Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwBham_GeomW3P1_c.c
Location:line 439, column 5
Description:Value stored to 'ewtabhalfspace' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwBham_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int ewitab;
90 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
91 real *ewtab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 sh_ewald = fr->ic->sh_ewald;
111 ewtab = fr->ic->tabq_coul_FDV0;
112 ewtabscale = fr->ic->tabq_scale;
113 ewtabhalfspace = 0.5/ewtabscale;
114
115 /* Setup water-specific parameters */
116 inr = nlist->iinr[0];
117 iq0 = facel*charge[inr+0];
118 iq1 = facel*charge[inr+1];
119 iq2 = facel*charge[inr+2];
120 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
121
122 outeriter = 0;
123 inneriter = 0;
124
125 /* Start outer loop over neighborlists */
126 for(iidx=0; iidx<nri; iidx++)
127 {
128 /* Load shift vector for this list */
129 i_shift_offset = DIM3*shiftidx[iidx];
130 shX = shiftvec[i_shift_offset+XX0];
131 shY = shiftvec[i_shift_offset+YY1];
132 shZ = shiftvec[i_shift_offset+ZZ2];
133
134 /* Load limits for loop over neighbors */
135 j_index_start = jindex[iidx];
136 j_index_end = jindex[iidx+1];
137
138 /* Get outer coordinate index */
139 inr = iinr[iidx];
140 i_coord_offset = DIM3*inr;
141
142 /* Load i particle coords and add shift vector */
143 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
144 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
145 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
146 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
147 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
148 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
149 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
150 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
151 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
152
153 fix0 = 0.0;
154 fiy0 = 0.0;
155 fiz0 = 0.0;
156 fix1 = 0.0;
157 fiy1 = 0.0;
158 fiz1 = 0.0;
159 fix2 = 0.0;
160 fiy2 = 0.0;
161 fiz2 = 0.0;
162
163 /* Reset potential sums */
164 velecsum = 0.0;
165 vvdwsum = 0.0;
166
167 /* Start inner kernel loop */
168 for(jidx=j_index_start; jidx<j_index_end; jidx++)
169 {
170 /* Get j neighbor index, and coordinate index */
171 jnr = jjnr[jidx];
172 j_coord_offset = DIM3*jnr;
173
174 /* load j atom coordinates */
175 jx0 = x[j_coord_offset+DIM3*0+XX0];
176 jy0 = x[j_coord_offset+DIM3*0+YY1];
177 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
178
179 /* Calculate displacement vector */
180 dx00 = ix0 - jx0;
181 dy00 = iy0 - jy0;
182 dz00 = iz0 - jz0;
183 dx10 = ix1 - jx0;
184 dy10 = iy1 - jy0;
185 dz10 = iz1 - jz0;
186 dx20 = ix2 - jx0;
187 dy20 = iy2 - jy0;
188 dz20 = iz2 - jz0;
189
190 /* Calculate squared distance and things based on it */
191 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
192 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
193 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
194
195 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
196 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
197 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
198
199 rinvsq00 = rinv00*rinv00;
200 rinvsq10 = rinv10*rinv10;
201 rinvsq20 = rinv20*rinv20;
202
203 /* Load parameters for j particles */
204 jq0 = charge[jnr+0];
205 vdwjidx0 = 3*vdwtype[jnr+0];
206
207 /**************************
208 * CALCULATE INTERACTIONS *
209 **************************/
210
211 r00 = rsq00*rinv00;
212
213 qq00 = iq0*jq0;
214 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
215 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
216 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
217
218 /* EWALD ELECTROSTATICS */
219
220 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
221 ewrt = r00*ewtabscale;
222 ewitab = ewrt;
223 eweps = ewrt-ewitab;
224 ewitab = 4*ewitab;
225 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
226 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
227 felec = qq00*rinv00*(rinvsq00-felec);
228
229 /* BUCKINGHAM DISPERSION/REPULSION */
230 rinvsix = rinvsq00*rinvsq00*rinvsq00;
231 vvdw6 = c6_00*rinvsix;
232 br = cexp2_00*r00;
233 vvdwexp = cexp1_00*exp(-br);
