Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwBham_GeomW3W3_c.c
Location:line 747, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwBham_GeomW3W3_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwBham_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int vfitab;
100 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
101 real *vftab;
102
103 x = xx[0];
104 f = ff[0];
105
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = fr->epsfac;
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 vftab = kernel_data->table_elec->data;
121 vftabscale = kernel_data->table_elec->scale;
122
123 /* Setup water-specific parameters */
124 inr = nlist->iinr[0];
125 iq0 = facel*charge[inr+0];
126 iq1 = facel*charge[inr+1];
127 iq2 = facel*charge[inr+2];
128 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
129
130 jq0 = charge[inr+0];
131 jq1 = charge[inr+1];
132 jq2 = charge[inr+2];
133 vdwjidx0 = 3*vdwtype[inr+0];
134 qq00 = iq0*jq0;
135 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
136 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
137 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
138 qq01 = iq0*jq1;
139 qq02 = iq0*jq2;
140 qq10 = iq1*jq0;
141 qq11 = iq1*jq1;
142 qq12 = iq1*jq2;
143 qq20 = iq2*jq0;
144 qq21 = iq2*jq1;
145 qq22 = iq2*jq2;
146
147 outeriter = 0;
148 inneriter = 0;
149
150 /* Start outer loop over neighborlists */
151 for(iidx=0; iidx<nri; iidx++)
152 {
153 /* Load shift vector for this list */
154 i_shift_offset = DIM3*shiftidx[iidx];
155 shX = shiftvec[i_shift_offset+XX0];
156 shY = shiftvec[i_shift_offset+YY1];
157 shZ = shiftvec[i_shift_offset+ZZ2];
158
159 /* Load limits for loop over neighbors */
160 j_index_start = jindex[iidx];
161 j_index_end = jindex[iidx+1];
162
163 /* Get outer coordinate index */
164 inr = iinr[iidx];
165 i_coord_offset = DIM3*inr;
166
167 /* Load i particle coords and add shift vector */
168 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
169 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
170 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
171 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
172 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
173 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
174 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
175 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
176 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
177
178 fix0 = 0.0;
179 fiy0 = 0.0;
180 fiz0 = 0.0;
181 fix1 = 0.0;
182 fiy1 = 0.0;
183 fiz1 = 0.0;
184 fix2 = 0.0;
185 fiy2 = 0.0;
186 fiz2 = 0.0;
187
188 /* Reset potential sums */
189 velecsum = 0.0;
190 vvdwsum = 0.0;
191
192 /* Start inner kernel loop */
193 for(jidx=j_index_start; jidx<j_index_end; jidx++)
194 {
195 /* Get j neighbor index, and coordinate index */
196 jnr = jjnr[jidx];
197 j_coord_offset = DIM3*jnr;
198
199 /* load j atom coordinates */
200 jx0 = x[j_coord_offset+DIM3*0+XX0];
201 jy0 = x[j_coord_offset+DIM3*0+YY1];
202 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
203 jx1 = x[j_coord_offset+DIM3*1+XX0];
204 jy1 = x[j_coord_offset+DIM3*1+YY1];
205 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
206 jx2 = x[j_coord_offset+DIM3*2+XX0];
207 jy2 = x[j_coord_offset+DIM3*2+YY1];
208 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
209
210 /* Calculate displacement vector */
211 dx00 = ix0 - jx0;
212 dy00 = iy0 - jy0;
213 dz00 = iz0 - jz0;
214 dx01 = ix0 - jx1;
215 dy01 = iy0 - jy1;
216 dz01 = iz0 - jz1;
217 dx02 = ix0 - jx2;
218 dy02 = iy0 - jy2;
219 dz02 = iz0 - jz2;
220 dx10 = ix1 - jx0;
221 dy10 = iy1 - jy0;
222 dz10 = iz1 - jz0;
223 dx11 = ix1 - jx1;
224 dy11 = iy1 - jy1;
225 dz11 = iz1 - jz1;
226 dx12 = ix1 - jx2;
227 dy12 = iy1 - jy2;
228 dz12 = iz1 - jz2;
229 dx20 = ix2 - jx0;
230 dy20 = iy2 - jy0;
231 dz20 = iz2 - jz0;
232 dx21 = ix2 - jx1;
233 dy21 = iy2 - jy1;
234 dz21 = iz2 - jz1;
235 dx22 = ix2 - jx2;
236 dy22 = iy2 - jy2;
237 dz22 = iz2 - jz2;
238
239 /* Calculate squared distance and things based on it */
240 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
241 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
242 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
