Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwCSTab_GeomW4W4_sse4_1_single.c
Location:line 1526, column 5
Description:Value stored to 'j_coord_offsetD' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW4W4_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: CubicSplineTable
56 * Geometry: Water4-Water4
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwCSTab_GeomW4W4_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwioffset3;
92 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95 int vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
96 __m128 jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
97 int vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
98 __m128 jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
99 int vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
100 __m128 jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
101 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
102 __m128 dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
103 __m128 dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
104 __m128 dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
105 __m128 dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
106 __m128 dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
107 __m128 dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
108 __m128 dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
109 __m128 dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
110 __m128 dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
111 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
112 real *charge;
113 int nvdwtype;
114 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
115 int *vdwtype;
116 real *vdwparam;
117 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
118 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
119 __m128i vfitab;
120 __m128i ifour = _mm_set1_epi32(4);
121 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
122 real *vftab;
123 __m128i ewitab;
124 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
125 real *ewtab;
126 __m128 dummy_mask,cutoff_mask;
127 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
128 __m128 one = _mm_set1_ps(1.0);
129 __m128 two = _mm_set1_ps(2.0);
130 x = xx[0];
131 f = ff[0];
132
133 nri = nlist->nri;
134 iinr = nlist->iinr;
135 jindex = nlist->jindex;
136 jjnr = nlist->jjnr;
137 shiftidx = nlist->shift;
138 gid = nlist->gid;
139 shiftvec = fr->shift_vec[0];
140 fshift = fr->fshift[0];
141 facel = _mm_set1_ps(fr->epsfac);
142 charge = mdatoms->chargeA;
143 nvdwtype = fr->ntype;
144 vdwparam = fr->nbfp;
145 vdwtype = mdatoms->typeA;
146
147 vftab = kernel_data->table_vdw->data;
148 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
149
150 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
151 ewtab = fr->ic->tabq_coul_FDV0;
152 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
153 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
154
155 /* Setup water-specific parameters */
156 inr = nlist->iinr[0];
157 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
158 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
159 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
160 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
161
162 jq1 = _mm_set1_ps(charge[inr+1]);
163 jq2 = _mm_set1_ps(charge[inr+2]);
164 jq3 = _mm_set1_ps(charge[inr+3]);
165 vdwjidx0A = 2*vdwtype[inr+0];
166 c6_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
167 c12_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
168 qq11 = _mm_mul_ps(iq1,jq1);
169 qq12 = _mm_mul_ps(iq1,jq2);
170 qq13 = _mm_mul_ps(iq1,jq3);
171 qq21 = _mm_mul_ps(iq2,jq1);
172 qq22 = _mm_mul_ps(iq2,jq2);
173 qq23 = _mm_mul_ps(iq2,jq3);
174 qq31 = _mm_mul_ps(iq3,jq1);
175 qq32 = _mm_mul_ps(iq3,jq2);
176 qq33 = _mm_mul_ps(iq3,jq3);
177
178 /* Avoid stupid compiler warnings */
179 jnrA = jnrB = jnrC = jnrD = 0;
180 j_coord_offsetA = 0;
181 j_coord_offsetB = 0;
182 j_coord_offsetC = 0;
183 j_coord_offsetD = 0;
184
185 outeriter = 0;
186 inneriter = 0;
187
188 for(iidx=0;iidx<4*DIM3;iidx++)
189 {
190 scratch[iidx] = 0.0;
191 }
192
193 /* Start outer loop over neighborlists */
194 for(iidx=0; iidx<nri; iidx++)
195 {
196 /* Load shift vector for this list */
197 i_shift_offset = DIM3*shiftidx[iidx];
198
199 /* Load limits for loop over neighbors */
200 j_index_start = jindex[iidx];
201 j_index_end = jindex[iidx+1];
202
203 /* Get outer coordinate index */
204 inr = iinr[iidx];
205 i_coord_offset = DIM3*inr;
206
207 /* Load i particle coords and add shift vector */
208 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
209 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
210
211 fix0 = _mm_setzero_ps();
212 fiy0 = _mm_setzero_ps();
213 fiz0 = _mm_setzero_ps();
214 fix1 = _mm_setzero_ps();
215 fiy1 = _mm_setzero_ps();
216 fiz1 = _mm_setzero_ps();
217 fix2 = _mm_setzero_ps();
218 fiy2 = _mm_setzero_ps();
219 fiz2 = _mm_setzero_ps();
220 fix3 = _mm_setzero_ps();
221 fiy3 = _mm_setzero_ps();
222 fiz3 = _mm_setzero_ps();
223
224 /* Reset potential sums */
225 velecsum = _mm_setzero_ps();
226 vvdwsum = _mm_setzero_ps();
227
228 /* Start inner kernel loop */
229 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
230 {
231
232 /* Get j neighbor index, and coordinate index */
233 jnrA = jjnr[jidx];
234 jnrB = jjnr[jidx+1];
235 jnrC = jjnr[jidx+2];
236 jnrD = jjnr[jidx+3];
237 j_coord_offsetA = DIM3*jnrA;
238 j_coord_offsetB = DIM3*jnrB;
239 j_coord_offsetC = DIM3*jnrC;
240 j_coord_offsetD = DIM3*jnrD;
241
242 /* load j atom coordinates */
243 gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
244 x+j_coord_offsetC,x+j_coord_offsetD,
245 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
246 &jy2,&jz2,&jx3,&jy3,&jz3);
247
248 /* Calculate displacement vector */
249 dx00 = _mm_sub_ps(ix0,jx0);
250 dy00 = _mm_sub_ps(iy0,jy0);
251 dz00 = _mm_sub_ps(iz0,jz0);
252 dx11 = _mm_sub_ps(ix1,jx1);
253 dy11 = _mm_sub_ps(iy1,jy1);
254 dz11 = _mm_sub_ps(iz1,jz1);
255 dx12 = _mm_sub_ps(ix1,jx2);
256 dy12 = _mm_sub_ps(iy1,jy2);
257 dz12 = _mm_sub_ps(iz1,jz2);
258 dx13 = _mm_sub_ps(ix1,jx3);
259 dy13 = _mm_sub_ps(iy1,jy3);
260 dz13 = _mm_sub_ps(iz1,jz3);
261 dx21 = _mm_sub_ps(ix2,jx1);
262 dy21 = _mm_sub_ps(iy2,jy1);
263 dz21 = _mm_sub_ps(iz2,jz1);
264 dx22 = _mm_sub_ps(ix2,jx2);
265 dy22 = _mm_sub_ps(iy2,jy2);
266 dz22 = _mm_sub_ps(iz2,jz2);
267 dx23 = _mm_sub_ps(ix2,jx3);
268 dy23 = _mm_sub_ps(iy2,jy3);
269 dz23 = _mm_sub_ps(iz2,jz3);
270 dx31 = _mm_sub_ps(ix3,jx1);
271 dy31 = _mm_sub_ps(iy3,jy1);
272 dz31 = _mm_sub_ps(iz3,jz1);
273 dx32 = _mm_sub_ps(ix3,jx2);
274 dy32 = _mm_sub_ps(iy3,jy2);
275 dz32 = _mm_sub_ps(iz3,jz2);
276 dx33 = _mm_sub_ps(ix3,jx3);
277 dy33 = _mm_sub_ps(iy3,jy3);
278 dz33 = _mm_sub_ps(iz3,jz3);
279
280 /* Calculate squared distance and things based on it */
281 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
282 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
283 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
284 rsq13 = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
285 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
286 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
287 rsq23 = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
288 rsq31 = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
289 rsq32 = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
290 rsq33 = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
291
292 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
293 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
294 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
295 rinv13 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq13);
296 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
297 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
298 rinv23 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq23);
299 rinv31 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq31);
300 rinv32 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq32);
301 rinv33 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq33);
302
303 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
304 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
305 rinvsq13 = _mm_mul_ps(rinv13,rinv13);
306 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
307 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
308 rinvsq23 = _mm_mul_ps(rinv23,rinv23);
309 rinvsq31 = _mm_mul_ps(rinv31,rinv31);
310 rinvsq32 = _mm_mul_ps(rinv32,rinv32);
311 rinvsq33 = _mm_mul_ps(rinv33,rinv33);
312
313 fjx0 = _mm_setzero_ps();
314 fjy0 = _mm_setzero_ps();
315 fjz0 = _mm_setzero_ps();
316 fjx1 = _mm_setzero_ps();
317 fjy1 = _mm_setzero_ps();
318 fjz1 = _mm_setzero_ps();
319 fjx2 = _mm_setzero_ps();
320 fjy2 = _mm_setzero_ps();
321 fjz2 = _mm_setzero_ps();
322 fjx3 = _mm_setzero_ps();
323 fjy3 = _mm_setzero_ps();
324 fjz3 = _mm_setzero_ps();
325
326 /**************************
327 * CALCULATE INTERACTIONS *
328 **************************/
329
330 r00 = _mm_mul_ps(rsq00,rinv00);
331
332 /* Calculate table index by multiplying r with table scale and truncate to integer */
333 rt = _mm_mul_ps(r00,vftabscale);
334 vfitab = _mm_cvttps_epi32(rt);
335 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
336 vfitab = _mm_slli_epi32(vfitab,3);
337
338 /* CUBIC SPLINE TABLE DISPERSION */
339 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
340 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
341 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
342 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
343 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
344 Heps = _mm_mul_ps(vfeps,H);
345 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
346 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
347 vvdw6 = _mm_mul_ps(c6_00,VV);
348 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
349 fvdw6 = _mm_mul_ps(c6_00,FF);
350
351 /* CUBIC SPLINE TABLE REPULSION */
352 vfitab = _mm_add_epi32(vfitab,ifour);
353 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
354 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
355 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
356 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
357 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
358 Heps = _mm_mul_ps(vfeps,H);
359 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
360 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
361 vvdw12 = _mm_mul_ps(c12_00,VV);
362 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
363 fvdw12 = _mm_mul_ps(c12_00,FF);
364 vvdw = _mm_add_ps(vvdw12,vvdw6);
365 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
366
367 /* Update potential sum for this i atom from the interaction with this j atom. */
368 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
369
370 fscal = fvdw;
371
372 /* Calculate temporary vectorial force */
373 tx = _mm_mul_ps(fscal,dx00);
374 ty = _mm_mul_ps(fscal,dy00);
375 tz = _mm_mul_ps(fscal,dz00);
376
377 /* Update vectorial force */
378 fix0 = _mm_add_ps(fix0,tx);
379 fiy0 = _mm_add_ps(fiy0,ty);
380 fiz0 = _mm_add_ps(fiz0,tz);
381
382 fjx0 = _mm_add_ps(fjx0,tx);
383 fjy0 = _mm_add_ps(fjy0,ty);
384 fjz0 = _mm_add_ps(fjz0,tz);
385
386 /**************************
387 * CALCULATE INTERACTIONS *
388 **************************/
389
390 r11 = _mm_mul_ps(rsq11,rinv11);
391
392 /* EWALD ELECTROSTATICS */
393
394 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395 ewrt = _mm_mul_ps(r11,ewtabscale);
396 ewitab = _mm_cvttps_epi32(ewrt);
397 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
398 ewitab = _mm_slli_epi32(ewitab,2);
399 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
400 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
401 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
402 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
403 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
404 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
405 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
406 velec = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
407 felec = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
408
409 /* Update potential sum for this i atom from the interaction with this j atom. */
410 velecsum = _mm_add_ps(velecsum,velec);
411
412 fscal = felec;
413
414 /* Calculate temporary vectorial force */
415 tx = _mm_mul_ps(fscal,dx11);
416 ty = _mm_mul_ps(fscal,dy11);
417 tz = _mm_mul_ps(fscal,dz11);
418
419 /* Update vectorial force */
420 fix1 = _mm_add_ps(fix1,tx);
421 fiy1 = _mm_add_ps(fiy1,ty);
422 fiz1 = _mm_add_ps(fiz1,tz);
