cexp2_00*r00;
312 vvdwexp = cexp1_00*exp(-br);
313 vvdw = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
314 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
315
316 /* Update potential sums from outer loop */
317 vvdwsum += vvdw;
318
319 fscal = fvdw;
320
321 /* Calculate temporary vectorial force */
322 tx = fscal*dx00;
323 ty = fscal*dy00;
324 tz = fscal*dz00;
325
326 /* Update vectorial force */
327 fix0 += tx;
328 fiy0 += ty;
329 fiz0 += tz;
330 f[j_coord_offset+DIM3*0+XX0] -= tx;
331 f[j_coord_offset+DIM3*0+YY1] -= ty;
332 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
333
334 }
335
336 /**************************
337 * CALCULATE INTERACTIONS *
338 **************************/
339
340 if (rsq11<rcutoff2)
341 {
342
343 r11 = rsq11*rinv11;
344
345 /* EWALD ELECTROSTATICS */
346
347 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348 ewrt = r11*ewtabscale;
349 ewitab = ewrt;
350 eweps = ewrt-ewitab;
351 ewitab = 4*ewitab;
352 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
353 velec = qq11*((rinv11-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
354 felec = qq11*rinv11*(rinvsq11-felec);
355
356 /* Update potential sums from outer loop */
357 velecsum += velec;
358
359 fscal = felec;
360
361 /* Calculate temporary vectorial force */
362 tx = fscal*dx11;
363 ty = fscal*dy11;
364 tz = fscal*dz11;
365
366 /* Update vectorial force */
367 fix1 += tx;
368 fiy1 += ty;
369 fiz1 += tz;
370 f[j_coord_offset+DIM3*1+XX0] -= tx;
371 f[j_coord_offset+DIM3*1+YY1] -= ty;
372 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
373
374 }
375
376 /**************************
377 * CALCULATE INTERACTIONS *
378 **************************/
379
380 if (rsq12<rcutoff2)
381 {
382
383 r12 = rsq12*rinv12;
384
385 /* EWALD ELECTROSTATICS */
386
387 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
388 ewrt = r12*ewtabscale;
389 ewitab = ewrt;
390 eweps = ewrt-ewitab;
391 ewitab = 4*ewitab;
392 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
393 velec = qq12*((rinv12-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
394 felec = qq12*rinv12*(rinvsq12-felec);
395
396 /* Update potential sums from outer loop */
397 velecsum += velec;
398
399 fscal = felec;
400
401 /* Calculate temporary vectorial force */
402 tx = fscal*dx12;
403 ty = fscal*dy12;
404 tz = fscal*dz12;
405
406 /* Update vectorial force */
407 fix1 += tx;
408 fiy1 += ty;
409 fiz1 += tz;
410 f[j_coord_offset+DIM3*2+XX0] -= tx;
411 f[j_coord_offset+DIM3*2+YY1] -= ty;
412 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
413
414 }
415
416 /**************************
417 * CALCULATE INTERACTIONS *
418 **************************/
419
420 if (rsq13<rcutoff2)
421 {
422
423 r13 = rsq13*rinv13;
424
425 /* EWALD ELECTROSTATICS */
426
427 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
428 ewrt = r13*ewtabscale;
429 ewitab = ewrt;
430 eweps = ewrt-ewitab;
431 ewitab = 4*ewitab;
432 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
433 velec = qq13*((rinv13-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
434 felec = qq13*rinv13*(rinvsq13-felec);
435
436 /* Update potential sums from outer loop */
437 velecsum += velec;
438
439 fscal = felec;
440
441 /* Calculate temporary vectorial force */
442 tx = fscal*dx13;
443 ty = fscal*dy13;
444 tz = fscal*dz13;
445
446 /* Update vectorial force */
447 fix1 += tx;
448 fiy1 += ty;
449 fiz1 += tz;
450 f[j_coord_offset+DIM3*3+XX0] -= tx;
451 f[j_coord_offset+DIM3*3+YY1] -= ty;
452 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
453
454 }
455
456 /**************************
457 * CALCULATE INTERACTIONS *
458 **************************/