243 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
244 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
245 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
246 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
247 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
248 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
249
250 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
251 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
252 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
253 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
254 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
255 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
256 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
257 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
258 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
259
260 rinvsq00 = rinv00*rinv00;
261
262 /**************************
263 * CALCULATE INTERACTIONS *
264 **************************/
265
266 r00 = rsq00*rinv00;
267
268 /* Calculate table index by multiplying r with table scale and truncate to integer */
269 rt = r00*vftabscale;
270 vfitab = rt;
271 vfeps = rt-vfitab;
272 vfitab = 1*4*vfitab;
273
274 /* CUBIC SPLINE TABLE ELECTROSTATICS */
275 Y = vftab[vfitab];
276 F = vftab[vfitab+1];
277 Geps = vfeps*vftab[vfitab+2];
278 Heps2 = vfeps*vfeps*vftab[vfitab+3];
279 Fp = F+Geps+Heps2;
280 VV = Y+vfeps*Fp;
281 velec = qq00*VV;
282 FF = Fp+Geps+2.0*Heps2;
283 felec = -qq00*FF*vftabscale*rinv00;
284
285 /* BUCKINGHAM DISPERSION/REPULSION */
286 rinvsix = rinvsq00*rinvsq00*rinvsq00;
287 vvdw6 = c6_00*rinvsix;
288 br = cexp2_00*r00;
289 vvdwexp = cexp1_00*exp(-br);
290 vvdw = vvdwexp - vvdw6*(1.0/6.0);
291 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
292
293 /* Update potential sums from outer loop */
294 velecsum += velec;
295 vvdwsum += vvdw;
296
297 fscal = felec+fvdw;
298
299 /* Calculate temporary vectorial force */
300 tx = fscal*dx00;
301 ty = fscal*dy00;
302 tz = fscal*dz00;
303
304 /* Update vectorial force */
305 fix0 += tx;
306 fiy0 += ty;
307 fiz0 += tz;
308 f[j_coord_offset+DIM3*0+XX0] -= tx;
309 f[j_coord_offset+DIM3*0+YY1] -= ty;
310 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
311
312 /**************************
313 * CALCULATE INTERACTIONS *
314 **************************/
315
316 r01 = rsq01*rinv01;
317
318 /* Calculate table index by multiplying r with table scale and truncate to integer */
319 rt = r01*vftabscale;
320 vfitab = rt;
321 vfeps = rt-vfitab;
322 vfitab = 1*4*vfitab;
323
324 /* CUBIC SPLINE TABLE ELECTROSTATICS */
325 Y = vftab[vfitab];
326 F = vftab[vfitab+1];
327 Geps = vfeps*vftab[vfitab+2];
328 Heps2 = vfeps*vfeps*vftab[vfitab+3];
329 Fp = F+Geps+Heps2;
330 VV = Y+vfeps*Fp;
331 velec = qq01*VV;
332 FF = Fp+Geps+2.0*Heps2;
333 felec = -qq01*FF*vftabscale*rinv01;
334
335 /* Update potential sums from outer loop */
336 velecsum += velec;
337
338 fscal = felec;
339
340 /* Calculate temporary vectorial force */
341 tx = fscal*dx01;
342 ty = fscal*dy01;
343 tz = fscal*dz01;
344
345 /* Update vectorial force */
346 fix0 += tx;
347 fiy0 += ty;
348 fiz0 += tz;
349 f[j_coord_offset+DIM3*1+XX0] -= tx;
350 f[j_coord_offset+DIM3*1+YY1] -= ty;
351 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
352
353 /**************************
354 * CALCULATE INTERACTIONS *
355 **************************/
356
357 r02 = rsq02*rinv02;
358
359 /* Calculate table index by multiplying r with table scale and truncate to integer */
360 rt = r02*vftabscale;
361 vfitab = rt;
362 vfeps = rt-vfitab;
363 vfitab = 1*4*vfitab;
364
365 /* CUBIC SPLINE TABLE ELECTROSTATICS */
366 Y = vftab[vfitab];
367 F = vftab[vfitab+1];
368 Geps = vfeps*vftab[vfitab+2];
369 Heps2 = vfeps*vfeps*vftab[vfitab+3];
370 Fp = F+Geps+Heps2;
371 VV = Y+vfeps*Fp;
372 velec = qq02*VV;
373 FF = Fp+Geps+2.0*Heps2;
374 felec = -qq02*FF*vftabscale*rinv02;
375
376 /* Update potential sums from outer loop */
377 velecsum += velec;
378
379 fscal = felec;
380
381 /* Calculate temporary vectorial force */
382 tx = fscal*dx02;
383 ty = fscal*dy02;
384 tz = fscal*dz02;
385
386 /* Update vectorial force */