234 vvdw = vvdwexp - vvdw6*(1.0/6.0);
235 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
236
237 /* Update potential sums from outer loop */
238 velecsum += velec;
239 vvdwsum += vvdw;
240
241 fscal = felec+fvdw;
242
243 /* Calculate temporary vectorial force */
244 tx = fscal*dx00;
245 ty = fscal*dy00;
246 tz = fscal*dz00;
247
248 /* Update vectorial force */
249 fix0 += tx;
250 fiy0 += ty;
251 fiz0 += tz;
252 f[j_coord_offset+DIM3*0+XX0] -= tx;
253 f[j_coord_offset+DIM3*0+YY1] -= ty;
254 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
255
256 /**************************
257 * CALCULATE INTERACTIONS *
258 **************************/
259
260 r10 = rsq10*rinv10;
261
262 qq10 = iq1*jq0;
263
264 /* EWALD ELECTROSTATICS */
265
266 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
267 ewrt = r10*ewtabscale;
268 ewitab = ewrt;
269 eweps = ewrt-ewitab;
270 ewitab = 4*ewitab;
271 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
272 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
273 felec = qq10*rinv10*(rinvsq10-felec);
274
275 /* Update potential sums from outer loop */
276 velecsum += velec;
277
278 fscal = felec;
279
280 /* Calculate temporary vectorial force */
281 tx = fscal*dx10;
282 ty = fscal*dy10;
283 tz = fscal*dz10;
284
285 /* Update vectorial force */
286 fix1 += tx;
287 fiy1 += ty;
288 fiz1 += tz;
289 f[j_coord_offset+DIM3*0+XX0] -= tx;
290 f[j_coord_offset+DIM3*0+YY1] -= ty;
291 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
292
293 /**************************
294 * CALCULATE INTERACTIONS *
295 **************************/
296
297 r20 = rsq20*rinv20;
298
299 qq20 = iq2*jq0;
300
301 /* EWALD ELECTROSTATICS */
302
303 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
304 ewrt = r20*ewtabscale;
305 ewitab = ewrt;
306 eweps = ewrt-ewitab;
307 ewitab = 4*ewitab;
308 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
309 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
310 felec = qq20*rinv20*(rinvsq20-felec);
311
312 /* Update potential sums from outer loop */
313 velecsum += velec;
314
315 fscal = felec;
316
317 /* Calculate temporary vectorial force */
318 tx = fscal*dx20;
319 ty = fscal*dy20;
320 tz = fscal*dz20;
321
322 /* Update vectorial force */
323 fix2 += tx;
324 fiy2 += ty;
325 fiz2 += tz;
326 f[j_coord_offset+DIM3*0+XX0] -= tx;
327 f[j_coord_offset+DIM3*0+YY1] -= ty;
328 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
329
330 /* Inner loop uses 161 flops */
331 }
332 /* End of innermost loop */
333
334 tx = ty = tz = 0;
335 f[i_coord_offset+DIM3*0+XX0] += fix0;
336 f[i_coord_offset+DIM3*0+YY1] += fiy0;
337 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
338 tx += fix0;
339 ty += fiy0;
340 tz += fiz0;
341 f[i_coord_offset+DIM3*1+XX0] += fix1;
342 f[i_coord_offset+DIM3*1+YY1] += fiy1;
343 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
344 tx += fix1;
345 ty += fiy1;
346 tz += fiz1;
347 f[i_coord_offset+DIM3*2+XX0] += fix2;
348 f[i_coord_offset+DIM3*2+YY1] += fiy2;
349 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
350 tx += fix2;
351 ty += fiy2;
352 tz += fiz2;
353 fshift[i_shift_offset+XX0] += tx;
354 fshift[i_shift_offset+YY1] += ty;
355 fshift[i_shift_offset+ZZ2] += tz;
356
357 ggid = gid[iidx];
358 /* Update potential energies */
359 kernel_data->energygrp_elec[ggid] += velecsum;
360 kernel_data->energygrp_vdw[ggid] += vvdwsum;
361
362 /* Increment number of inner iterations */
363 inneriter += j_index_end - j_index_start;
364
365 /* Outer loop uses 32 flops */
366 }
367
368 /* Increment number of outer iterations */
369 outeriter += nri;
370
371 /* Update outer/inner flops */
372
373 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*161)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*161
;
374}
375/*
376 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomW3P1_F_c
377 * Electrostatics interaction: Ewald
378 * VdW interaction: Buckingham
379 * Geometry: Water3-Particle
380 * Calculate force/pot: Force
381 */
382void
383nb_kernel_ElecEw_VdwBham_GeomW3P1_F_c
384 (t_nblist * gmx_restrict__restrict nlist,
385 rvec * gmx_restrict__restrict xx,
386 rvec * gmx_restrict__restrict ff,
387 t_forcerec * gmx_restrict__restrict fr,
388 t_mdatoms * gmx_restrict__restrict mdatoms,