459
460 if (rsq21<rcutoff2)
461 {
462
463 r21 = rsq21*rinv21;
464
465 /* EWALD ELECTROSTATICS */
466
467 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
468 ewrt = r21*ewtabscale;
469 ewitab = ewrt;
470 eweps = ewrt-ewitab;
471 ewitab = 4*ewitab;
472 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
473 velec = qq21*((rinv21-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
474 felec = qq21*rinv21*(rinvsq21-felec);
475
476 /* Update potential sums from outer loop */
477 velecsum += velec;
478
479 fscal = felec;
480
481 /* Calculate temporary vectorial force */
482 tx = fscal*dx21;
483 ty = fscal*dy21;
484 tz = fscal*dz21;
485
486 /* Update vectorial force */
487 fix2 += tx;
488 fiy2 += ty;
489 fiz2 += tz;
490 f[j_coord_offset+DIM3*1+XX0] -= tx;
491 f[j_coord_offset+DIM3*1+YY1] -= ty;
492 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
493
494 }
495
496 /**************************
497 * CALCULATE INTERACTIONS *
498 **************************/
499
500 if (rsq22<rcutoff2)
501 {
502
503 r22 = rsq22*rinv22;
504
505 /* EWALD ELECTROSTATICS */
506
507 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
508 ewrt = r22*ewtabscale;
509 ewitab = ewrt;
510 eweps = ewrt-ewitab;
511 ewitab = 4*ewitab;
512 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
513 velec = qq22*((rinv22-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
514 felec = qq22*rinv22*(rinvsq22-felec);
515
516 /* Update potential sums from outer loop */
517 velecsum += velec;
518
519 fscal = felec;
520
521 /* Calculate temporary vectorial force */
522 tx = fscal*dx22;
523 ty = fscal*dy22;
524 tz = fscal*dz22;
525
526 /* Update vectorial force */
527 fix2 += tx;
528 fiy2 += ty;
529 fiz2 += tz;
530 f[j_coord_offset+DIM3*2+XX0] -= tx;
531 f[j_coord_offset+DIM3*2+YY1] -= ty;
532 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
533
534 }
535
536 /**************************
537 * CALCULATE INTERACTIONS *
538 **************************/
539
540 if (rsq23<rcutoff2)
541 {
542
543 r23 = rsq23*rinv23;
544
545 /* EWALD ELECTROSTATICS */
546
547 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548 ewrt = r23*ewtabscale;
549 ewitab = ewrt;
550 eweps = ewrt-ewitab;
551 ewitab = 4*ewitab;
552 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
553 velec = qq23*((rinv23-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
554 felec = qq23*rinv23*(rinvsq23-felec);
555
556 /* Update potential sums from outer loop */
557 velecsum += velec;
558
559 fscal = felec;
560
561 /* Calculate temporary vectorial force */
562 tx = fscal*dx23;
563 ty = fscal*dy23;
564 tz = fscal*dz23;
565
566 /* Update vectorial force */
567 fix2 += tx;
568 fiy2 += ty;
569 fiz2 += tz;
570 f[j_coord_offset+DIM3*3+XX0] -= tx;
571 f[j_coord_offset+DIM3*3+YY1] -= ty;
572 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
573
574 }
575
576 /**************************
577 * CALCULATE INTERACTIONS *
578 **************************/
579
580 if (rsq31<rcutoff2)
581 {
582
583 r31 = rsq31*rinv31;
584
585 /* EWALD ELECTROSTATICS */
586
587 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588 ewrt = r31*ewtabscale;
589 ewitab = ewrt;
590 eweps = ewrt-ewitab;
591 ewitab = 4*ewitab;
592 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
593 velec = qq31*((rinv31-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
594 felec = qq31*rinv31*(rinvsq31-felec);
595
596 /* Update potential sums from outer loop */
597 velecsum += velec;
598
599 fscal = felec;
600
601 /* Calculate temporary vectorial force */
602 tx = fscal*dx31;
603 ty = fscal*dy31;
604 tz = fscal*dz31;
605
606 /* Update vectorial force */