387 fix0 += tx;
388 fiy0 += ty;
389 fiz0 += tz;
390 f[j_coord_offset+DIM3*2+XX0] -= tx;
391 f[j_coord_offset+DIM3*2+YY1] -= ty;
392 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
393
394 /**************************
395 * CALCULATE INTERACTIONS *
396 **************************/
397
398 r10 = rsq10*rinv10;
399
400 /* Calculate table index by multiplying r with table scale and truncate to integer */
401 rt = r10*vftabscale;
402 vfitab = rt;
403 vfeps = rt-vfitab;
404 vfitab = 1*4*vfitab;
405
406 /* CUBIC SPLINE TABLE ELECTROSTATICS */
407 Y = vftab[vfitab];
408 F = vftab[vfitab+1];
409 Geps = vfeps*vftab[vfitab+2];
410 Heps2 = vfeps*vfeps*vftab[vfitab+3];
411 Fp = F+Geps+Heps2;
412 VV = Y+vfeps*Fp;
413 velec = qq10*VV;
414 FF = Fp+Geps+2.0*Heps2;
415 felec = -qq10*FF*vftabscale*rinv10;
416
417 /* Update potential sums from outer loop */
418 velecsum += velec;
419
420 fscal = felec;
421
422 /* Calculate temporary vectorial force */
423 tx = fscal*dx10;
424 ty = fscal*dy10;
425 tz = fscal*dz10;
426
427 /* Update vectorial force */
428 fix1 += tx;
429 fiy1 += ty;
430 fiz1 += tz;
431 f[j_coord_offset+DIM3*0+XX0] -= tx;
432 f[j_coord_offset+DIM3*0+YY1] -= ty;
433 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
434
435 /**************************
436 * CALCULATE INTERACTIONS *
437 **************************/
438
439 r11 = rsq11*rinv11;
440
441 /* Calculate table index by multiplying r with table scale and truncate to integer */
442 rt = r11*vftabscale;
443 vfitab = rt;
444 vfeps = rt-vfitab;
445 vfitab = 1*4*vfitab;
446
447 /* CUBIC SPLINE TABLE ELECTROSTATICS */
448 Y = vftab[vfitab];
449 F = vftab[vfitab+1];
450 Geps = vfeps*vftab[vfitab+2];
451 Heps2 = vfeps*vfeps*vftab[vfitab+3];
452 Fp = F+Geps+Heps2;
453 VV = Y+vfeps*Fp;
454 velec = qq11*VV;
455 FF = Fp+Geps+2.0*Heps2;
456 felec = -qq11*FF*vftabscale*rinv11;
457
458 /* Update potential sums from outer loop */
459 velecsum += velec;
460
461 fscal = felec;
462
463 /* Calculate temporary vectorial force */
464 tx = fscal*dx11;
465 ty = fscal*dy11;
466 tz = fscal*dz11;
467
468 /* Update vectorial force */
469 fix1 += tx;
470 fiy1 += ty;
471 fiz1 += tz;
472 f[j_coord_offset+DIM3*1+XX0] -= tx;
473 f[j_coord_offset+DIM3*1+YY1] -= ty;
474 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
475
476 /**************************
477 * CALCULATE INTERACTIONS *
478 **************************/
479
480 r12 = rsq12*rinv12;
481
482 /* Calculate table index by multiplying r with table scale and truncate to integer */
483 rt = r12*vftabscale;
484 vfitab = rt;
485 vfeps = rt-vfitab;
486 vfitab = 1*4*vfitab;
487
488 /* CUBIC SPLINE TABLE ELECTROSTATICS */
489 Y = vftab[vfitab];
490 F = vftab[vfitab+1];
491 Geps = vfeps*vftab[vfitab+2];
492 Heps2 = vfeps*vfeps*vftab[vfitab+3];
493 Fp = F+Geps+Heps2;
494 VV = Y+vfeps*Fp;
495 velec = qq12*VV;
496 FF = Fp+Geps+2.0*Heps2;
497 felec = -qq12*FF*vftabscale*rinv12;
498
499 /* Update potential sums from outer loop */
500 velecsum += velec;
501
502 fscal = felec;
503
504 /* Calculate temporary vectorial force */
505 tx = fscal*dx12;
506 ty = fscal*dy12;
507 tz = fscal*dz12;
508
509 /* Update vectorial force */
510 fix1 += tx;
511 fiy1 += ty;
512 fiz1 += tz;
513 f[j_coord_offset+DIM3*2+XX0] -= tx;
514 f[j_coord_offset+DIM3*2+YY1] -= ty;
515 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
516
517 /**************************
518 * CALCULATE INTERACTIONS *
519 **************************/
520
521 r20 = rsq20*rinv20;
522
523 /* Calculate table index by multiplying r with table scale and truncate to integer */
524 rt = r20*vftabscale;
525 vfitab = rt;
526 vfeps = rt-vfitab;
527 vfitab = 1*4*vfitab;
528
529 /* CUBIC SPLINE TABLE ELECTROSTATICS */
530 Y = vftab[vfitab];
531 F = vftab[vfitab+1];
532 Geps = vfeps*vftab[vfitab+2];
533 Heps2 = vfeps*vfeps*vftab[vfitab+3];
534 Fp = F+Geps+Heps2;
535 VV = Y+vfeps*Fp;
536 velec = qq20*VV;
537 FF = Fp+Geps+2.0*Heps2;
538 felec = -qq20*FF*vftabscale*rinv20;
539
540 /* Update potential sums from outer loop */
541 velecsum += velec;
542
543 fscal = felec;
544
545 /* Calculate temporary vectorial force */
546 tx = fscal*dx20;
547 ty = fscal*dy20;