389 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
390 t_nrnb * gmx_restrict__restrict nrnb)
391{
392 int i_shift_offset,i_coord_offset,j_coord_offset;
393 int j_index_start,j_index_end;
394 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
395 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
396 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
397 real *shiftvec,*fshift,*x,*f;
398 int vdwioffset0;
399 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
400 int vdwioffset1;
401 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
402 int vdwioffset2;
403 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
404 int vdwjidx0;
405 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
406 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
407 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
408 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
409 real velec,felec,velecsum,facel,crf,krf,krf2;
410 real *charge;
411 int nvdwtype;
412 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
413 int *vdwtype;
414 real *vdwparam;
415 int ewitab;
416 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
417 real *ewtab;
418
419 x = xx[0];
420 f = ff[0];
421
422 nri = nlist->nri;
423 iinr = nlist->iinr;
424 jindex = nlist->jindex;
425 jjnr = nlist->jjnr;
426 shiftidx = nlist->shift;
427 gid = nlist->gid;
428 shiftvec = fr->shift_vec[0];
429 fshift = fr->fshift[0];
430 facel = fr->epsfac;
431 charge = mdatoms->chargeA;
432 nvdwtype = fr->ntype;
433 vdwparam = fr->nbfp;
434 vdwtype = mdatoms->typeA;
435
436 sh_ewald = fr->ic->sh_ewald;
437 ewtab = fr->ic->tabq_coul_F;
438 ewtabscale = fr->ic->tabq_scale;
439 ewtabhalfspace = 0.5/ewtabscale;
Value stored to 'ewtabhalfspace' is never read
440
441 /* Setup water-specific parameters */
442 inr = nlist->iinr[0];
443 iq0 = facel*charge[inr+0];
444 iq1 = facel*charge[inr+1];
445 iq2 = facel*charge[inr+2];
446 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
447
448 outeriter = 0;
449 inneriter = 0;
450
451 /* Start outer loop over neighborlists */
452 for(iidx=0; iidx<nri; iidx++)
453 {
454 /* Load shift vector for this list */
455 i_shift_offset = DIM3*shiftidx[iidx];
456 shX = shiftvec[i_shift_offset+XX0];
457 shY = shiftvec[i_shift_offset+YY1];
458 shZ = shiftvec[i_shift_offset+ZZ2];
459
460 /* Load limits for loop over neighbors */
461 j_index_start = jindex[iidx];
462 j_index_end = jindex[iidx+1];
463
464 /* Get outer coordinate index */
465 inr = iinr[iidx];
466 i_coord_offset = DIM3*inr;
467
468 /* Load i particle coords and add shift vector */
469 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
470 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
471 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
472 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
473 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
474 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
475 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
476 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
477 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
478
479 fix0 = 0.0;
480 fiy0 = 0.0;
481 fiz0 = 0.0;
482 fix1 = 0.0;
483 fiy1 = 0.0;
484 fiz1 = 0.0;
485 fix2 = 0.0;
486 fiy2 = 0.0;
487 fiz2 = 0.0;
488
489 /* Start inner kernel loop */
490 for(jidx=j_index_start; jidx<j_index_end; jidx++)
491 {
492 /* Get j neighbor index, and coordinate index */
493 jnr = jjnr[jidx];
494 j_coord_offset = DIM3*jnr;
495
496 /* load j atom coordinates */
497 jx0 = x[j_coord_offset+DIM3*0+XX0];
498 jy0 = x[j_coord_offset+DIM3*0+YY1];
499 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
500
501 /* Calculate displacement vector */
502 dx00 = ix0 - jx0;
503 dy00 = iy0 - jy0;
504 dz00 = iz0 - jz0;
505 dx10 = ix1 - jx0;
506 dy10 = iy1 - jy0;
507 dz10 = iz1 - jz0;
508 dx20 = ix2 - jx0;
509 dy20 = iy2 - jy0;
510 dz20 = iz2 - jz0;
511
512 /* Calculate squared distance and things based on it */
513 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
514 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
515 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
516
517 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