607 fix3 += tx;
608 fiy3 += ty;
609 fiz3 += tz;
610 f[j_coord_offset+DIM3*1+XX0] -= tx;
611 f[j_coord_offset+DIM3*1+YY1] -= ty;
612 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
613
614 }
615
616 /**************************
617 * CALCULATE INTERACTIONS *
618 **************************/
619
620 if (rsq32<rcutoff2)
621 {
622
623 r32 = rsq32*rinv32;
624
625 /* EWALD ELECTROSTATICS */
626
627 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628 ewrt = r32*ewtabscale;
629 ewitab = ewrt;
630 eweps = ewrt-ewitab;
631 ewitab = 4*ewitab;
632 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
633 velec = qq32*((rinv32-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
634 felec = qq32*rinv32*(rinvsq32-felec);
635
636 /* Update potential sums from outer loop */
637 velecsum += velec;
638
639 fscal = felec;
640
641 /* Calculate temporary vectorial force */
642 tx = fscal*dx32;
643 ty = fscal*dy32;
644 tz = fscal*dz32;
645
646 /* Update vectorial force */
647 fix3 += tx;
648 fiy3 += ty;
649 fiz3 += tz;
650 f[j_coord_offset+DIM3*2+XX0] -= tx;
651 f[j_coord_offset+DIM3*2+YY1] -= ty;
652 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
653
654 }
655
656 /**************************
657 * CALCULATE INTERACTIONS *
658 **************************/
659
660 if (rsq33<rcutoff2)
661 {
662
663 r33 = rsq33*rinv33;
664
665 /* EWALD ELECTROSTATICS */
666
667 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
668 ewrt = r33*ewtabscale;
669 ewitab = ewrt;
670 eweps = ewrt-ewitab;
671 ewitab = 4*ewitab;
672 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
673 velec = qq33*((rinv33-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
674 felec = qq33*rinv33*(rinvsq33-felec);
675
676 /* Update potential sums from outer loop */
677 velecsum += velec;
678
679 fscal = felec;
680
681 /* Calculate temporary vectorial force */
682 tx = fscal*dx33;
683 ty = fscal*dy33;
684 tz = fscal*dz33;
685
686 /* Update vectorial force */
687 fix3 += tx;
688 fiy3 += ty;
689 fiz3 += tz;
690 f[j_coord_offset+DIM3*3+XX0] -= tx;
691 f[j_coord_offset+DIM3*3+YY1] -= ty;
692 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
693
694 }
695
696 /* Inner loop uses 461 flops */
697 }
698 /* End of innermost loop */
699
700 tx = ty = tz = 0;
701 f[i_coord_offset+DIM3*0+XX0] += fix0;
702 f[i_coord_offset+DIM3*0+YY1] += fiy0;
703 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
704 tx += fix0;
705 ty += fiy0;
706 tz += fiz0;
707 f[i_coord_offset+DIM3*1+XX0] += fix1;
708 f[i_coord_offset+DIM3*1+YY1] += fiy1;
709 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
710 tx += fix1;
711 ty += fiy1;
712 tz += fiz1;
713 f[i_coord_offset+DIM3*2+XX0] += fix2;
714 f[i_coord_offset+DIM3*2+YY1] += fiy2;
715 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
716 tx += fix2;
717 ty += fiy2;
718 tz += fiz2;
719 f[i_coord_offset+DIM3*3+XX0] += fix3;
720 f[i_coord_offset+DIM3*3+YY1] += fiy3;
721 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
722 tx += fix3;
723 ty += fiy3;
724 tz += fiz3;
725 fshift[i_shift_offset+XX0] += tx;
726 fshift[i_shift_offset+YY1] += ty;
727 fshift[i_shift_offset+ZZ2] += tz;
728
729 ggid = gid[iidx];
730 /* Update potential energies */
731 kernel_data->energygrp_elec[ggid] += velecsum;
732 kernel_data->energygrp_vdw[ggid] += vvdwsum;
733
734 /* Increment number of inner iterations */
735 inneriter += j_index_end - j_index_start;
736
737 /* Outer loop uses 41 flops */
738 }
739
740 /* Increment number of outer iterations */
741 outeriter += nri;
742
743 /* Update outer/inner flops */
744
745 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*461)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*461