548 tz = fscal*dz20;
549
550 /* Update vectorial force */
551 fix2 += tx;
552 fiy2 += ty;
553 fiz2 += tz;
554 f[j_coord_offset+DIM3*0+XX0] -= tx;
555 f[j_coord_offset+DIM3*0+YY1] -= ty;
556 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
557
558 /**************************
559 * CALCULATE INTERACTIONS *
560 **************************/
561
562 r21 = rsq21*rinv21;
563
564 /* Calculate table index by multiplying r with table scale and truncate to integer */
565 rt = r21*vftabscale;
566 vfitab = rt;
567 vfeps = rt-vfitab;
568 vfitab = 1*4*vfitab;
569
570 /* CUBIC SPLINE TABLE ELECTROSTATICS */
571 Y = vftab[vfitab];
572 F = vftab[vfitab+1];
573 Geps = vfeps*vftab[vfitab+2];
574 Heps2 = vfeps*vfeps*vftab[vfitab+3];
575 Fp = F+Geps+Heps2;
576 VV = Y+vfeps*Fp;
577 velec = qq21*VV;
578 FF = Fp+Geps+2.0*Heps2;
579 felec = -qq21*FF*vftabscale*rinv21;
580
581 /* Update potential sums from outer loop */
582 velecsum += velec;
583
584 fscal = felec;
585
586 /* Calculate temporary vectorial force */
587 tx = fscal*dx21;
588 ty = fscal*dy21;
589 tz = fscal*dz21;
590
591 /* Update vectorial force */
592 fix2 += tx;
593 fiy2 += ty;
594 fiz2 += tz;
595 f[j_coord_offset+DIM3*1+XX0] -= tx;
596 f[j_coord_offset+DIM3*1+YY1] -= ty;
597 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
598
599 /**************************
600 * CALCULATE INTERACTIONS *
601 **************************/
602
603 r22 = rsq22*rinv22;
604
605 /* Calculate table index by multiplying r with table scale and truncate to integer */
606 rt = r22*vftabscale;
607 vfitab = rt;
608 vfeps = rt-vfitab;
609 vfitab = 1*4*vfitab;
610
611 /* CUBIC SPLINE TABLE ELECTROSTATICS */
612 Y = vftab[vfitab];
613 F = vftab[vfitab+1];
614 Geps = vfeps*vftab[vfitab+2];
615 Heps2 = vfeps*vfeps*vftab[vfitab+3];
616 Fp = F+Geps+Heps2;
617 VV = Y+vfeps*Fp;
618 velec = qq22*VV;
619 FF = Fp+Geps+2.0*Heps2;
620 felec = -qq22*FF*vftabscale*rinv22;
621
622 /* Update potential sums from outer loop */
623 velecsum += velec;
624
625 fscal = felec;
626
627 /* Calculate temporary vectorial force */
628 tx = fscal*dx22;
629 ty = fscal*dy22;
630 tz = fscal*dz22;
631
632 /* Update vectorial force */
633 fix2 += tx;
634 fiy2 += ty;
635 fiz2 += tz;
636 f[j_coord_offset+DIM3*2+XX0] -= tx;
637 f[j_coord_offset+DIM3*2+YY1] -= ty;
638 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
639
640 /* Inner loop uses 408 flops */
641 }
642 /* End of innermost loop */
643
644 tx = ty = tz = 0;
645 f[i_coord_offset+DIM3*0+XX0] += fix0;
646 f[i_coord_offset+DIM3*0+YY1] += fiy0;
647 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
648 tx += fix0;
649 ty += fiy0;
650 tz += fiz0;
651 f[i_coord_offset+DIM3*1+XX0] += fix1;
652 f[i_coord_offset+DIM3*1+YY1] += fiy1;
653 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
654 tx += fix1;
655 ty += fiy1;
656 tz += fiz1;
657 f[i_coord_offset+DIM3*2+XX0] += fix2;
658 f[i_coord_offset+DIM3*2+YY1] += fiy2;
659 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
660 tx += fix2;
661 ty += fiy2;
662 tz += fiz2;
663 fshift[i_shift_offset+XX0] += tx;
664 fshift[i_shift_offset+YY1] += ty;
665 fshift[i_shift_offset+ZZ2] += tz;
666
667 ggid = gid[iidx];
668 /* Update potential energies */
669 kernel_data->energygrp_elec[ggid] += velecsum;
670 kernel_data->energygrp_vdw[ggid] += vvdwsum;
671
672 /* Increment number of inner iterations */
673 inneriter += j_index_end - j_index_start;
674
675 /* Outer loop uses 32 flops */
676 }
677
678 /* Increment number of outer iterations */
679 outeriter += nri;
680
681 /* Update outer/inner flops */
682
683 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*408)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*408
;
684}
685/*
686 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwBham_GeomW3W3_F_c
687 * Electrostatics interaction: CubicSplineTable
688 * VdW interaction: Buckingham
689 * Geometry: Water3-Water3
690 * Calculate force/pot: Force
691 */
692void
693nb_kernel_ElecCSTab_VdwBham_GeomW3W3_F_c
694 (t_nblist * gmx_restrict__restrict nlist,
695 rvec * gmx_restrict__restrict xx,
696 rvec * gmx_restrict__restrict ff,
697 t_forcerec * gmx_restrict__restrict fr,
698 t_mdatoms * gmx_restrict__restrict mdatoms,