518 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
519 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
520
521 rinvsq00 = rinv00*rinv00;
522 rinvsq10 = rinv10*rinv10;
523 rinvsq20 = rinv20*rinv20;
524
525 /* Load parameters for j particles */
526 jq0 = charge[jnr+0];
527 vdwjidx0 = 3*vdwtype[jnr+0];
528
529 /**************************
530 * CALCULATE INTERACTIONS *
531 **************************/
532
533 r00 = rsq00*rinv00;
534
535 qq00 = iq0*jq0;
536 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
537 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
538 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
539
540 /* EWALD ELECTROSTATICS */
541
542 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
543 ewrt = r00*ewtabscale;
544 ewitab = ewrt;
545 eweps = ewrt-ewitab;
546 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
547 felec = qq00*rinv00*(rinvsq00-felec);
548
549 /* BUCKINGHAM DISPERSION/REPULSION */
550 rinvsix = rinvsq00*rinvsq00*rinvsq00;
551 vvdw6 = c6_00*rinvsix;
552 br = cexp2_00*r00;
553 vvdwexp = cexp1_00*exp(-br);
554 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
555
556 fscal = felec+fvdw;
557
558 /* Calculate temporary vectorial force */
559 tx = fscal*dx00;
560 ty = fscal*dy00;
561 tz = fscal*dz00;
562
563 /* Update vectorial force */
564 fix0 += tx;
565 fiy0 += ty;
566 fiz0 += tz;
567 f[j_coord_offset+DIM3*0+XX0] -= tx;
568 f[j_coord_offset+DIM3*0+YY1] -= ty;
569 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
570
571 /**************************
572 * CALCULATE INTERACTIONS *
573 **************************/
574
575 r10 = rsq10*rinv10;
576
577 qq10 = iq1*jq0;
578
579 /* EWALD ELECTROSTATICS */
580
581 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
582 ewrt = r10*ewtabscale;
583 ewitab = ewrt;
584 eweps = ewrt-ewitab;
585 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
586 felec = qq10*rinv10*(rinvsq10-felec);
587
588 fscal = felec;
589
590 /* Calculate temporary vectorial force */
591 tx = fscal*dx10;
592 ty = fscal*dy10;
593 tz = fscal*dz10;
594
595 /* Update vectorial force */
596 fix1 += tx;
597 fiy1 += ty;
598 fiz1 += tz;
599 f[j_coord_offset+DIM3*0+XX0] -= tx;
600 f[j_coord_offset+DIM3*0+YY1] -= ty;
601 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
602
603 /**************************
604 * CALCULATE INTERACTIONS *
605 **************************/
606
607 r20 = rsq20*rinv20;
608
609 qq20 = iq2*jq0;
610
611 /* EWALD ELECTROSTATICS */
612
613 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
614 ewrt = r20*ewtabscale;
615 ewitab = ewrt;
616 eweps = ewrt-ewitab;
617 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
618 felec = qq20*rinv20*(rinvsq20-felec);
619
620 fscal = felec;
621
622 /* Calculate temporary vectorial force */
623 tx = fscal*dx20;
624 ty = fscal*dy20;
625 tz = fscal*dz20;
626
627 /* Update vectorial force */
628 fix2 += tx;
629 fiy2 += ty;
630 fiz2 += tz;
631 f[j_coord_offset+DIM3*0+XX0] -= tx;
632 f[j_coord_offset+DIM3*0+YY1] -= ty;
633 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
634
635 /* Inner loop uses 137 flops */
636 }
637 /* End of innermost loop */
638
639 tx = ty = tz = 0;
640 f[i_coord_offset+DIM3*0+XX0] += fix0;
641 f[i_coord_offset+DIM3*0+YY1] += fiy0;
642 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
643 tx += fix0;
644 ty += fiy0;
645 tz += fiz0;
646 f[i_coord_offset+DIM3*1+XX0] += fix1;
647 f[i_coord_offset+DIM3*1+YY1] += fiy1;
648 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
649 tx += fix1;
650 ty += fiy1;
651 tz += fiz1;
652 f[i_coord_offset+DIM3*2+XX0] += fix2;
653 f[i_coord_offset+DIM3*2+YY1] += fiy2;
654 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
655 tx += fix2;
656 ty += fiy2;
657 tz += fiz2;
658 fshift[i_shift_offset+XX0] += tx;
659 fshift[i_shift_offset+YY1] += ty;
660 fshift[i_shift_offset+ZZ2] += tz;
661
662 /* Increment number of inner iterations */
663 inneriter += j_index_end - j_index_start;
664
665 /* Outer loop uses 30 flops */
666 }
667
668 /* Increment number of outer iterations */
669 outeriter += nri;
670
671 /* Update outer/inner flops */
672
673 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*137)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*137
;
674}