423
424 fjx1 = _mm_add_ps(fjx1,tx);
425 fjy1 = _mm_add_ps(fjy1,ty);
426 fjz1 = _mm_add_ps(fjz1,tz);
427
428 /**************************
429 * CALCULATE INTERACTIONS *
430 **************************/
431
432 r12 = _mm_mul_ps(rsq12,rinv12);
433
434 /* EWALD ELECTROSTATICS */
435
436 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
437 ewrt = _mm_mul_ps(r12,ewtabscale);
438 ewitab = _mm_cvttps_epi32(ewrt);
439 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
440 ewitab = _mm_slli_epi32(ewitab,2);
441 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
442 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
443 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
444 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
445 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
446 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
447 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
448 velec = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
449 felec = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
450
451 /* Update potential sum for this i atom from the interaction with this j atom. */
452 velecsum = _mm_add_ps(velecsum,velec);
453
454 fscal = felec;
455
456 /* Calculate temporary vectorial force */
457 tx = _mm_mul_ps(fscal,dx12);
458 ty = _mm_mul_ps(fscal,dy12);
459 tz = _mm_mul_ps(fscal,dz12);
460
461 /* Update vectorial force */
462 fix1 = _mm_add_ps(fix1,tx);
463 fiy1 = _mm_add_ps(fiy1,ty);
464 fiz1 = _mm_add_ps(fiz1,tz);
465
466 fjx2 = _mm_add_ps(fjx2,tx);
467 fjy2 = _mm_add_ps(fjy2,ty);
468 fjz2 = _mm_add_ps(fjz2,tz);
469
470 /**************************
471 * CALCULATE INTERACTIONS *
472 **************************/
473
474 r13 = _mm_mul_ps(rsq13,rinv13);
475
476 /* EWALD ELECTROSTATICS */
477
478 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
479 ewrt = _mm_mul_ps(r13,ewtabscale);
480 ewitab = _mm_cvttps_epi32(ewrt);
481 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
482 ewitab = _mm_slli_epi32(ewitab,2);
483 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
484 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
485 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
486 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
487 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
488 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
489 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
490 velec = _mm_mul_ps(qq13,_mm_sub_ps(rinv13,velec));
491 felec = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
492
493 /* Update potential sum for this i atom from the interaction with this j atom. */
494 velecsum = _mm_add_ps(velecsum,velec);
495
496 fscal = felec;
497
498 /* Calculate temporary vectorial force */
499 tx = _mm_mul_ps(fscal,dx13);
500 ty = _mm_mul_ps(fscal,dy13);
501 tz = _mm_mul_ps(fscal,dz13);
502
503 /* Update vectorial force */
504 fix1 = _mm_add_ps(fix1,tx);
505 fiy1 = _mm_add_ps(fiy1,ty);
506 fiz1 = _mm_add_ps(fiz1,tz);
507
508 fjx3 = _mm_add_ps(fjx3,tx);
509 fjy3 = _mm_add_ps(fjy3,ty);
510 fjz3 = _mm_add_ps(fjz3,tz);
511
512 /**************************
513 * CALCULATE INTERACTIONS *
514 **************************/
515
516 r21 = _mm_mul_ps(rsq21,rinv21);
517
518 /* EWALD ELECTROSTATICS */
519
520 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
521 ewrt = _mm_mul_ps(r21,ewtabscale);
522 ewitab = _mm_cvttps_epi32(ewrt);
523 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
524 ewitab = _mm_slli_epi32(ewitab,2);
525 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
526 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
527 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
528 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
529 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
530 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
531 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
532 velec = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
533 felec = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
534
535 /* Update potential sum for this i atom from the interaction with this j atom. */
536 velecsum = _mm_add_ps(velecsum,velec);
537
538 fscal = felec;
539
540 /* Calculate temporary vectorial force */
541 tx = _mm_mul_ps(fscal,dx21);
542 ty = _mm_mul_ps(fscal,dy21);
543 tz = _mm_mul_ps(fscal,dz21);
544
545 /* Update vectorial force */
546 fix2 = _mm_add_ps(fix2,tx);
547 fiy2 = _mm_add_ps(fiy2,ty);
548 fiz2 = _mm_add_ps(fiz2,tz);
549
550 fjx1 = _mm_add_ps(fjx1,tx);
551 fjy1 = _mm_add_ps(fjy1,ty);
552 fjz1 = _mm_add_ps(fjz1,tz);
553
554 /**************************
555 * CALCULATE INTERACTIONS *
556 **************************/
557
558 r22 = _mm_mul_ps(rsq22,rinv22);
559
560 /* EWALD ELECTROSTATICS */
561
562 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
563 ewrt = _mm_mul_ps(r22,ewtabscale);
564 ewitab = _mm_cvttps_epi32(ewrt);
565 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
566 ewitab = _mm_slli_epi32(ewitab,2);
567 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
568 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
569 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
570 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
571 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
572 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
573 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
574 velec = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
575 felec = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
576
577 /* Update potential sum for this i atom from the interaction with this j atom. */
578 velecsum = _mm_add_ps(velecsum,velec);
579
580 fscal = felec;
581
582 /* Calculate temporary vectorial force */
583 tx = _mm_mul_ps(fscal,dx22);
584 ty = _mm_mul_ps(fscal,dy22);
585 tz = _mm_mul_ps(fscal,dz22);
586
587 /* Update vectorial force */
588 fix2 = _mm_add_ps(fix2,tx);
589 fiy2 = _mm_add_ps(fiy2,ty);
590 fiz2 = _mm_add_ps(fiz2,tz);
591
592 fjx2 = _mm_add_ps(fjx2,tx);
593 fjy2 = _mm_add_ps(fjy2,ty);
594 fjz2 = _mm_add_ps(fjz2,tz);
595
596 /**************************
597 * CALCULATE INTERACTIONS *
598 **************************/
599
600 r23 = _mm_mul_ps(rsq23,rinv23);
601
602 /* EWALD ELECTROSTATICS */
603
604 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605 ewrt = _mm_mul_ps(r23,ewtabscale);
606 ewitab = _mm_cvttps_epi32(ewrt);
607 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
608 ewitab = _mm_slli_epi32(ewitab,2);
609 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
610 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
611 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
612 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
613 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
614 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
615 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
616 velec = _mm_mul_ps(qq23,_mm_sub_ps(rinv23,velec));
617 felec = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
618
619 /* Update potential sum for this i atom from the interaction with this j atom. */
620 velecsum = _mm_add_ps(velecsum,velec);
621
622 fscal = felec;
623
624 /* Calculate temporary vectorial force */
625 tx = _mm_mul_ps(fscal,dx23);
626 ty = _mm_mul_ps(fscal,dy23);
627 tz = _mm_mul_ps(fscal,dz23);
628
629 /* Update vectorial force */
630 fix2 = _mm_add_ps(fix2,tx);
631 fiy2 = _mm_add_ps(fiy2,ty);
632 fiz2 = _mm_add_ps(fiz2,tz);
633
634 fjx3 = _mm_add_ps(fjx3,tx);
635 fjy3 = _mm_add_ps(fjy3,ty);
636 fjz3 = _mm_add_ps(fjz3,tz);
637
638 /**************************
639 * CALCULATE INTERACTIONS *
640 **************************/
641
642 r31 = _mm_mul_ps(rsq31,rinv31);
643
644 /* EWALD ELECTROSTATICS */
645
646 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
647 ewrt = _mm_mul_ps(r31,ewtabscale);
648 ewitab = _mm_cvttps_epi32(ewrt);
649 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
650 ewitab = _mm_slli_epi32(ewitab,2);
651 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
652 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
653 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
654 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
655 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
656 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
657 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
658 velec = _mm_mul_ps(qq31,_mm_sub_ps(rinv31,velec));
659 felec = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
660
661 /* Update potential sum for this i atom from the interaction with this j atom. */
662 velecsum = _mm_add_ps(velecsum,velec);
663
664 fscal = felec;
665
666 /* Calculate temporary vectorial force */
667 tx = _mm_mul_ps(fscal,dx31);
668 ty = _mm_mul_ps(fscal,dy31);
669 tz = _mm_mul_ps(fscal,dz31);
670
671 /* Update vectorial force */
672 fix3 = _mm_add_ps(fix3,tx);
673 fiy3 = _mm_add_ps(fiy3,ty);
674 fiz3 = _mm_add_ps(fiz3,tz);
675
676 fjx1 = _mm_add_ps(fjx1,tx);
677 fjy1 = _mm_add_ps(fjy1,ty);
678 fjz1 = _mm_add_ps(fjz1,tz);
679
680 /**************************
681 * CALCULATE INTERACTIONS *
682 **************************/
683
684 r32 = _mm_mul_ps(rsq32,rinv32);
685
686 /* EWALD ELECTROSTATICS */
687
688 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
689 ewrt = _mm_mul_ps(r32,ewtabscale);
690 ewitab = _mm_cvttps_epi32(ewrt);
691 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
692 ewitab = _mm_slli_epi32(ewitab,2);
693 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
694 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
695 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
696 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
697 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
698 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
699 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
700 velec = _mm_mul_ps(qq32,_mm_sub_ps(rinv32,velec));
701 felec = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
702
703 /* Update potential sum for this i atom from the interaction with this j atom. */
704 velecsum = _mm_add_ps(velecsum,velec);
705
706 fscal = felec;
707
708 /* Calculate temporary vectorial force */
709 tx = _mm_mul_ps(fscal,dx32);
710 ty = _mm_mul_ps(fscal,dy32);
711 tz = _mm_mul_ps(fscal,dz32);
712
713 /* Update vectorial force */
714 fix3 = _mm_add_ps(fix3,tx);
715 fiy3 = _mm_add_ps(fiy3,ty);
716 fiz3 = _mm_add_ps(fiz3,tz);
717
718 fjx2 = _mm_add_ps(fjx2,tx);
719 fjy2 = _mm_add_ps(fjy2,ty);
720 fjz2 = _mm_add_ps(fjz2,tz);
721
722 /**************************
723 * CALCULATE INTERACTIONS *
724 **************************/
725
726 r33 = _mm_mul_ps(rsq33,rinv33);
727
728 /* EWALD ELECTROSTATICS */
729
730 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
731 ewrt = _mm_mul_ps(r33,ewtabscale);
732 ewitab = _mm_cvttps_epi32(ewrt);
733 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
734 ewitab = _mm_slli_epi32(ewitab,2);
735 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
736 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
737 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
738 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
739 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
740 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
741 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
742 velec = _mm_mul_ps(qq33,_mm_sub_ps(rinv33,velec));
743 felec = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
744
745 /* Update potential sum for this i atom from the interaction with this j atom. */
746 velecsum = _mm_add_ps(velecsum,velec);
747
748 fscal = felec;
749
750 /* Calculate temporary vectorial force */
751 tx = _mm_mul_ps(fscal,dx33);
752 ty = _mm_mul_ps(fscal,dy33);
753 tz = _mm_mul_ps(fscal,dz33);
754
755 /* Update vectorial force */
756 fix3 = _mm_add_ps(fix3,tx);
757 fiy3 = _mm_add_ps(fiy3,ty);
758 fiz3 = _mm_add_ps(fiz3,tz);
759
760 fjx3 = _mm_add_ps(fjx3,tx);
761 fjy3 = _mm_add_ps(fjy3,ty);
762 fjz3 = _mm_add_ps(fjz3,tz);
763
764 fjptrA = f+j_coord_offsetA;
765 fjptrB = f+j_coord_offsetB;
766 fjptrC = f+j_coord_offsetC;
767 fjptrD = f+j_coord_offsetD;
768
769 gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
770 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
771 fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
772
773 /* Inner loop uses 428 flops */
774 }
775
776 if(jidx<j_index_end)
777 {
778
779 /* Get j neighbor index, and coordinate index */
780 jnrlistA = jjnr[jidx];
781 jnrlistB = jjnr[jidx+1];
782 jnrlistC = jjnr[jidx+2];
783 jnrlistD = jjnr[jidx+3];
784 /* Sign of each element will be negative for non-real atoms.