699 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
700 t_nrnb * gmx_restrict__restrict nrnb)
701{
702 int i_shift_offset,i_coord_offset,j_coord_offset;
703 int j_index_start,j_index_end;
704 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
705 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
706 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
707 real *shiftvec,*fshift,*x,*f;
708 int vdwioffset0;
709 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
710 int vdwioffset1;
711 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
712 int vdwioffset2;
713 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
714 int vdwjidx0;
715 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
716 int vdwjidx1;
717 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
718 int vdwjidx2;
719 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
720 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
721 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
722 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
723 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
724 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
725 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
726 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
727 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
728 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
729 real velec,felec,velecsum,facel,crf,krf,krf2;
730 real *charge;
731 int nvdwtype;
732 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
733 int *vdwtype;
734 real *vdwparam;
735 int vfitab;
736 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
737 real *vftab;
738
739 x = xx[0];
740 f = ff[0];
741
742 nri = nlist->nri;
743 iinr = nlist->iinr;
744 jindex = nlist->jindex;
745 jjnr = nlist->jjnr;
746 shiftidx = nlist->shift;
747 gid = nlist->gid;
Value stored to 'gid' is never read
748 shiftvec = fr->shift_vec[0];
749 fshift = fr->fshift[0];
750 facel = fr->epsfac;
751 charge = mdatoms->chargeA;
752 nvdwtype = fr->ntype;
753 vdwparam = fr->nbfp;
754 vdwtype = mdatoms->typeA;
755
756 vftab = kernel_data->table_elec->data;
757 vftabscale = kernel_data->table_elec->scale;
758
759 /* Setup water-specific parameters */
760 inr = nlist->iinr[0];
761 iq0 = facel*charge[inr+0];
762 iq1 = facel*charge[inr+1];
763 iq2 = facel*charge[inr+2];
764 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
765
766 jq0 = charge[inr+0];
767 jq1 = charge[inr+1];
768 jq2 = charge[inr+2];
769 vdwjidx0 = 3*vdwtype[inr+0];
770 qq00 = iq0*jq0;
771 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
772 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
773 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
774 qq01 = iq0*jq1;
775 qq02 = iq0*jq2;
776 qq10 = iq1*jq0;
777 qq11 = iq1*jq1;
778 qq12 = iq1*jq2;
779 qq20 = iq2*jq0;
780 qq21 = iq2*jq1;
781 qq22 = iq2*jq2;
782
783 outeriter = 0;
784 inneriter = 0;
785
786 /* Start outer loop over neighborlists */
787 for(iidx=0; iidx<nri; iidx++)
788 {
789 /* Load shift vector for this list */
790 i_shift_offset = DIM3*shiftidx[iidx];
791 shX = shiftvec[i_shift_offset+XX0];
792 shY = shiftvec[i_shift_offset+YY1];
793 shZ = shiftvec[i_shift_offset+ZZ2];
794
795 /* Load limits for loop over neighbors */
796 j_index_start = jindex[iidx];
797 j_index_end = jindex[iidx+1];
798
799 /* Get outer coordinate index */
800 inr = iinr[iidx];
801 i_coord_offset = DIM3*inr;
802
803 /* Load i particle coords and add shift vector */
804 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
805 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
806 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
807 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
808 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
809 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
810 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
811 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
812 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
813
814 fix0 = 0.0;
815 fiy0 = 0.0;
816 fiz0 = 0.0;
817 fix1 = 0.0;
818 fiy1 = 0.0;
819 fiz1 = 0.0;
820 fix2 = 0.0;
821 fiy2 = 0.0;
822 fiz2 = 0.0;
823