;
746}
747/*
748 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_F_c
749 * Electrostatics interaction: Ewald
750 * VdW interaction: Buckingham
751 * Geometry: Water4-Water4
752 * Calculate force/pot: Force
753 */
754void
755nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_F_c
756 (t_nblist * gmx_restrict__restrict nlist,
757 rvec * gmx_restrict__restrict xx,
758 rvec * gmx_restrict__restrict ff,
759 t_forcerec * gmx_restrict__restrict fr,
760 t_mdatoms * gmx_restrict__restrict mdatoms,
761 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
762 t_nrnb * gmx_restrict__restrict nrnb)
763{
764 int i_shift_offset,i_coord_offset,j_coord_offset;
765 int j_index_start,j_index_end;
766 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
767 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
768 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
769 real *shiftvec,*fshift,*x,*f;
770 int vdwioffset0;
771 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
772 int vdwioffset1;
773 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
774 int vdwioffset2;
775 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
776 int vdwioffset3;
777 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
778 int vdwjidx0;
779 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
780 int vdwjidx1;
781 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
782 int vdwjidx2;
783 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
784 int vdwjidx3;
785 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
786 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
787 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
788 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
789 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
790 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
791 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
792 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
793 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
794 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
795 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
796 real velec,felec,velecsum,facel,crf,krf,krf2;
797 real *charge;
798 int nvdwtype;
799 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
800 int *vdwtype;
801 real *vdwparam;
802 int ewitab;
803 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
804 real *ewtab;
805
806 x = xx[0];
807 f = ff[0];
808
809 nri = nlist->nri;
810 iinr = nlist->iinr;
811 jindex = nlist->jindex;
812 jjnr = nlist->jjnr;
813 shiftidx = nlist->shift;
814 gid = nlist->gid;
815 shiftvec = fr->shift_vec[0];
816 fshift = fr->fshift[0];
817 facel = fr->epsfac;
818 charge = mdatoms->chargeA;
819 nvdwtype = fr->ntype;
820 vdwparam = fr->nbfp;
821 vdwtype = mdatoms->typeA;
822
823 sh_ewald = fr->ic->sh_ewald;
824 ewtab = fr->ic->tabq_coul_F;
825 ewtabscale = fr->ic->tabq_scale;
826 ewtabhalfspace = 0.5/ewtabscale;
827
828 /* Setup water-specific parameters */
829 inr = nlist->iinr[0];
830 iq1 = facel*charge[inr+1];
831 iq2 = facel*charge[inr+2];
832 iq3 = facel*charge[inr+3];
833 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
834
835 jq1 = charge[inr+1];
836 jq2 = charge[inr+2];
837 jq3 = charge[inr+3];
838 vdwjidx0 = 3*vdwtype[inr+0];
839 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
840 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
841 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
842 qq11 = iq1*jq1;
843 qq12 = iq1*jq2;
844 qq13 = iq1*jq3;
845 qq21 = iq2*jq1;
846 qq22 = iq2*jq2;
847 qq23 = iq2*jq3;
848 qq31 = iq3*jq1;
849 qq32 = iq3*jq2;
850 qq33 = iq3*jq3;