785 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
786 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
787 */
788 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
789 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
790 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
791 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
792 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
793 j_coord_offsetA = DIM3*jnrA;
794 j_coord_offsetB = DIM3*jnrB;
795 j_coord_offsetC = DIM3*jnrC;
796 j_coord_offsetD = DIM3*jnrD;
797
798 /* load j atom coordinates */
799 gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
800 x+j_coord_offsetC,x+j_coord_offsetD,
801 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
802 &jy2,&jz2,&jx3,&jy3,&jz3);
803
804 /* Calculate displacement vector */
805 dx00 = _mm_sub_ps(ix0,jx0);
806 dy00 = _mm_sub_ps(iy0,jy0);
807 dz00 = _mm_sub_ps(iz0,jz0);
808 dx11 = _mm_sub_ps(ix1,jx1);
809 dy11 = _mm_sub_ps(iy1,jy1);
810 dz11 = _mm_sub_ps(iz1,jz1);
811 dx12 = _mm_sub_ps(ix1,jx2);
812 dy12 = _mm_sub_ps(iy1,jy2);
813 dz12 = _mm_sub_ps(iz1,jz2);
814 dx13 = _mm_sub_ps(ix1,jx3);
815 dy13 = _mm_sub_ps(iy1,jy3);
816 dz13 = _mm_sub_ps(iz1,jz3);
817 dx21 = _mm_sub_ps(ix2,jx1);
818 dy21 = _mm_sub_ps(iy2,jy1);
819 dz21 = _mm_sub_ps(iz2,jz1);
820 dx22 = _mm_sub_ps(ix2,jx2);
821 dy22 = _mm_sub_ps(iy2,jy2);
822 dz22 = _mm_sub_ps(iz2,jz2);
823 dx23 = _mm_sub_ps(ix2,jx3);
824 dy23 = _mm_sub_ps(iy2,jy3);
825 dz23 = _mm_sub_ps(iz2,jz3);
826 dx31 = _mm_sub_ps(ix3,jx1);
827 dy31 = _mm_sub_ps(iy3,jy1);
828 dz31 = _mm_sub_ps(iz3,jz1);
829 dx32 = _mm_sub_ps(ix3,jx2);
830 dy32 = _mm_sub_ps(iy3,jy2);
831 dz32 = _mm_sub_ps(iz3,jz2);
832 dx33 = _mm_sub_ps(ix3,jx3);
833 dy33 = _mm_sub_ps(iy3,jy3);
834 dz33 = _mm_sub_ps(iz3,jz3);
835
836 /* Calculate squared distance and things based on it */
837 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
838 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
839 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
840 rsq13 = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
841 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
842 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
843 rsq23 = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
844 rsq31 = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
845 rsq32 = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
846 rsq33 = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
847
848 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
849 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
850 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
851 rinv13 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq13);
852 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
853 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
854 rinv23 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq23);
855 rinv31 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq31);
856 rinv32 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq32);
857 rinv33 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq33);
858
859 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
860 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
861 rinvsq13 = _mm_mul_ps(rinv13,rinv13);
862 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
863 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
864 rinvsq23 = _mm_mul_ps(rinv23,rinv23);
865 rinvsq31 = _mm_mul_ps(rinv31,rinv31);
866 rinvsq32 = _mm_mul_ps(rinv32,rinv32);
867 rinvsq33 = _mm_mul_ps(rinv33,rinv33);
868
869 fjx0 = _mm_setzero_ps();
870 fjy0 = _mm_setzero_ps();
871 fjz0 = _mm_setzero_ps();
872 fjx1 = _mm_setzero_ps();
873 fjy1 = _mm_setzero_ps();
874 fjz1 = _mm_setzero_ps();
875 fjx2 = _mm_setzero_ps();
876 fjy2 = _mm_setzero_ps();
877 fjz2 = _mm_setzero_ps();
878 fjx3 = _mm_setzero_ps();
879 fjy3 = _mm_setzero_ps();
880 fjz3 = _mm_setzero_ps();
881
882 /**************************
883 * CALCULATE INTERACTIONS *
884 **************************/
885
886 r00 = _mm_mul_ps(rsq00,rinv00);
887 r00 = _mm_andnot_ps(dummy_mask,r00);
888
889 /* Calculate table index by multiplying r with table scale and truncate to integer */
890 rt = _mm_mul_ps(r00,vftabscale);
891 vfitab = _mm_cvttps_epi32(rt);
892 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
893 vfitab = _mm_slli_epi32(vfitab,3);
894
895 /* CUBIC SPLINE TABLE DISPERSION */
896 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
897 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
898 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
899 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
900 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
901 Heps = _mm_mul_ps(vfeps,H);
902 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
903 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
904 vvdw6 = _mm_mul_ps(c6_00,VV);
905 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
906 fvdw6 = _mm_mul_ps(c6_00,FF);
907
908 /* CUBIC SPLINE TABLE REPULSION */
909 vfitab = _mm_add_epi32(vfitab,ifour);
910 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
911 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
912 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
913 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
914 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
915 Heps = _mm_mul_ps(vfeps,H);
916 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
917 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
918 vvdw12 = _mm_mul_ps(c12_00,VV);
919 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
920 fvdw12 = _mm_mul_ps(c12_00,FF);
921 vvdw = _mm_add_ps(vvdw12,vvdw6);
922 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
923
924 /* Update potential sum for this i atom from the interaction with this j atom. */
925 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
926 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
927
928 fscal = fvdw;
929
930 fscal = _mm_andnot_ps(dummy_mask,fscal);
931
932 /* Calculate temporary vectorial force */
933 tx = _mm_mul_ps(fscal,dx00);
934 ty = _mm_mul_ps(fscal,dy00);
935 tz = _mm_mul_ps(fscal,dz00);
936
937 /* Update vectorial force */
938 fix0 = _mm_add_ps(fix0,tx);
939 fiy0 = _mm_add_ps(fiy0,ty);
940 fiz0 = _mm_add_ps(fiz0,tz);
941
942 fjx0 = _mm_add_ps(fjx0,tx);
943 fjy0 = _mm_add_ps(fjy0,ty);
944 fjz0 = _mm_add_ps(fjz0,tz);
945
946 /**************************
947 * CALCULATE INTERACTIONS *
948 **************************/
949
950 r11 = _mm_mul_ps(rsq11,rinv11);
951 r11 = _mm_andnot_ps(dummy_mask,r11);
952
953 /* EWALD ELECTROSTATICS */
954
955 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
956 ewrt = _mm_mul_ps(r11,ewtabscale);
957 ewitab = _mm_cvttps_epi32(ewrt);
958 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
959 ewitab = _mm_slli_epi32(ewitab,2);
960 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
961 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
962 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
963 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
964 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
965 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
966 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
967 velec = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
968 felec = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
969
970 /* Update potential sum for this i atom from the interaction with this j atom. */
971 velec = _mm_andnot_ps(dummy_mask,velec);
972 velecsum = _mm_add_ps(velecsum,velec);
973
974 fscal = felec;
975
976 fscal = _mm_andnot_ps(dummy_mask,fscal);
977
978 /* Calculate temporary vectorial force */
979 tx = _mm_mul_ps(fscal,dx11);
980 ty = _mm_mul_ps(fscal,dy11);
981 tz = _mm_mul_ps(fscal,dz11);
982
983 /* Update vectorial force */
984 fix1 = _mm_add_ps(fix1,tx);
985 fiy1 = _mm_add_ps(fiy1,ty);
986 fiz1 = _mm_add_ps(fiz1,tz);
987
988 fjx1 = _mm_add_ps(fjx1,tx);
989 fjy1 = _mm_add_ps(fjy1,ty);
990 fjz1 = _mm_add_ps(fjz1,tz);
991
992 /**************************
993 * CALCULATE INTERACTIONS *
994 **************************/
995
996 r12 = _mm_mul_ps(rsq12,rinv12);
997 r12 = _mm_andnot_ps(dummy_mask,r12);
998
999 /* EWALD ELECTROSTATICS */
1000
1001 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1002 ewrt = _mm_mul_ps(r12,ewtabscale);
1003 ewitab = _mm_cvttps_epi32(ewrt);
1004 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1005 ewitab = _mm_slli_epi32(ewitab,2);
1006 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1007 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1008 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1009 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1010 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1011 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1012 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1013 velec = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
1014 felec = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1015
1016 /* Update potential sum for this i atom from the interaction with this j atom. */
1017 velec = _mm_andnot_ps(dummy_mask,velec);
1018 velecsum = _mm_add_ps(velecsum,velec);
1019
1020 fscal = felec;
1021
1022 fscal = _mm_andnot_ps(dummy_mask,fscal);
1023
1024 /* Calculate temporary vectorial force */
1025 tx = _mm_mul_ps(fscal,dx12);
1026 ty = _mm_mul_ps(fscal,dy12);
1027 tz = _mm_mul_ps(fscal,dz12);
1028
1029 /* Update vectorial force */
1030 fix1 = _mm_add_ps(fix1,tx);
1031 fiy1 = _mm_add_ps(fiy1,ty);
1032 fiz1 = _mm_add_ps(fiz1,tz);
1033
1034 fjx2 = _mm_add_ps(fjx2,tx);
1035 fjy2 = _mm_add_ps(fjy2,ty);
1036 fjz2 = _mm_add_ps(fjz2,tz);
1037
1038 /**************************
1039 * CALCULATE INTERACTIONS *
1040 **************************/
1041
1042 r13 = _mm_mul_ps(rsq13,rinv13);
1043 r13 = _mm_andnot_ps(dummy_mask,r13);
1044
1045 /* EWALD ELECTROSTATICS */
1046
1047 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1048 ewrt = _mm_mul_ps(r13,ewtabscale);
1049 ewitab = _mm_cvttps_epi32(ewrt);
1050 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1051 ewitab = _mm_slli_epi32(ewitab,2);
1052 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1053 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1054 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1055 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1056 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1057 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1058 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1059 velec = _mm_mul_ps(qq13,_mm_sub_ps(rinv13,velec));
1060 felec = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1061
1062 /* Update potential sum for this i atom from the interaction with this j atom. */
1063 velec = _mm_andnot_ps(dummy_mask,velec);
1064 velecsum = _mm_add_ps(velecsum,velec);
1065
1066 fscal = felec;
1067
1068 fscal = _mm_andnot_ps(dummy_mask,fscal);
1069
1070 /* Calculate temporary vectorial force */
1071 tx = _mm_mul_ps(fscal,dx13);
1072 ty = _mm_mul_ps(fscal,dy13);
1073 tz = _mm_mul_ps(fscal,dz13);
1074
1075 /* Update vectorial force */
1076 fix1 = _mm_add_ps(fix1,tx);
1077 fiy1 = _mm_add_ps(fiy1,ty);
1078 fiz1 = _mm_add_ps(fiz1,tz);
1079
1080 fjx3 = _mm_add_ps(fjx3,tx);
1081 fjy3 = _mm_add_ps(fjy3,ty);
1082 fjz3 = _mm_add_ps(fjz3,tz);
1083
1084 /**************************
1085 * CALCULATE INTERACTIONS *
1086 **************************/
1087
1088 r21 = _mm_mul_ps(rsq21,rinv21);
1089 r21 = _mm_andnot_ps(dummy_mask,r21);
1090
1091 /* EWALD ELECTROSTATICS */
1092