824 /* Start inner kernel loop */
825 for(jidx=j_index_start; jidx<j_index_end; jidx++)
826 {
827 /* Get j neighbor index, and coordinate index */
828 jnr = jjnr[jidx];
829 j_coord_offset = DIM3*jnr;
830
831 /* load j atom coordinates */
832 jx0 = x[j_coord_offset+DIM3*0+XX0];
833 jy0 = x[j_coord_offset+DIM3*0+YY1];
834 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
835 jx1 = x[j_coord_offset+DIM3*1+XX0];
836 jy1 = x[j_coord_offset+DIM3*1+YY1];
837 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
838 jx2 = x[j_coord_offset+DIM3*2+XX0];
839 jy2 = x[j_coord_offset+DIM3*2+YY1];
840 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
841
842 /* Calculate displacement vector */
843 dx00 = ix0 - jx0;
844 dy00 = iy0 - jy0;
845 dz00 = iz0 - jz0;
846 dx01 = ix0 - jx1;
847 dy01 = iy0 - jy1;
848 dz01 = iz0 - jz1;
849 dx02 = ix0 - jx2;
850 dy02 = iy0 - jy2;
851 dz02 = iz0 - jz2;
852 dx10 = ix1 - jx0;
853 dy10 = iy1 - jy0;
854 dz10 = iz1 - jz0;
855 dx11 = ix1 - jx1;
856 dy11 = iy1 - jy1;
857 dz11 = iz1 - jz1;
858 dx12 = ix1 - jx2;
859 dy12 = iy1 - jy2;
860 dz12 = iz1 - jz2;
861 dx20 = ix2 - jx0;
862 dy20 = iy2 - jy0;
863 dz20 = iz2 - jz0;
864 dx21 = ix2 - jx1;
865 dy21 = iy2 - jy1;
866 dz21 = iz2 - jz1;
867 dx22 = ix2 - jx2;
868 dy22 = iy2 - jy2;
869 dz22 = iz2 - jz2;
870
871 /* Calculate squared distance and things based on it */
872 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
873 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
874 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
875 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
876 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
877 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
878 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
879 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
880 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
881
882 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
883 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
884 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
885 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
886 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
887 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
888 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
889 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
890 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
891
892 rinvsq00 = rinv00*rinv00;
893
894 /**************************
895 * CALCULATE INTERACTIONS *
896 **************************/
897
898 r00 = rsq00*rinv00;
899
900 /* Calculate table index by multiplying r with table scale and truncate to integer */
901 rt = r00*vftabscale;
902 vfitab = rt;
903 vfeps = rt-vfitab;
904 vfitab = 1*4*vfitab;
905
906 /* CUBIC SPLINE TABLE ELECTROSTATICS */
907 F = vftab[vfitab+1];
908 Geps = vfeps*vftab[vfitab+2];
909 Heps2 = vfeps*vfeps*vftab[vfitab+3];
910 Fp = F+Geps+Heps2;
911 FF = Fp+Geps+2.0*Heps2;
912 felec = -qq00*FF*vftabscale*rinv00;
913
914 /* BUCKINGHAM DISPERSION/REPULSION */
915 rinvsix = rinvsq00*rinvsq00*rinvsq00;
916 vvdw6 = c6_00*rinvsix;
917 br = cexp2_00*r00;
918 vvdwexp = cexp1_00*exp(-br);
919 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
920
921 fscal = felec+fvdw;
922
923 /* Calculate temporary vectorial force */
924 tx = fscal*dx00;
925 ty = fscal*dy00;
926 tz = fscal*dz00;
927
928 /* Update vectorial force */
929 fix0 += tx;
930 fiy0 += ty;
931 fiz0 += tz;
932 f[j_coord_offset+DIM3*0+XX0] -= tx;
933 f[j_coord_offset+DIM3*0+YY1] -= ty;
934 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
935
936 /**************************
937 * CALCULATE INTERACTIONS *
938 **************************/
939
940 r01 = rsq01*rinv01;
941
942 /* Calculate table index by multiplying r with table scale and truncate to integer */
943 rt = r01*vftabscale;
944 vfitab = rt;
945 vfeps = rt-vfitab;
946 vfitab = 1*4*vfitab;
947
948 /* CUBIC SPLINE TABLE ELECTROSTATICS */
949 F = vftab[vfitab+1];
950 Geps = vfeps*vftab[vfitab+2];
951 Heps2 = vfeps*vfeps*vftab[vfitab+3];
952 Fp = F+Geps+Heps2;
953 FF = Fp+Geps+2.0*Heps2;
954 felec = -qq01*FF*vftabscale*rinv01;
955
956 fscal = felec;
957