851
852 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
853 rcutoff = fr->rcoulomb;
854 rcutoff2 = rcutoff*rcutoff;
855
856 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
857 rvdw = fr->rvdw;
Value stored to 'rvdw' is never read
858
859 outeriter = 0;
860 inneriter = 0;
861
862 /* Start outer loop over neighborlists */
863 for(iidx=0; iidx<nri; iidx++)
864 {
865 /* Load shift vector for this list */
866 i_shift_offset = DIM3*shiftidx[iidx];
867 shX = shiftvec[i_shift_offset+XX0];
868 shY = shiftvec[i_shift_offset+YY1];
869 shZ = shiftvec[i_shift_offset+ZZ2];
870
871 /* Load limits for loop over neighbors */
872 j_index_start = jindex[iidx];
873 j_index_end = jindex[iidx+1];
874
875 /* Get outer coordinate index */
876 inr = iinr[iidx];
877 i_coord_offset = DIM3*inr;
878
879 /* Load i particle coords and add shift vector */
880 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
881 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
882 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
883 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
884 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
885 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
886 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
887 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
888 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
889 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
890 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
891 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
892
893 fix0 = 0.0;
894 fiy0 = 0.0;
895 fiz0 = 0.0;
896 fix1 = 0.0;
897 fiy1 = 0.0;
898 fiz1 = 0.0;
899 fix2 = 0.0;
900 fiy2 = 0.0;
901 fiz2 = 0.0;
902 fix3 = 0.0;
903 fiy3 = 0.0;
904 fiz3 = 0.0;
905
906 /* Start inner kernel loop */
907 for(jidx=j_index_start; jidx<j_index_end; jidx++)
908 {
909 /* Get j neighbor index, and coordinate index */
910 jnr = jjnr[jidx];
911 j_coord_offset = DIM3*jnr;
912
913 /* load j atom coordinates */
914 jx0 = x[j_coord_offset+DIM3*0+XX0];
915 jy0 = x[j_coord_offset+DIM3*0+YY1];
916 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
917 jx1 = x[j_coord_offset+DIM3*1+XX0];
918 jy1 = x[j_coord_offset+DIM3*1+YY1];
919 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
920 jx2 = x[j_coord_offset+DIM3*2+XX0];
921 jy2 = x[j_coord_offset+DIM3*2+YY1];
922 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
923 jx3 = x[j_coord_offset+DIM3*3+XX0];
924 jy3 = x[j_coord_offset+DIM3*3+YY1];
925 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
926
927 /* Calculate displacement vector */
928 dx00 = ix0 - jx0;
929 dy00 = iy0 - jy0;
930 dz00 = iz0 - jz0;
931 dx11 = ix1 - jx1;
932 dy11 = iy1 - jy1;
933 dz11 = iz1 - jz1;
934 dx12 = ix1 - jx2;
935 dy12 = iy1 - jy2;
936 dz12 = iz1 - jz2;
937 dx13 = ix1 - jx3;
938 dy13 = iy1 - jy3;
939 dz13 = iz1 - jz3;
940 dx21 = ix2 - jx1;
941 dy21 = iy2 - jy1;
942 dz21 = iz2 - jz1;
943 dx22 = ix2 - jx2;
944 dy22 = iy2 - jy2;
945 dz22 = iz2 - jz2;
946 dx23 = ix2 - jx3;
947 dy23 = iy2 - jy3;
948 dz23 = iz2 - jz3;
949 dx31 = ix3 - jx1;
950 dy31 = iy3 - jy1;
951 dz31 = iz3 - jz1;
952 dx32 = ix3 - jx2;
953 dy32 = iy3 - jy2;
954 dz32 = iz3 - jz2;
955 dx33 = ix3 - jx3;
956 dy33 = iy3 - jy3;
957 dz33 = iz3 - jz3;
958
959 /* Calculate squared distance and things based on it */
960 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
961 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
962 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
963 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
964 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