1093 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1094 ewrt = _mm_mul_ps(r21,ewtabscale);
1095 ewitab = _mm_cvttps_epi32(ewrt);
1096 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1097 ewitab = _mm_slli_epi32(ewitab,2);
1098 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1099 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1100 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1101 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1102 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1103 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1104 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1105 velec = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
1106 felec = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1107
1108 /* Update potential sum for this i atom from the interaction with this j atom. */
1109 velec = _mm_andnot_ps(dummy_mask,velec);
1110 velecsum = _mm_add_ps(velecsum,velec);
1111
1112 fscal = felec;
1113
1114 fscal = _mm_andnot_ps(dummy_mask,fscal);
1115
1116 /* Calculate temporary vectorial force */
1117 tx = _mm_mul_ps(fscal,dx21);
1118 ty = _mm_mul_ps(fscal,dy21);
1119 tz = _mm_mul_ps(fscal,dz21);
1120
1121 /* Update vectorial force */
1122 fix2 = _mm_add_ps(fix2,tx);
1123 fiy2 = _mm_add_ps(fiy2,ty);
1124 fiz2 = _mm_add_ps(fiz2,tz);
1125
1126 fjx1 = _mm_add_ps(fjx1,tx);
1127 fjy1 = _mm_add_ps(fjy1,ty);
1128 fjz1 = _mm_add_ps(fjz1,tz);
1129
1130 /**************************
1131 * CALCULATE INTERACTIONS *
1132 **************************/
1133
1134 r22 = _mm_mul_ps(rsq22,rinv22);
1135 r22 = _mm_andnot_ps(dummy_mask,r22);
1136
1137 /* EWALD ELECTROSTATICS */
1138
1139 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140 ewrt = _mm_mul_ps(r22,ewtabscale);
1141 ewitab = _mm_cvttps_epi32(ewrt);
1142 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1143 ewitab = _mm_slli_epi32(ewitab,2);
1144 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1145 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1146 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1147 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1148 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1149 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1150 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1151 velec = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
1152 felec = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1153
1154 /* Update potential sum for this i atom from the interaction with this j atom. */
1155 velec = _mm_andnot_ps(dummy_mask,velec);
1156 velecsum = _mm_add_ps(velecsum,velec);
1157
1158 fscal = felec;
1159
1160 fscal = _mm_andnot_ps(dummy_mask,fscal);
1161
1162 /* Calculate temporary vectorial force */
1163 tx = _mm_mul_ps(fscal,dx22);
1164 ty = _mm_mul_ps(fscal,dy22);
1165 tz = _mm_mul_ps(fscal,dz22);
1166
1167 /* Update vectorial force */
1168 fix2 = _mm_add_ps(fix2,tx);
1169 fiy2 = _mm_add_ps(fiy2,ty);
1170 fiz2 = _mm_add_ps(fiz2,tz);
1171
1172 fjx2 = _mm_add_ps(fjx2,tx);
1173 fjy2 = _mm_add_ps(fjy2,ty);
1174 fjz2 = _mm_add_ps(fjz2,tz);
1175
1176 /**************************
1177 * CALCULATE INTERACTIONS *
1178 **************************/
1179
1180 r23 = _mm_mul_ps(rsq23,rinv23);
1181 r23 = _mm_andnot_ps(dummy_mask,r23);
1182
1183 /* EWALD ELECTROSTATICS */
1184
1185 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1186 ewrt = _mm_mul_ps(r23,ewtabscale);
1187 ewitab = _mm_cvttps_epi32(ewrt);
1188 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1189 ewitab = _mm_slli_epi32(ewitab,2);
1190 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1191 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1192 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1193 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1194 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1195 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1196 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1197 velec = _mm_mul_ps(qq23,_mm_sub_ps(rinv23,velec));
1198 felec = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1199
1200 /* Update potential sum for this i atom from the interaction with this j atom. */
1201 velec = _mm_andnot_ps(dummy_mask,velec);
1202 velecsum = _mm_add_ps(velecsum,velec);
1203
1204 fscal = felec;
1205
1206 fscal = _mm_andnot_ps(dummy_mask,fscal);
1207
1208 /* Calculate temporary vectorial force */
1209 tx = _mm_mul_ps(fscal,dx23);
1210 ty = _mm_mul_ps(fscal,dy23);
1211 tz = _mm_mul_ps(fscal,dz23);
1212
1213 /* Update vectorial force */
1214 fix2 = _mm_add_ps(fix2,tx);
1215 fiy2 = _mm_add_ps(fiy2,ty);
1216 fiz2 = _mm_add_ps(fiz2,tz);
1217
1218 fjx3 = _mm_add_ps(fjx3,tx);
1219 fjy3 = _mm_add_ps(fjy3,ty);
1220 fjz3 = _mm_add_ps(fjz3,tz);
1221
1222 /**************************
1223 * CALCULATE INTERACTIONS *
1224 **************************/
1225
1226 r31 = _mm_mul_ps(rsq31,rinv31);
1227 r31 = _mm_andnot_ps(dummy_mask,r31);
1228
1229 /* EWALD ELECTROSTATICS */
1230
1231 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1232 ewrt = _mm_mul_ps(r31,ewtabscale);
1233 ewitab = _mm_cvttps_epi32(ewrt);
1234 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1235 ewitab = _mm_slli_epi32(ewitab,2);
1236 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1237 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1238 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1239 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1240 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1241 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1242 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1243 velec = _mm_mul_ps(qq31,_mm_sub_ps(rinv31,velec));
1244 felec = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1245
1246 /* Update potential sum for this i atom from the interaction with this j atom. */
1247 velec = _mm_andnot_ps(dummy_mask,velec);
1248 velecsum = _mm_add_ps(velecsum,velec);
1249
1250 fscal = felec;
1251
1252 fscal = _mm_andnot_ps(dummy_mask,fscal);
1253
1254 /* Calculate temporary vectorial force */
1255 tx = _mm_mul_ps(fscal,dx31);
1256 ty = _mm_mul_ps(fscal,dy31);
1257 tz = _mm_mul_ps(fscal,dz31);
1258
1259 /* Update vectorial force */
1260 fix3 = _mm_add_ps(fix3,tx);
1261 fiy3 = _mm_add_ps(fiy3,ty);
1262 fiz3 = _mm_add_ps(fiz3,tz);
1263
1264 fjx1 = _mm_add_ps(fjx1,tx);
1265 fjy1 = _mm_add_ps(fjy1,ty);
1266 fjz1 = _mm_add_ps(fjz1,tz);
1267
1268 /**************************
1269 * CALCULATE INTERACTIONS *
1270 **************************/
1271
1272 r32 = _mm_mul_ps(rsq32,rinv32);
1273 r32 = _mm_andnot_ps(dummy_mask,r32);
1274
1275 /* EWALD ELECTROSTATICS */
1276
1277 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1278 ewrt = _mm_mul_ps(r32,ewtabscale);
1279 ewitab = _mm_cvttps_epi32(ewrt);
1280 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1281 ewitab = _mm_slli_epi32(ewitab,2);
1282 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1283 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1284 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1285 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1286 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1287 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1288 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1289 velec = _mm_mul_ps(qq32,_mm_sub_ps(rinv32,velec));
1290 felec = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1291
1292 /* Update potential sum for this i atom from the interaction with this j atom. */
1293 velec = _mm_andnot_ps(dummy_mask,velec);
1294 velecsum = _mm_add_ps(velecsum,velec);
1295
1296 fscal = felec;
1297
1298 fscal = _mm_andnot_ps(dummy_mask,fscal);
1299
1300 /* Calculate temporary vectorial force */
1301 tx = _mm_mul_ps(fscal,dx32);
1302 ty = _mm_mul_ps(fscal,dy32);
1303 tz = _mm_mul_ps(fscal,dz32);
1304
1305 /* Update vectorial force */
1306 fix3 = _mm_add_ps(fix3,tx);
1307 fiy3 = _mm_add_ps(fiy3,ty);
1308 fiz3 = _mm_add_ps(fiz3,tz);
1309
1310 fjx2 = _mm_add_ps(fjx2,tx);
1311 fjy2 = _mm_add_ps(fjy2,ty);
1312 fjz2 = _mm_add_ps(fjz2,tz);
1313
1314 /**************************
1315 * CALCULATE INTERACTIONS *
1316 **************************/
1317
1318 r33 = _mm_mul_ps(rsq33,rinv33);
1319 r33 = _mm_andnot_ps(dummy_mask,r33);
1320
1321 /* EWALD ELECTROSTATICS */
1322
1323 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1324 ewrt = _mm_mul_ps(r33,ewtabscale);
1325 ewitab = _mm_cvttps_epi32(ewrt);
1326 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1327 ewitab = _mm_slli_epi32(ewitab,2);
1328 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
1329 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
1330 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
1331 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
1332 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
1333 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1334 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1335 velec = _mm_mul_ps(qq33,_mm_sub_ps(rinv33,velec));
1336 felec = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
1337
1338 /* Update potential sum for this i atom from the interaction with this j atom. */
1339 velec = _mm_andnot_ps(dummy_mask,velec);
1340 velecsum = _mm_add_ps(velecsum,velec);
1341
1342 fscal = felec;
1343
1344 fscal = _mm_andnot_ps(dummy_mask,fscal);
1345
1346 /* Calculate temporary vectorial force */
1347 tx = _mm_mul_ps(fscal,dx33);
1348 ty = _mm_mul_ps(fscal,dy33);
1349 tz = _mm_mul_ps(fscal,dz33);
1350
1351 /* Update vectorial force */
1352 fix3 = _mm_add_ps(fix3,tx);
1353 fiy3 = _mm_add_ps(fiy3,ty);
1354 fiz3 = _mm_add_ps(fiz3,tz);
1355
1356 fjx3 = _mm_add_ps(fjx3,tx);
1357 fjy3 = _mm_add_ps(fjy3,ty);
1358 fjz3 = _mm_add_ps(fjz3,tz);
1359
1360 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1361 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1362 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1363 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1364
1365 gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1366 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1367 fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1368
1369 /* Inner loop uses 438 flops */
1370 }
1371
1372 /* End of innermost loop */
1373
1374 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1375 f+i_coord_offset,fshift+i_shift_offset);
1376
1377 ggid = gid[iidx];
1378 /* Update potential energies */
1379 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1380 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1381
1382 /* Increment number of inner iterations */
1383 inneriter += j_index_end - j_index_start;
1384
1385 /* Outer loop uses 26 flops */
1386 }
1387
1388 /* Increment number of outer iterations */
1389 outeriter += nri;
1390
1391 /* Update outer/inner flops */
1392
1393 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*438)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*26 +
inneriter*438
;
1394}
1395/*
1396 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW4W4_F_sse4_1_single
1397 * Electrostatics interaction: Ewald
1398 * VdW interaction: CubicSplineTable
1399 * Geometry: Water4-Water4
1400 * Calculate force/pot: Force
1401 */
1402void
1403nb_kernel_ElecEw_VdwCSTab_GeomW4W4_F_sse4_1_single
1404 (t_nblist * gmx_restrict nlist,
1405 rvec * gmx_restrict xx,
1406 rvec * gmx_restrict ff,
1407 t_forcerec * gmx_restrict fr,
1408 t_mdatoms * gmx_restrict mdatoms,
1409 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
1410 t_nrnb * gmx_restrict nrnb)
1411{
1412 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1413 * just 0 for non-waters.