958 /* Calculate temporary vectorial force */
959 tx = fscal*dx01;
960 ty = fscal*dy01;
961 tz = fscal*dz01;
962
963 /* Update vectorial force */
964 fix0 += tx;
965 fiy0 += ty;
966 fiz0 += tz;
967 f[j_coord_offset+DIM3*1+XX0] -= tx;
968 f[j_coord_offset+DIM3*1+YY1] -= ty;
969 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
970
971 /**************************
972 * CALCULATE INTERACTIONS *
973 **************************/
974
975 r02 = rsq02*rinv02;
976
977 /* Calculate table index by multiplying r with table scale and truncate to integer */
978 rt = r02*vftabscale;
979 vfitab = rt;
980 vfeps = rt-vfitab;
981 vfitab = 1*4*vfitab;
982
983 /* CUBIC SPLINE TABLE ELECTROSTATICS */
984 F = vftab[vfitab+1];
985 Geps = vfeps*vftab[vfitab+2];
986 Heps2 = vfeps*vfeps*vftab[vfitab+3];
987 Fp = F+Geps+Heps2;
988 FF = Fp+Geps+2.0*Heps2;
989 felec = -qq02*FF*vftabscale*rinv02;
990
991 fscal = felec;
992
993 /* Calculate temporary vectorial force */
994 tx = fscal*dx02;
995 ty = fscal*dy02;
996 tz = fscal*dz02;
997
998 /* Update vectorial force */
999 fix0 += tx;
1000 fiy0 += ty;
1001 fiz0 += tz;
1002 f[j_coord_offset+DIM3*2+XX0] -= tx;
1003 f[j_coord_offset+DIM3*2+YY1] -= ty;
1004 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1005
1006 /**************************
1007 * CALCULATE INTERACTIONS *
1008 **************************/
1009
1010 r10 = rsq10*rinv10;
1011
1012 /* Calculate table index by multiplying r with table scale and truncate to integer */
1013 rt = r10*vftabscale;
1014 vfitab = rt;
1015 vfeps = rt-vfitab;
1016 vfitab = 1*4*vfitab;
1017
1018 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1019 F = vftab[vfitab+1];
1020 Geps = vfeps*vftab[vfitab+2];
1021 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1022 Fp = F+Geps+Heps2;
1023 FF = Fp+Geps+2.0*Heps2;
1024 felec = -qq10*FF*vftabscale*rinv10;
1025
1026 fscal = felec;
1027
1028 /* Calculate temporary vectorial force */
1029 tx = fscal*dx10;
1030 ty = fscal*dy10;
1031 tz = fscal*dz10;
1032
1033 /* Update vectorial force */
1034 fix1 += tx;
1035 fiy1 += ty;
1036 fiz1 += tz;
1037 f[j_coord_offset+DIM3*0+XX0] -= tx;
1038 f[j_coord_offset+DIM3*0+YY1] -= ty;
1039 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1040
1041 /**************************
1042 * CALCULATE INTERACTIONS *
1043 **************************/
1044
1045 r11 = rsq11*rinv11;
1046
1047 /* Calculate table index by multiplying r with table scale and truncate to integer */
1048 rt = r11*vftabscale;
1049 vfitab = rt;
1050 vfeps = rt-vfitab;
1051 vfitab = 1*4*vfitab;
1052
1053 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1054 F = vftab[vfitab+1];
1055 Geps = vfeps*vftab[vfitab+2];
1056 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1057 Fp = F+Geps+Heps2;
1058 FF = Fp+Geps+2.0*Heps2;
1059 felec = -qq11*FF*vftabscale*rinv11;
1060
1061 fscal = felec;
1062
1063 /* Calculate temporary vectorial force */
1064 tx = fscal*dx11;
1065 ty = fscal*dy11;
1066 tz = fscal*dz11;
1067
1068 /* Update vectorial force */
1069 fix1 += tx;
1070 fiy1 += ty;
1071 fiz1 += tz;
1072 f[j_coord_offset+DIM3*1+XX0] -= tx;
1073 f[j_coord_offset+DIM3*1+YY1] -= ty;
1074 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1075
1076 /**************************
1077 * CALCULATE INTERACTIONS *
1078 **************************/
1079
1080 r12 = rsq12*rinv12;
1081
1082 /* Calculate table index by multiplying r with table scale and truncate to integer */
1083 rt = r12*vftabscale;
1084 vfitab = rt;
1085 vfeps = rt-vfitab;
1086 vfitab = 1*4*vfitab;
1087
1088 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1089 F = vftab[vfitab+1];
1090 Geps = vfeps*vftab[vfitab+2];
1091 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1092 Fp = F+Geps+Heps2;
1093 FF = Fp+Geps+2.0*Heps2;
1094 felec = -qq12*FF*vftabscale*rinv12;
1095
1096 fscal = felec;
1097
1098 /* Calculate temporary vectorial force */
1099 tx = fscal*dx12;
1100 ty = fscal*dy12;
1101 tz = fscal*dz12;
1102
1103 /* Update vectorial force */
1104 fix1 += tx;
1105 fiy1 += ty;
1106 fiz1 += tz;
1107 f[j_coord_offset+DIM3*2+XX0] -= tx;
1108 f[j_coord_offset+DIM3*2+YY1] -= ty;
1109 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1110