965 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
966 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
967 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
968 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
969 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
970
971 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
972 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
973 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
974 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
975 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
976 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
977 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
978 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
979 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
980 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
981
982 rinvsq00 = rinv00*rinv00;
983 rinvsq11 = rinv11*rinv11;
984 rinvsq12 = rinv12*rinv12;
985 rinvsq13 = rinv13*rinv13;
986 rinvsq21 = rinv21*rinv21;
987 rinvsq22 = rinv22*rinv22;
988 rinvsq23 = rinv23*rinv23;
989 rinvsq31 = rinv31*rinv31;
990 rinvsq32 = rinv32*rinv32;
991 rinvsq33 = rinv33*rinv33;
992
993 /**************************
994 * CALCULATE INTERACTIONS *
995 **************************/
996
997 if (rsq00<rcutoff2)
998 {
999
1000 r00 = rsq00*rinv00;
1001
1002 /* BUCKINGHAM DISPERSION/REPULSION */
1003 rinvsix = rinvsq00*rinvsq00*rinvsq00;
1004 vvdw6 = c6_00*rinvsix;
1005 br = cexp2_00*r00;
1006 vvdwexp = cexp1_00*exp(-br);
1007 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
1008
1009 fscal = fvdw;
1010
1011 /* Calculate temporary vectorial force */
1012 tx = fscal*dx00;
1013 ty = fscal*dy00;
1014 tz = fscal*dz00;
1015
1016 /* Update vectorial force */
1017 fix0 += tx;
1018 fiy0 += ty;
1019 fiz0 += tz;
1020 f[j_coord_offset+DIM3*0+XX0] -= tx;
1021 f[j_coord_offset+DIM3*0+YY1] -= ty;
1022 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1023
1024 }
1025
1026 /**************************
1027 * CALCULATE INTERACTIONS *
1028 **************************/
1029
1030 if (rsq11<rcutoff2)
1031 {
1032
1033 r11 = rsq11*rinv11;
1034
1035 /* EWALD ELECTROSTATICS */
1036
1037 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1038 ewrt = r11*ewtabscale;
1039 ewitab = ewrt;
1040 eweps = ewrt-ewitab;
1041 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1042 felec = qq11*rinv11*(rinvsq11-felec);
1043
1044 fscal = felec;
1045
1046 /* Calculate temporary vectorial force */
1047 tx = fscal*dx11;
1048 ty = fscal*dy11;
1049 tz = fscal*dz11;
1050
1051 /* Update vectorial force */
1052 fix1 += tx;
1053 fiy1 += ty;
1054 fiz1 += tz;
1055 f[j_coord_offset+DIM3*1+XX0] -= tx;
1056 f[j_coord_offset+DIM3*1+YY1] -= ty;
1057 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1058
1059 }
1060
1061 /**************************
1062 * CALCULATE INTERACTIONS *
1063 **************************/
1064
1065 if (rsq12<rcutoff2)
1066 {
1067
1068 r12 = rsq12*rinv12;
1069
1070 /* EWALD ELECTROSTATICS */
1071
1072 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1073 ewrt = r12*ewtabscale;
1074 ewitab = ewrt;
1075 eweps = ewrt-ewitab;
1076 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1077 felec = qq12*rinv12*(rinvsq12-felec);
1078
1079 fscal = felec;
1080
1081 /* Calculate temporary vectorial force */
1082 tx = fscal*dx12;
1083 ty = fscal*dy12;
1084 tz = fscal*dz12;
1085
1086 /* Update vectorial force */
1087 fix1 += tx;
1088 fiy1 += ty;
1089 fiz1 += tz;
1090 f[j_coord_offset+DIM3*2+XX0] -= tx;
1091 f[j_coord_offset+DIM3*2+YY1] -= ty;
1092 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1093
1094 }
1095
1096 /**************************