1414 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1415 * jnr indices corresponding to data put in the four positions in the SIMD register.
1416 */
1417 int i_shift_offset,i_coord_offset,outeriter,inneriter;
1418 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1419 int jnrA,jnrB,jnrC,jnrD;
1420 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1421 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1422 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
1423 real rcutoff_scalar;
1424 real *shiftvec,*fshift,*x,*f;
1425 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1426 real scratch[4*DIM3];
1427 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1428 int vdwioffset0;
1429 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1430 int vdwioffset1;
1431 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1432 int vdwioffset2;
1433 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1434 int vdwioffset3;
1435 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1436 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1437 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1438 int vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1439 __m128 jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1440 int vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1441 __m128 jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1442 int vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1443 __m128 jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1444 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1445 __m128 dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1446 __m128 dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1447 __m128 dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1448 __m128 dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1449 __m128 dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1450 __m128 dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1451 __m128 dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1452 __m128 dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1453 __m128 dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1454 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
1455 real *charge;
1456 int nvdwtype;
1457 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1458 int *vdwtype;
1459 real *vdwparam;
1460 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
1461 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
1462 __m128i vfitab;
1463 __m128i ifour = _mm_set1_epi32(4);
1464 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
1465 real *vftab;
1466 __m128i ewitab;
1467 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1468 real *ewtab;
1469 __m128 dummy_mask,cutoff_mask;
1470 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1471 __m128 one = _mm_set1_ps(1.0);
1472 __m128 two = _mm_set1_ps(2.0);
1473 x = xx[0];
1474 f = ff[0];
1475
1476 nri = nlist->nri;
1477 iinr = nlist->iinr;
1478 jindex = nlist->jindex;
1479 jjnr = nlist->jjnr;
1480 shiftidx = nlist->shift;
1481 gid = nlist->gid;
1482 shiftvec = fr->shift_vec[0];
1483 fshift = fr->fshift[0];
1484 facel = _mm_set1_ps(fr->epsfac);
1485 charge = mdatoms->chargeA;
1486 nvdwtype = fr->ntype;
1487 vdwparam = fr->nbfp;
1488 vdwtype = mdatoms->typeA;
1489
1490 vftab = kernel_data->table_vdw->data;
1491 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
1492
1493 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
1494 ewtab = fr->ic->tabq_coul_F;
1495 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
1496 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1497
1498 /* Setup water-specific parameters */
1499 inr = nlist->iinr[0];
1500 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1501 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1502 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
1503 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
1504
1505 jq1 = _mm_set1_ps(charge[inr+1]);
1506 jq2 = _mm_set1_ps(charge[inr+2]);
1507 jq3 = _mm_set1_ps(charge[inr+3]);
1508 vdwjidx0A = 2*vdwtype[inr+0];
1509 c6_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1510 c12_00 = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1511 qq11 = _mm_mul_ps(iq1,jq1);
1512 qq12 = _mm_mul_ps(iq1,jq2);
1513 qq13 = _mm_mul_ps(iq1,jq3);
1514 qq21 = _mm_mul_ps(iq2,jq1);
1515 qq22 = _mm_mul_ps(iq2,jq2);
1516 qq23 = _mm_mul_ps(iq2,jq3);
1517 qq31 = _mm_mul_ps(iq3,jq1);
1518 qq32 = _mm_mul_ps(iq3,jq2);
1519 qq33 = _mm_mul_ps(iq3,jq3);
1520
1521 /* Avoid stupid compiler warnings */
1522 jnrA = jnrB = jnrC = jnrD = 0;
1523 j_coord_offsetA = 0;
1524 j_coord_offsetB = 0;
1525 j_coord_offsetC = 0;
1526 j_coord_offsetD = 0;
Value stored to 'j_coord_offsetD' is never read
1527
1528 outeriter = 0;
1529 inneriter = 0;
1530
1531 for(iidx=0;iidx<4*DIM3;iidx++)
1532 {
1533 scratch[iidx] = 0.0;
1534 }
1535
1536 /* Start outer loop over neighborlists */
1537 for(iidx=0; iidx<nri; iidx++)
1538 {
1539 /* Load shift vector for this list */
1540 i_shift_offset = DIM3*shiftidx[iidx];
1541
1542 /* Load limits for loop over neighbors */
1543 j_index_start = jindex[iidx];
1544 j_index_end = jindex[iidx+1];
1545
1546 /* Get outer coordinate index */
1547 inr = iinr[iidx];
1548 i_coord_offset = DIM3*inr;
1549
1550 /* Load i particle coords and add shift vector */
1551 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1552 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1553
1554 fix0 = _mm_setzero_ps();
1555 fiy0 = _mm_setzero_ps();
1556 fiz0 = _mm_setzero_ps();
1557 fix1 = _mm_setzero_ps();
1558 fiy1 = _mm_setzero_ps();
1559 fiz1 = _mm_setzero_ps();
1560 fix2 = _mm_setzero_ps();
1561 fiy2 = _mm_setzero_ps();
1562 fiz2 = _mm_setzero_ps();
1563 fix3 = _mm_setzero_ps();
1564 fiy3 = _mm_setzero_ps();
1565 fiz3 = _mm_setzero_ps();
1566
1567 /* Start inner kernel loop */
1568 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1569 {
1570
1571 /* Get j neighbor index, and coordinate index */
1572 jnrA = jjnr[jidx];
1573 jnrB = jjnr[jidx+1];
1574 jnrC = jjnr[jidx+2];
1575 jnrD = jjnr[jidx+3];
1576 j_coord_offsetA = DIM3*jnrA;
1577 j_coord_offsetB = DIM3*jnrB;
1578 j_coord_offsetC = DIM3*jnrC;
1579 j_coord_offsetD = DIM3*jnrD;
1580
1581 /* load j atom coordinates */
1582 gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1583 x+j_coord_offsetC,x+j_coord_offsetD,
1584 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1585 &jy2,&jz2,&jx3,&jy3,&jz3);
1586
1587 /* Calculate displacement vector */
1588 dx00 = _mm_sub_ps(ix0,jx0);
1589 dy00 = _mm_sub_ps(iy0,jy0);
1590 dz00 = _mm_sub_ps(iz0,jz0);
1591 dx11 = _mm_sub_ps(ix1,jx1);
1592 dy11 = _mm_sub_ps(iy1,jy1);
1593 dz11 = _mm_sub_ps(iz1,jz1);
1594 dx12 = _mm_sub_ps(ix1,jx2);
1595 dy12 = _mm_sub_ps(iy1,jy2);
1596 dz12 = _mm_sub_ps(iz1,jz2);
1597 dx13 = _mm_sub_ps(ix1,jx3);
1598 dy13 = _mm_sub_ps(iy1,jy3);
1599 dz13 = _mm_sub_ps(iz1,jz3);
1600 dx21 = _mm_sub_ps(ix2,jx1);
1601 dy21 = _mm_sub_ps(iy2,jy1);
1602 dz21 = _mm_sub_ps(iz2,jz1);
1603 dx22 = _mm_sub_ps(ix2,jx2);
1604 dy22 = _mm_sub_ps(iy2,jy2);
1605 dz22 = _mm_sub_ps(iz2,jz2);
1606 dx23 = _mm_sub_ps(ix2,jx3);
1607 dy23 = _mm_sub_ps(iy2,jy3);
1608 dz23 = _mm_sub_ps(iz2,jz3);
1609 dx31 = _mm_sub_ps(ix3,jx1);
1610 dy31 = _mm_sub_ps(iy3,jy1);
1611 dz31 = _mm_sub_ps(iz3,jz1);
1612 dx32 = _mm_sub_ps(ix3,jx2);
1613 dy32 = _mm_sub_ps(iy3,jy2);
1614 dz32 = _mm_sub_ps(iz3,jz2);
1615 dx33 = _mm_sub_ps(ix3,jx3);
1616 dy33 = _mm_sub_ps(iy3,jy3);
1617 dz33 = _mm_sub_ps(iz3,jz3);
1618
1619 /* Calculate squared distance and things based on it */
1620 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1621 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1622 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1623 rsq13 = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
1624 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1625 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1626 rsq23 = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
1627 rsq31 = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
1628 rsq32 = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
1629 rsq33 = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
1630
1631 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1632 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
1633 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
1634 rinv13 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq13);
1635 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
1636 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
1637 rinv23 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq23);
1638 rinv31 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq31);
1639 rinv32 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq32);
1640 rinv33 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq33);
1641
1642 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
1643 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
1644 rinvsq13 = _mm_mul_ps(rinv13,rinv13);
1645 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
1646 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
1647 rinvsq23 = _mm_mul_ps(rinv23,rinv23);
1648 rinvsq31 = _mm_mul_ps(rinv31,rinv31);
1649 rinvsq32 = _mm_mul_ps(rinv32,rinv32);
1650 rinvsq33 = _mm_mul_ps(rinv33,rinv33);
1651
1652 fjx0 = _mm_setzero_ps();
1653 fjy0 = _mm_setzero_ps();
1654 fjz0 = _mm_setzero_ps();
1655 fjx1 = _mm_setzero_ps();
1656 fjy1 = _mm_setzero_ps();
1657 fjz1 = _mm_setzero_ps();
1658 fjx2 = _mm_setzero_ps();
1659 fjy2 = _mm_setzero_ps();
1660 fjz2 = _mm_setzero_ps();
1661 fjx3 = _mm_setzero_ps();
1662 fjy3 = _mm_setzero_ps();
1663 fjz3 = _mm_setzero_ps();
1664
1665 /**************************
1666 * CALCULATE INTERACTIONS *
1667 **************************/
1668
1669 r00 = _mm_mul_ps(rsq00,rinv00);
1670
1671 /* Calculate table index by multiplying r with table scale and truncate to integer */
1672 rt = _mm_mul_ps(r00,vftabscale);
1673 vfitab = _mm_cvttps_epi32(rt);
1674 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1675 vfitab = _mm_slli_epi32(vfitab,3);
1676
1677 /* CUBIC SPLINE TABLE DISPERSION */
1678 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1679 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1680 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1681 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1682 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1683 Heps = _mm_mul_ps(vfeps,H);
1684 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1685 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1686 fvdw6 = _mm_mul_ps(c6_00,FF);
1687
1688 /* CUBIC SPLINE TABLE REPULSION */
1689 vfitab = _mm_add_epi32(vfitab,ifour);
1690 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1691 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1692 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1693 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1694 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1695 Heps = _mm_mul_ps(vfeps,H);