1111 /**************************
1112 * CALCULATE INTERACTIONS *
1113 **************************/
1114
1115 r20 = rsq20*rinv20;
1116
1117 /* Calculate table index by multiplying r with table scale and truncate to integer */
1118 rt = r20*vftabscale;
1119 vfitab = rt;
1120 vfeps = rt-vfitab;
1121 vfitab = 1*4*vfitab;
1122
1123 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1124 F = vftab[vfitab+1];
1125 Geps = vfeps*vftab[vfitab+2];
1126 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1127 Fp = F+Geps+Heps2;
1128 FF = Fp+Geps+2.0*Heps2;
1129 felec = -qq20*FF*vftabscale*rinv20;
1130
1131 fscal = felec;
1132
1133 /* Calculate temporary vectorial force */
1134 tx = fscal*dx20;
1135 ty = fscal*dy20;
1136 tz = fscal*dz20;
1137
1138 /* Update vectorial force */
1139 fix2 += tx;
1140 fiy2 += ty;
1141 fiz2 += tz;
1142 f[j_coord_offset+DIM3*0+XX0] -= tx;
1143 f[j_coord_offset+DIM3*0+YY1] -= ty;
1144 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1145
1146 /**************************
1147 * CALCULATE INTERACTIONS *
1148 **************************/
1149
1150 r21 = rsq21*rinv21;
1151
1152 /* Calculate table index by multiplying r with table scale and truncate to integer */
1153 rt = r21*vftabscale;
1154 vfitab = rt;
1155 vfeps = rt-vfitab;
1156 vfitab = 1*4*vfitab;
1157
1158 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1159 F = vftab[vfitab+1];
1160 Geps = vfeps*vftab[vfitab+2];
1161 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1162 Fp = F+Geps+Heps2;
1163 FF = Fp+Geps+2.0*Heps2;
1164 felec = -qq21*FF*vftabscale*rinv21;
1165
1166 fscal = felec;
1167
1168 /* Calculate temporary vectorial force */
1169 tx = fscal*dx21;
1170 ty = fscal*dy21;
1171 tz = fscal*dz21;
1172
1173 /* Update vectorial force */
1174 fix2 += tx;
1175 fiy2 += ty;
1176 fiz2 += tz;
1177 f[j_coord_offset+DIM3*1+XX0] -= tx;
1178 f[j_coord_offset+DIM3*1+YY1] -= ty;
1179 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1180
1181 /**************************
1182 * CALCULATE INTERACTIONS *
1183 **************************/
1184
1185 r22 = rsq22*rinv22;
1186
1187 /* Calculate table index by multiplying r with table scale and truncate to integer */
1188 rt = r22*vftabscale;
1189 vfitab = rt;
1190 vfeps = rt-vfitab;
1191 vfitab = 1*4*vfitab;
1192
1193 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1194 F = vftab[vfitab+1];
1195 Geps = vfeps*vftab[vfitab+2];
1196 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1197 Fp = F+Geps+Heps2;
1198 FF = Fp+Geps+2.0*Heps2;
1199 felec = -qq22*FF*vftabscale*rinv22;
1200
1201 fscal = felec;
1202
1203 /* Calculate temporary vectorial force */
1204 tx = fscal*dx22;
1205 ty = fscal*dy22;
1206 tz = fscal*dz22;
1207
1208 /* Update vectorial force */
1209 fix2 += tx;
1210 fiy2 += ty;
1211 fiz2 += tz;
1212 f[j_coord_offset+DIM3*2+XX0] -= tx;
1213 f[j_coord_offset+DIM3*2+YY1] -= ty;
1214 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1215
1216 /* Inner loop uses 369 flops */
1217 }
1218 /* End of innermost loop */
1219
1220 tx = ty = tz = 0;
1221 f[i_coord_offset+DIM3*0+XX0] += fix0;
1222 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1223 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1224 tx += fix0;
1225 ty += fiy0;
1226 tz += fiz0;
1227 f[i_coord_offset+DIM3*1+XX0] += fix1;
1228 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1229 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1230 tx += fix1;
1231 ty += fiy1;
1232 tz += fiz1;
1233 f[i_coord_offset+DIM3*2+XX0] += fix2;
1234 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1235 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1236 tx += fix2;
1237 ty += fiy2;
1238 tz += fiz2;
1239 fshift[i_shift_offset+XX0] += tx;
1240 fshift[i_shift_offset+YY1] += ty;
1241 fshift[i_shift_offset+ZZ2] += tz;
1242
1243 /* Increment number of inner iterations */
1244 inneriter += j_index_end - j_index_start;
1245
1246 /* Outer loop uses 30 flops */
1247 }
1248
1249 /* Increment number of outer iterations */
1250 outeriter += nri;
1251
1252 /* Update outer/inner flops */
1253
1254 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*369)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*369
;
1255}