1097 * CALCULATE INTERACTIONS *
1098 **************************/
1099
1100 if (rsq13<rcutoff2)
1101 {
1102
1103 r13 = rsq13*rinv13;
1104
1105 /* EWALD ELECTROSTATICS */
1106
1107 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108 ewrt = r13*ewtabscale;
1109 ewitab = ewrt;
1110 eweps = ewrt-ewitab;
1111 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1112 felec = qq13*rinv13*(rinvsq13-felec);
1113
1114 fscal = felec;
1115
1116 /* Calculate temporary vectorial force */
1117 tx = fscal*dx13;
1118 ty = fscal*dy13;
1119 tz = fscal*dz13;
1120
1121 /* Update vectorial force */
1122 fix1 += tx;
1123 fiy1 += ty;
1124 fiz1 += tz;
1125 f[j_coord_offset+DIM3*3+XX0] -= tx;
1126 f[j_coord_offset+DIM3*3+YY1] -= ty;
1127 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1128
1129 }
1130
1131 /**************************
1132 * CALCULATE INTERACTIONS *
1133 **************************/
1134
1135 if (rsq21<rcutoff2)
1136 {
1137
1138 r21 = rsq21*rinv21;
1139
1140 /* EWALD ELECTROSTATICS */
1141
1142 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1143 ewrt = r21*ewtabscale;
1144 ewitab = ewrt;
1145 eweps = ewrt-ewitab;
1146 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1147 felec = qq21*rinv21*(rinvsq21-felec);
1148
1149 fscal = felec;
1150
1151 /* Calculate temporary vectorial force */
1152 tx = fscal*dx21;
1153 ty = fscal*dy21;
1154 tz = fscal*dz21;
1155
1156 /* Update vectorial force */
1157 fix2 += tx;
1158 fiy2 += ty;
1159 fiz2 += tz;
1160 f[j_coord_offset+DIM3*1+XX0] -= tx;
1161 f[j_coord_offset+DIM3*1+YY1] -= ty;
1162 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1163
1164 }
1165
1166 /**************************
1167 * CALCULATE INTERACTIONS *
1168 **************************/
1169
1170 if (rsq22<rcutoff2)
1171 {
1172
1173 r22 = rsq22*rinv22;
1174
1175 /* EWALD ELECTROSTATICS */
1176
1177 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1178 ewrt = r22*ewtabscale;
1179 ewitab = ewrt;
1180 eweps = ewrt-ewitab;
1181 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1182 felec = qq22*rinv22*(rinvsq22-felec);
1183
1184 fscal = felec;
1185
1186 /* Calculate temporary vectorial force */
1187 tx = fscal*dx22;
1188 ty = fscal*dy22;
1189 tz = fscal*dz22;
1190
1191 /* Update vectorial force */
1192 fix2 += tx;
1193 fiy2 += ty;
1194 fiz2 += tz;
1195 f[j_coord_offset+DIM3*2+XX0] -= tx;
1196 f[j_coord_offset+DIM3*2+YY1] -= ty;
1197 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1198
1199 }
1200
1201 /**************************
1202 * CALCULATE INTERACTIONS *
1203 **************************/
1204
1205 if (rsq23<rcutoff2)
1206 {
1207
1208 r23 = rsq23*rinv23;
1209
1210 /* EWALD ELECTROSTATICS */
1211
1212 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1213 ewrt = r23*ewtabscale;
1214 ewitab = ewrt;
1215 eweps = ewrt-ewitab;
1216 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1217 felec = qq23*rinv23*(rinvsq23-felec);
1218
1219 fscal = felec;
1220
1221 /* Calculate temporary vectorial force */
1222 tx = fscal*dx23;
1223 ty = fscal*dy23;
1224 tz = fscal*dz23;
1225
1226 /* Update vectorial force */
1227 fix2 += tx;
1228 fiy2 += ty;
1229 fiz2 += tz;
1230 f[j_coord_offset+DIM3*3+XX0] -= tx;
1231 f[j_coord_offset+DIM3*3+YY1] -= ty;
1232 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1233
1234 }
1235
1236 /**************************
1237 * CALCULATE INTERACTIONS *
1238 **************************/
1239
1240 if (rsq31<rcutoff2)
1241 {
1242
1243 r31 = rsq31*rinv31;
1244
1245 /* EWALD ELECTROSTATICS */
1246
1247 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1248 ewrt = r31*ewtabscale;
1249 ewitab = ewrt;
1250 eweps = ewrt-ewitab;