1696 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1697 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1698 fvdw12 = _mm_mul_ps(c12_00,FF);
1699 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1700
1701 fscal = fvdw;
1702
1703 /* Calculate temporary vectorial force */
1704 tx = _mm_mul_ps(fscal,dx00);
1705 ty = _mm_mul_ps(fscal,dy00);
1706 tz = _mm_mul_ps(fscal,dz00);
1707
1708 /* Update vectorial force */
1709 fix0 = _mm_add_ps(fix0,tx);
1710 fiy0 = _mm_add_ps(fiy0,ty);
1711 fiz0 = _mm_add_ps(fiz0,tz);
1712
1713 fjx0 = _mm_add_ps(fjx0,tx);
1714 fjy0 = _mm_add_ps(fjy0,ty);
1715 fjz0 = _mm_add_ps(fjz0,tz);
1716
1717 /**************************
1718 * CALCULATE INTERACTIONS *
1719 **************************/
1720
1721 r11 = _mm_mul_ps(rsq11,rinv11);
1722
1723 /* EWALD ELECTROSTATICS */
1724
1725 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1726 ewrt = _mm_mul_ps(r11,ewtabscale);
1727 ewitab = _mm_cvttps_epi32(ewrt);
1728 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1729 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1730 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1731 &ewtabF,&ewtabFn);
1732 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1733 felec = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1734
1735 fscal = felec;
1736
1737 /* Calculate temporary vectorial force */
1738 tx = _mm_mul_ps(fscal,dx11);
1739 ty = _mm_mul_ps(fscal,dy11);
1740 tz = _mm_mul_ps(fscal,dz11);
1741
1742 /* Update vectorial force */
1743 fix1 = _mm_add_ps(fix1,tx);
1744 fiy1 = _mm_add_ps(fiy1,ty);
1745 fiz1 = _mm_add_ps(fiz1,tz);
1746
1747 fjx1 = _mm_add_ps(fjx1,tx);
1748 fjy1 = _mm_add_ps(fjy1,ty);
1749 fjz1 = _mm_add_ps(fjz1,tz);
1750
1751 /**************************
1752 * CALCULATE INTERACTIONS *
1753 **************************/
1754
1755 r12 = _mm_mul_ps(rsq12,rinv12);
1756
1757 /* EWALD ELECTROSTATICS */
1758
1759 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1760 ewrt = _mm_mul_ps(r12,ewtabscale);
1761 ewitab = _mm_cvttps_epi32(ewrt);
1762 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1763 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1764 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1765 &ewtabF,&ewtabFn);
1766 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1767 felec = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1768
1769 fscal = felec;
1770
1771 /* Calculate temporary vectorial force */
1772 tx = _mm_mul_ps(fscal,dx12);
1773 ty = _mm_mul_ps(fscal,dy12);
1774 tz = _mm_mul_ps(fscal,dz12);
1775
1776 /* Update vectorial force */
1777 fix1 = _mm_add_ps(fix1,tx);
1778 fiy1 = _mm_add_ps(fiy1,ty);
1779 fiz1 = _mm_add_ps(fiz1,tz);
1780
1781 fjx2 = _mm_add_ps(fjx2,tx);
1782 fjy2 = _mm_add_ps(fjy2,ty);
1783 fjz2 = _mm_add_ps(fjz2,tz);
1784
1785 /**************************
1786 * CALCULATE INTERACTIONS *
1787 **************************/
1788
1789 r13 = _mm_mul_ps(rsq13,rinv13);
1790
1791 /* EWALD ELECTROSTATICS */
1792
1793 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1794 ewrt = _mm_mul_ps(r13,ewtabscale);
1795 ewitab = _mm_cvttps_epi32(ewrt);
1796 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1797 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1798 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1799 &ewtabF,&ewtabFn);
1800 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1801 felec = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1802
1803 fscal = felec;
1804
1805 /* Calculate temporary vectorial force */
1806 tx = _mm_mul_ps(fscal,dx13);
1807 ty = _mm_mul_ps(fscal,dy13);
1808 tz = _mm_mul_ps(fscal,dz13);
1809
1810 /* Update vectorial force */
1811 fix1 = _mm_add_ps(fix1,tx);
1812 fiy1 = _mm_add_ps(fiy1,ty);
1813 fiz1 = _mm_add_ps(fiz1,tz);
1814
1815 fjx3 = _mm_add_ps(fjx3,tx);
1816 fjy3 = _mm_add_ps(fjy3,ty);
1817 fjz3 = _mm_add_ps(fjz3,tz);
1818
1819 /**************************
1820 * CALCULATE INTERACTIONS *
1821 **************************/
1822
1823 r21 = _mm_mul_ps(rsq21,rinv21);
1824
1825 /* EWALD ELECTROSTATICS */
1826
1827 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1828 ewrt = _mm_mul_ps(r21,ewtabscale);
1829 ewitab = _mm_cvttps_epi32(ewrt);
1830 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1831 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1832 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1833 &ewtabF,&ewtabFn);
1834 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1835 felec = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1836
1837 fscal = felec;
1838
1839 /* Calculate temporary vectorial force */
1840 tx = _mm_mul_ps(fscal,dx21);
1841 ty = _mm_mul_ps(fscal,dy21);
1842 tz = _mm_mul_ps(fscal,dz21);
1843
1844 /* Update vectorial force */
1845 fix2 = _mm_add_ps(fix2,tx);
1846 fiy2 = _mm_add_ps(fiy2,ty);
1847 fiz2 = _mm_add_ps(fiz2,tz);
1848
1849 fjx1 = _mm_add_ps(fjx1,tx);
1850 fjy1 = _mm_add_ps(fjy1,ty);
1851 fjz1 = _mm_add_ps(fjz1,tz);
1852
1853 /**************************
1854 * CALCULATE INTERACTIONS *
1855 **************************/
1856
1857 r22 = _mm_mul_ps(rsq22,rinv22);
1858
1859 /* EWALD ELECTROSTATICS */
1860
1861 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1862 ewrt = _mm_mul_ps(r22,ewtabscale);
1863 ewitab = _mm_cvttps_epi32(ewrt);
1864 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1865 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1866 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1867 &ewtabF,&ewtabFn);
1868 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1869 felec = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1870
1871 fscal = felec;
1872
1873 /* Calculate temporary vectorial force */
1874 tx = _mm_mul_ps(fscal,dx22);
1875 ty = _mm_mul_ps(fscal,dy22);
1876 tz = _mm_mul_ps(fscal,dz22);
1877
1878 /* Update vectorial force */
1879 fix2 = _mm_add_ps(fix2,tx);
1880 fiy2 = _mm_add_ps(fiy2,ty);
1881 fiz2 = _mm_add_ps(fiz2,tz);
1882
1883 fjx2 = _mm_add_ps(fjx2,tx);
1884 fjy2 = _mm_add_ps(fjy2,ty);
1885 fjz2 = _mm_add_ps(fjz2,tz);
1886
1887 /**************************
1888 * CALCULATE INTERACTIONS *
1889 **************************/
1890
1891 r23 = _mm_mul_ps(rsq23,rinv23);
1892
1893 /* EWALD ELECTROSTATICS */
1894
1895 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1896 ewrt = _mm_mul_ps(r23,ewtabscale);
1897 ewitab = _mm_cvttps_epi32(ewrt);
1898 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1899 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1900 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1901 &ewtabF,&ewtabFn);
1902 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1903 felec = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1904
1905 fscal = felec;
1906
1907 /* Calculate temporary vectorial force */
1908 tx = _mm_mul_ps(fscal,dx23);
1909 ty = _mm_mul_ps(fscal,dy23);
1910 tz = _mm_mul_ps(fscal,dz23);
1911
1912 /* Update vectorial force */
1913 fix2 = _mm_add_ps(fix2,tx);
1914 fiy2 = _mm_add_ps(fiy2,ty);
1915 fiz2 = _mm_add_ps(fiz2,tz);
1916
1917 fjx3 = _mm_add_ps(fjx3,tx);
1918 fjy3 = _mm_add_ps(fjy3,ty);
1919 fjz3 = _mm_add_ps(fjz3,tz);
1920
1921 /**************************
1922 * CALCULATE INTERACTIONS *
1923 **************************/
1924
1925 r31 = _mm_mul_ps(rsq31,rinv31);
1926
1927 /* EWALD ELECTROSTATICS */
1928
1929 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1930 ewrt = _mm_mul_ps(r31,ewtabscale);
1931 ewitab = _mm_cvttps_epi32(ewrt);
1932 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1933 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1934 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1935 &ewtabF,&ewtabFn);
1936 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1937 felec = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1938
1939 fscal = felec;
1940
1941 /* Calculate temporary vectorial force */
1942 tx = _mm_mul_ps(fscal,dx31);
1943 ty = _mm_mul_ps(fscal,dy31);
1944 tz = _mm_mul_ps(fscal,dz31);
1945
1946 /* Update vectorial force */
1947 fix3 = _mm_add_ps(fix3,tx);
1948 fiy3 = _mm_add_ps(fiy3,ty);
1949 fiz3 = _mm_add_ps(fiz3,tz);
1950
1951 fjx1 = _mm_add_ps(fjx1,tx);
1952 fjy1 = _mm_add_ps(fjy1,ty);
1953 fjz1 = _mm_add_ps(fjz1,tz);
1954
1955 /**************************
1956 * CALCULATE INTERACTIONS *
1957 **************************/
1958
1959 r32 = _mm_mul_ps(rsq32,rinv32);
1960
1961 /* EWALD ELECTROSTATICS */
1962
1963 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1964 ewrt = _mm_mul_ps(r32,ewtabscale);
1965 ewitab = _mm_cvttps_epi32(ewrt);
1966 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1967 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1968 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1969 &ewtabF,&ewtabFn);
1970 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1971 felec = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1972
1973 fscal = felec;
1974
1975 /* Calculate temporary vectorial force */
1976 tx = _mm_mul_ps(fscal,dx32);
1977 ty = _mm_mul_ps(fscal,dy32);
1978 tz = _mm_mul_ps(fscal,dz32);
1979
1980 /* Update vectorial force */
1981 fix3 = _mm_add_ps(fix3,tx);
1982 fiy3 = _mm_add_ps(fiy3,ty);
1983 fiz3 = _mm_add_ps(fiz3,tz);
1984
1985 fjx2 = _mm_add_ps(fjx2,tx);
1986 fjy2 = _mm_add_ps(fjy2,ty);
1987 fjz2 = _mm_add_ps(fjz2,tz);
1988
1989 /**************************
1990 * CALCULATE INTERACTIONS *
1991 **************************/
1992
1993 r33 = _mm_mul_ps(rsq33,rinv33);
1994
1995 /* EWALD ELECTROSTATICS */
1996
1997 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1998 ewrt = _mm_mul_ps(r33,ewtabscale);
1999 ewitab = _mm_cvttps_epi32(ewrt);
2000 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2001 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2002 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2003 &ewtabF,&ewtabFn);
2004 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2005 felec = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
2006
2007 fscal = felec;
2008
2009 /* Calculate temporary vectorial force */
2010 tx = _mm_mul_ps(fscal,dx33);
2011 ty = _mm_mul_ps(fscal,dy33);
2012 tz = _mm_mul_ps(fscal,dz33);
2013
2014 /* Update vectorial force */
2015 fix3 = _mm_add_ps(fix3,tx);
2016 fiy3 = _mm_add_ps(fiy3,ty);
2017 fiz3 = _mm_add_ps(fiz3,tz);
2018
2019 fjx3 = _mm_add_ps(fjx3,tx);
2020 fjy3 = _mm_add_ps(fjy3,ty);
2021 fjz3 = _mm_add_ps(fjz3,tz);
2022
2023 fjptrA = f+j_coord_offsetA;
2024 fjptrB = f+j_coord_offsetB;
2025 fjptrC = f+j_coord_offsetC;
2026 fjptrD = f+j_coord_offsetD;
2027
2028 gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2029 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
2030 fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2031
2032 /* Inner loop uses 375 flops */
2033 }
2034
2035 if(jidx<j_index_end)
2036 {
2037
2038 /* Get j neighbor index, and coordinate index */
2039 jnrlistA = jjnr[jidx];
2040 jnrlistB = jjnr[jidx+1];
2041 jnrlistC = jjnr[jidx+2];
2042 jnrlistD = jjnr[jidx+3];
2043 /* Sign of each element will be negative for non-real atoms.
2044 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
2045 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
2046 */
2047 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
2048 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
2049 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
2050 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
2051 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
2052 j_coord_offsetA = DIM3*jnrA;
2053 j_coord_offsetB = DIM3*jnrB;
2054 j_coord_offsetC = DIM3*jnrC;
2055 j_coord_offsetD = DIM3*jnrD;
2056
2057 /* load j atom coordinates */
2058 gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
2059 x+j_coord_offsetC,x+j_coord_offsetD,
2060 &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
2061 &jy2,&jz2,&jx3,&jy3,&jz3);
2062
2063 /* Calculate displacement vector */
2064 dx00 = _mm_sub_ps(ix0,jx0);
2065 dy00 = _mm_sub_ps(iy0,jy0);
2066 dz00 = _mm_sub_ps(iz0,jz0);
2067 dx11 = _mm_sub_ps(ix1,jx1);
2068 dy11 = _mm_sub_ps(iy1,jy1);
2069 dz11 = _mm_sub_ps(iz1,jz1);
2070 dx12 = _mm_sub_ps(ix1,jx2);
2071 dy12 = _mm_sub_ps(iy1,jy2);
2072 dz12 = _mm_sub_ps(iz1,jz2);
2073 dx13 = _mm_sub_ps(ix1,jx3);
2074 dy13 = _mm_sub_ps(iy1,jy3);
2075 dz13 = _mm_sub_ps(iz1,jz3);
2076 dx21 = _mm_sub_ps(ix2,jx1);
2077 dy21 = _mm_sub_ps(iy2,jy1);
2078 dz21 = _mm_sub_ps(iz2,jz1);
2079 dx22 = _mm_sub_ps(ix2,jx2);
2080 dy22 = _mm_sub_ps(iy2,jy2);
2081 dz22 = _mm_sub_ps(iz2,jz2);
2082 dx23 = _mm_sub_ps(ix2,jx3);
2083 dy23 = _mm_sub_ps(iy2,jy3);
2084 dz23 = _mm_sub_ps(iz2,jz3);
2085 dx31 = _mm_sub_ps(ix3,jx1);
2086 dy31 = _mm_sub_ps(iy3,jy1);
2087 dz31 = _mm_sub_ps(iz3,jz1);
2088 dx32 = _mm_sub_ps(ix3,jx2);
2089 dy32 = _mm_sub_ps(iy3,jy2);
2090 dz32 = _mm_sub_ps(iz3,jz2);
2091 dx33 = _mm_sub_ps(ix3,jx3);
2092 dy33 = _mm_sub_ps(iy3,jy3);
2093 dz33 = _mm_sub_ps(iz3,jz3);
2094
2095 /* Calculate squared distance and things based on it */
2096 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
2097 rsq11 = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
2098 rsq12 = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
2099 rsq13 = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
2100 rsq21 = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
2101 rsq22 = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
2102 rsq23 = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
2103 rsq31 = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
2104 rsq32 = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
2105 rsq33 = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
2106
2107 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
2108 rinv11 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq11);
2109 rinv12 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq12);
2110 rinv13 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq13);
2111 rinv21 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq21);
2112 rinv22 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq22);
2113 rinv23 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq23);
2114 rinv31 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq31);
2115 rinv32 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq32);
2116 rinv33 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq33);
2117
2118 rinvsq11 = _mm_mul_ps(rinv11,rinv11);
2119 rinvsq12 = _mm_mul_ps(rinv12,rinv12);
2120 rinvsq13 = _mm_mul_ps(rinv13,rinv13);
2121 rinvsq21 = _mm_mul_ps(rinv21,rinv21);
2122 rinvsq22 = _mm_mul_ps(rinv22,rinv22);
2123 rinvsq23 = _mm_mul_ps(rinv23,rinv23);
2124 rinvsq31 = _mm_mul_ps(rinv31,rinv31);
2125 rinvsq32 = _mm_mul_ps(rinv32,rinv32);
2126 rinvsq33 = _mm_mul_ps(rinv33,rinv33);
2127
2128 fjx0 = _mm_setzero_ps();
2129 fjy0 = _mm_setzero_ps();
2130 fjz0 = _mm_setzero_ps();
2131 fjx1 = _mm_setzero_ps();
2132 fjy1 = _mm_setzero_ps();
2133 fjz1 = _mm_setzero_ps();
2134 fjx2 = _mm_setzero_ps();
2135 fjy2 = _mm_setzero_ps();
2136 fjz2 = _mm_setzero_ps();
2137 fjx3 = _mm_setzero_ps();
2138 fjy3 = _mm_setzero_ps();
2139 fjz3 = _mm_setzero_ps();
2140
2141 /**************************
2142 * CALCULATE INTERACTIONS *
2143 **************************/
2144
2145 r00 = _mm_mul_ps(rsq00,rinv00);
2146 r00 = _mm_andnot_ps(dummy_mask,r00);
2147
2148 /* Calculate table index by multiplying r with table scale and truncate to integer */
2149 rt = _mm_mul_ps(r00,vftabscale);
2150 vfitab = _mm_cvttps_epi32(rt);
2151 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2152 vfitab = _mm_slli_epi32(vfitab,3);
2153
2154 /* CUBIC SPLINE TABLE DISPERSION */
2155 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
2156 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
2157 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
2158 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
2159 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
2160 Heps = _mm_mul_ps(vfeps,H);
2161 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
2162 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
2163 fvdw6 = _mm_mul_ps(c6_00,FF);
2164
2165 /* CUBIC SPLINE TABLE REPULSION */
2166 vfitab = _mm_add_epi32(vfitab,ifour);
2167 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
2168 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
2169 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
2170 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
2171 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
2172 Heps = _mm_mul_ps(vfeps,H);
2173 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
2174 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
2175 fvdw12 = _mm_mul_ps(c12_00,FF);
2176 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
2177
2178 fscal = fvdw;
2179
2180 fscal = _mm_andnot_ps(dummy_mask,fscal);
2181
2182 /* Calculate temporary vectorial force */
2183 tx = _mm_mul_ps(fscal,dx00);
2184 ty = _mm_mul_ps(fscal,dy00);
2185 tz = _mm_mul_ps(fscal,dz00);
2186
2187 /* Update vectorial force */
2188 fix0 = _mm_add_ps(fix0,tx);
2189 fiy0 = _mm_add_ps(fiy0,ty);
2190 fiz0 = _mm_add_ps(fiz0,tz);
2191
2192 fjx0 = _mm_add_ps(fjx0,tx);
2193 fjy0 = _mm_add_ps(fjy0,ty);
2194 fjz0 = _mm_add_ps(fjz0,tz);
2195
2196 /**************************
2197 * CALCULATE INTERACTIONS *
2198 **************************/
2199
2200 r11 = _mm_mul_ps(rsq11,rinv11);
2201 r11 = _mm_andnot_ps(dummy_mask,r11);
2202
2203 /* EWALD ELECTROSTATICS */
2204
2205 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2206 ewrt = _mm_mul_ps(r11,ewtabscale);
2207 ewitab = _mm_cvttps_epi32(ewrt);
2208 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2209 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2210 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2211 &ewtabF,&ewtabFn);
2212 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2213 felec = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
2214
2215 fscal = felec;
2216
2217 fscal = _mm_andnot_ps(dummy_mask,fscal);
2218
2219 /* Calculate temporary vectorial force */
2220 tx = _mm_mul_ps(fscal,dx11);
2221 ty = _mm_mul_ps(fscal,dy11);
2222 tz = _mm_mul_ps(fscal,dz11);
2223
2224 /* Update vectorial force */
2225 fix1 = _mm_add_ps(fix1,tx);
2226 fiy1 = _mm_add_ps(fiy1,ty);
2227 fiz1 = _mm_add_ps(fiz1,tz);
2228
2229 fjx1 = _mm_add_ps(fjx1,tx);
2230 fjy1 = _mm_add_ps(fjy1,ty);
2231 fjz1 = _mm_add_ps(fjz1,tz);
2232
2233 /**************************
2234 * CALCULATE INTERACTIONS *
2235 **************************/
2236
2237 r12 = _mm_mul_ps(rsq12,rinv12);
2238 r12 = _mm_andnot_ps(dummy_mask,r12);
2239
2240 /* EWALD ELECTROSTATICS */
2241
2242 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2243 ewrt = _mm_mul_ps(r12,ewtabscale);
2244 ewitab = _mm_cvttps_epi32(ewrt);
2245 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2246 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2247 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2248 &ewtabF,&ewtabFn);
2249 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2250 felec = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
2251
2252 fscal = felec;
2253
2254 fscal = _mm_andnot_ps(dummy_mask,fscal);
2255
2256 /* Calculate temporary vectorial force */
2257 tx = _mm_mul_ps(fscal,dx12);
2258 ty = _mm_mul_ps(fscal,dy12);
2259 tz = _mm_mul_ps(fscal,dz12);
2260
2261 /* Update vectorial force */
2262 fix1 = _mm_add_ps(fix1,tx);
2263 fiy1 = _mm_add_ps(fiy1,ty);
2264 fiz1 = _mm_add_ps(fiz1,tz);
2265
2266 fjx2 = _mm_add_ps(fjx2,tx);
2267 fjy2 = _mm_add_ps(fjy2,ty);
2268 fjz2 = _mm_add_ps(fjz2,tz);
2269
2270 /**************************
2271 * CALCULATE INTERACTIONS *
2272 **************************/
2273
2274 r13 = _mm_mul_ps(rsq13,rinv13);
2275 r13 = _mm_andnot_ps(dummy_mask,r13);
2276
2277 /* EWALD ELECTROSTATICS */
2278
2279 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2280 ewrt = _mm_mul_ps(r13,ewtabscale);
2281 ewitab = _mm_cvttps_epi32(ewrt);