1251 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1252 felec = qq31*rinv31*(rinvsq31-felec);
1253
1254 fscal = felec;
1255
1256 /* Calculate temporary vectorial force */
1257 tx = fscal*dx31;
1258 ty = fscal*dy31;
1259 tz = fscal*dz31;
1260
1261 /* Update vectorial force */
1262 fix3 += tx;
1263 fiy3 += ty;
1264 fiz3 += tz;
1265 f[j_coord_offset+DIM3*1+XX0] -= tx;
1266 f[j_coord_offset+DIM3*1+YY1] -= ty;
1267 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1268
1269 }
1270
1271 /**************************
1272 * CALCULATE INTERACTIONS *
1273 **************************/
1274
1275 if (rsq32<rcutoff2)
1276 {
1277
1278 r32 = rsq32*rinv32;
1279
1280 /* EWALD ELECTROSTATICS */
1281
1282 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1283 ewrt = r32*ewtabscale;
1284 ewitab = ewrt;
1285 eweps = ewrt-ewitab;
1286 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1287 felec = qq32*rinv32*(rinvsq32-felec);
1288
1289 fscal = felec;
1290
1291 /* Calculate temporary vectorial force */
1292 tx = fscal*dx32;
1293 ty = fscal*dy32;
1294 tz = fscal*dz32;
1295
1296 /* Update vectorial force */
1297 fix3 += tx;
1298 fiy3 += ty;
1299 fiz3 += tz;
1300 f[j_coord_offset+DIM3*2+XX0] -= tx;
1301 f[j_coord_offset+DIM3*2+YY1] -= ty;
1302 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1303
1304 }
1305
1306 /**************************
1307 * CALCULATE INTERACTIONS *
1308 **************************/
1309
1310 if (rsq33<rcutoff2)
1311 {
1312
1313 r33 = rsq33*rinv33;
1314
1315 /* EWALD ELECTROSTATICS */
1316
1317 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1318 ewrt = r33*ewtabscale;
1319 ewitab = ewrt;
1320 eweps = ewrt-ewitab;
1321 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1322 felec = qq33*rinv33*(rinvsq33-felec);
1323
1324 fscal = felec;
1325
1326 /* Calculate temporary vectorial force */
1327 tx = fscal*dx33;
1328 ty = fscal*dy33;
1329 tz = fscal*dz33;
1330
1331 /* Update vectorial force */
1332 fix3 += tx;
1333 fiy3 += ty;
1334 fiz3 += tz;
1335 f[j_coord_offset+DIM3*3+XX0] -= tx;
1336 f[j_coord_offset+DIM3*3+YY1] -= ty;
1337 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1338
1339 }
1340
1341 /* Inner loop uses 355 flops */
1342 }
1343 /* End of innermost loop */
1344
1345 tx = ty = tz = 0;
1346 f[i_coord_offset+DIM3*0+XX0] += fix0;
1347 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1348 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1349 tx += fix0;
1350 ty += fiy0;
1351 tz += fiz0;
1352 f[i_coord_offset+DIM3*1+XX0] += fix1;
1353 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1354 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1355 tx += fix1;
1356 ty += fiy1;
1357 tz += fiz1;
1358 f[i_coord_offset+DIM3*2+XX0] += fix2;
1359 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1360 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1361 tx += fix2;
1362 ty += fiy2;
1363 tz += fiz2;
1364 f[i_coord_offset+DIM3*3+XX0] += fix3;
1365 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1366 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1367 tx += fix3;
1368 ty += fiy3;
1369 tz += fiz3;
1370 fshift[i_shift_offset+XX0] += tx;
1371 fshift[i_shift_offset+YY1] += ty;
1372 fshift[i_shift_offset+ZZ2] += tz;
1373
1374 /* Increment number of inner iterations */
1375 inneriter += j_index_end - j_index_start;
1376
1377 /* Outer loop uses 39 flops */
1378 }
1379
1380 /* Increment number of outer iterations */
1381 outeriter += nri;
1382
1383 /* Update outer/inner flops */
1384
1385 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*355)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*355
;
1386}