2282 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2283 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2284 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2285 &ewtabF,&ewtabFn);
2286 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2287 felec = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
2288
2289 fscal = felec;
2290
2291 fscal = _mm_andnot_ps(dummy_mask,fscal);
2292
2293 /* Calculate temporary vectorial force */
2294 tx = _mm_mul_ps(fscal,dx13);
2295 ty = _mm_mul_ps(fscal,dy13);
2296 tz = _mm_mul_ps(fscal,dz13);
2297
2298 /* Update vectorial force */
2299 fix1 = _mm_add_ps(fix1,tx);
2300 fiy1 = _mm_add_ps(fiy1,ty);
2301 fiz1 = _mm_add_ps(fiz1,tz);
2302
2303 fjx3 = _mm_add_ps(fjx3,tx);
2304 fjy3 = _mm_add_ps(fjy3,ty);
2305 fjz3 = _mm_add_ps(fjz3,tz);
2306
2307 /**************************
2308 * CALCULATE INTERACTIONS *
2309 **************************/
2310
2311 r21 = _mm_mul_ps(rsq21,rinv21);
2312 r21 = _mm_andnot_ps(dummy_mask,r21);
2313
2314 /* EWALD ELECTROSTATICS */
2315
2316 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2317 ewrt = _mm_mul_ps(r21,ewtabscale);
2318 ewitab = _mm_cvttps_epi32(ewrt);
2319 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2320 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2321 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2322 &ewtabF,&ewtabFn);
2323 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2324 felec = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2325
2326 fscal = felec;
2327
2328 fscal = _mm_andnot_ps(dummy_mask,fscal);
2329
2330 /* Calculate temporary vectorial force */
2331 tx = _mm_mul_ps(fscal,dx21);
2332 ty = _mm_mul_ps(fscal,dy21);
2333 tz = _mm_mul_ps(fscal,dz21);
2334
2335 /* Update vectorial force */
2336 fix2 = _mm_add_ps(fix2,tx);
2337 fiy2 = _mm_add_ps(fiy2,ty);
2338 fiz2 = _mm_add_ps(fiz2,tz);
2339
2340 fjx1 = _mm_add_ps(fjx1,tx);
2341 fjy1 = _mm_add_ps(fjy1,ty);
2342 fjz1 = _mm_add_ps(fjz1,tz);
2343
2344 /**************************
2345 * CALCULATE INTERACTIONS *
2346 **************************/
2347
2348 r22 = _mm_mul_ps(rsq22,rinv22);
2349 r22 = _mm_andnot_ps(dummy_mask,r22);
2350
2351 /* EWALD ELECTROSTATICS */
2352
2353 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2354 ewrt = _mm_mul_ps(r22,ewtabscale);
2355 ewitab = _mm_cvttps_epi32(ewrt);
2356 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2357 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2358 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2359 &ewtabF,&ewtabFn);
2360 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2361 felec = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2362
2363 fscal = felec;
2364
2365 fscal = _mm_andnot_ps(dummy_mask,fscal);
2366
2367 /* Calculate temporary vectorial force */
2368 tx = _mm_mul_ps(fscal,dx22);
2369 ty = _mm_mul_ps(fscal,dy22);
2370 tz = _mm_mul_ps(fscal,dz22);
2371
2372 /* Update vectorial force */
2373 fix2 = _mm_add_ps(fix2,tx);
2374 fiy2 = _mm_add_ps(fiy2,ty);
2375 fiz2 = _mm_add_ps(fiz2,tz);
2376
2377 fjx2 = _mm_add_ps(fjx2,tx);
2378 fjy2 = _mm_add_ps(fjy2,ty);
2379 fjz2 = _mm_add_ps(fjz2,tz);
2380
2381 /**************************
2382 * CALCULATE INTERACTIONS *
2383 **************************/
2384
2385 r23 = _mm_mul_ps(rsq23,rinv23);
2386 r23 = _mm_andnot_ps(dummy_mask,r23);
2387
2388 /* EWALD ELECTROSTATICS */
2389
2390 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2391 ewrt = _mm_mul_ps(r23,ewtabscale);
2392 ewitab = _mm_cvttps_epi32(ewrt);
2393 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2394 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2395 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2396 &ewtabF,&ewtabFn);
2397 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2398 felec = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
2399
2400 fscal = felec;
2401
2402 fscal = _mm_andnot_ps(dummy_mask,fscal);
2403
2404 /* Calculate temporary vectorial force */
2405 tx = _mm_mul_ps(fscal,dx23);
2406 ty = _mm_mul_ps(fscal,dy23);
2407 tz = _mm_mul_ps(fscal,dz23);
2408
2409 /* Update vectorial force */
2410 fix2 = _mm_add_ps(fix2,tx);
2411 fiy2 = _mm_add_ps(fiy2,ty);
2412 fiz2 = _mm_add_ps(fiz2,tz);
2413
2414 fjx3 = _mm_add_ps(fjx3,tx);
2415 fjy3 = _mm_add_ps(fjy3,ty);
2416 fjz3 = _mm_add_ps(fjz3,tz);
2417
2418 /**************************
2419 * CALCULATE INTERACTIONS *
2420 **************************/
2421
2422 r31 = _mm_mul_ps(rsq31,rinv31);
2423 r31 = _mm_andnot_ps(dummy_mask,r31);
2424
2425 /* EWALD ELECTROSTATICS */
2426
2427 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2428 ewrt = _mm_mul_ps(r31,ewtabscale);
2429 ewitab = _mm_cvttps_epi32(ewrt);
2430 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2431 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2432 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2433 &ewtabF,&ewtabFn);
2434 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2435 felec = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
2436
2437 fscal = felec;
2438
2439 fscal = _mm_andnot_ps(dummy_mask,fscal);
2440
2441 /* Calculate temporary vectorial force */
2442 tx = _mm_mul_ps(fscal,dx31);
2443 ty = _mm_mul_ps(fscal,dy31);
2444 tz = _mm_mul_ps(fscal,dz31);
2445
2446 /* Update vectorial force */
2447 fix3 = _mm_add_ps(fix3,tx);
2448 fiy3 = _mm_add_ps(fiy3,ty);
2449 fiz3 = _mm_add_ps(fiz3,tz);
2450
2451 fjx1 = _mm_add_ps(fjx1,tx);
2452 fjy1 = _mm_add_ps(fjy1,ty);
2453 fjz1 = _mm_add_ps(fjz1,tz);
2454
2455 /**************************
2456 * CALCULATE INTERACTIONS *
2457 **************************/
2458
2459 r32 = _mm_mul_ps(rsq32,rinv32);
2460 r32 = _mm_andnot_ps(dummy_mask,r32);
2461
2462 /* EWALD ELECTROSTATICS */
2463
2464 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2465 ewrt = _mm_mul_ps(r32,ewtabscale);
2466 ewitab = _mm_cvttps_epi32(ewrt);
2467 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2468 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2469 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2470 &ewtabF,&ewtabFn);
2471 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2472 felec = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
2473
2474 fscal = felec;
2475
2476 fscal = _mm_andnot_ps(dummy_mask,fscal);
2477
2478 /* Calculate temporary vectorial force */
2479 tx = _mm_mul_ps(fscal,dx32);
2480 ty = _mm_mul_ps(fscal,dy32);
2481 tz = _mm_mul_ps(fscal,dz32);
2482
2483 /* Update vectorial force */
2484 fix3 = _mm_add_ps(fix3,tx);
2485 fiy3 = _mm_add_ps(fiy3,ty);
2486 fiz3 = _mm_add_ps(fiz3,tz);
2487
2488 fjx2 = _mm_add_ps(fjx2,tx);
2489 fjy2 = _mm_add_ps(fjy2,ty);
2490 fjz2 = _mm_add_ps(fjz2,tz);
2491
2492 /**************************
2493 * CALCULATE INTERACTIONS *
2494 **************************/
2495
2496 r33 = _mm_mul_ps(rsq33,rinv33);
2497 r33 = _mm_andnot_ps(dummy_mask,r33);
2498
2499 /* EWALD ELECTROSTATICS */
2500
2501 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2502 ewrt = _mm_mul_ps(r33,ewtabscale);
2503 ewitab = _mm_cvttps_epi32(ewrt);
2504 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
2505 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
2506 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
2507 &ewtabF,&ewtabFn);
2508 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2509 felec = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
2510
2511 fscal = felec;
2512
2513 fscal = _mm_andnot_ps(dummy_mask,fscal);
2514
2515 /* Calculate temporary vectorial force */
2516 tx = _mm_mul_ps(fscal,dx33);
2517 ty = _mm_mul_ps(fscal,dy33);
2518 tz = _mm_mul_ps(fscal,dz33);
2519
2520 /* Update vectorial force */
2521 fix3 = _mm_add_ps(fix3,tx);
2522 fiy3 = _mm_add_ps(fiy3,ty);
2523 fiz3 = _mm_add_ps(fiz3,tz);
2524
2525 fjx3 = _mm_add_ps(fjx3,tx);
2526 fjy3 = _mm_add_ps(fjy3,ty);
2527 fjz3 = _mm_add_ps(fjz3,tz);
2528
2529 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2530 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2531 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2532 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2533
2534 gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2535 fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
2536 fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2537
2538 /* Inner loop uses 385 flops */
2539 }
2540
2541 /* End of innermost loop */
2542
2543 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2544 f+i_coord_offset,fshift+i_shift_offset);
2545
2546 /* Increment number of inner iterations */
2547 inneriter += j_index_end - j_index_start;
2548
2549 /* Outer loop uses 24 flops */
2550 }
2551
2552 /* Increment number of outer iterations */
2553 outeriter += nri;
2554
2555 /* Update outer/inner flops */
2556
2557 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*385)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*24 + inneriter
*385
;
2558}