Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_c.c
Location:line 320, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: CubicSplineTable
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 int vfitab;
84 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
85 real *vftab;
86
87 x = xx[0];
88 f = ff[0];
89
90 nri = nlist->nri;
91 iinr = nlist->iinr;
92 jindex = nlist->jindex;
93 jjnr = nlist->jjnr;
94 shiftidx = nlist->shift;
95 gid = nlist->gid;
96 shiftvec = fr->shift_vec[0];
97 fshift = fr->fshift[0];
98 facel = fr->epsfac;
99 charge = mdatoms->chargeA;
100 nvdwtype = fr->ntype;
101 vdwparam = fr->nbfp;
102 vdwtype = mdatoms->typeA;
103
104 vftab = kernel_data->table_elec_vdw->data;
105 vftabscale = kernel_data->table_elec_vdw->scale;
106
107 outeriter = 0;
108 inneriter = 0;
109
110 /* Start outer loop over neighborlists */
111 for(iidx=0; iidx<nri; iidx++)
112 {
113 /* Load shift vector for this list */
114 i_shift_offset = DIM3*shiftidx[iidx];
115 shX = shiftvec[i_shift_offset+XX0];
116 shY = shiftvec[i_shift_offset+YY1];
117 shZ = shiftvec[i_shift_offset+ZZ2];
118
119 /* Load limits for loop over neighbors */
120 j_index_start = jindex[iidx];
121 j_index_end = jindex[iidx+1];
122
123 /* Get outer coordinate index */
124 inr = iinr[iidx];
125 i_coord_offset = DIM3*inr;
126
127 /* Load i particle coords and add shift vector */
128 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
129 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
130 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
131
132 fix0 = 0.0;
133 fiy0 = 0.0;
134 fiz0 = 0.0;
135
136 /* Load parameters for i particles */
137 iq0 = facel*charge[inr+0];
138 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
139
140 /* Reset potential sums */
141 velecsum = 0.0;
142 vvdwsum = 0.0;
143
144 /* Start inner kernel loop */
145 for(jidx=j_index_start; jidx<j_index_end; jidx++)
146 {
147 /* Get j neighbor index, and coordinate index */
148 jnr = jjnr[jidx];
149 j_coord_offset = DIM3*jnr;
150
151 /* load j atom coordinates */
152 jx0 = x[j_coord_offset+DIM3*0+XX0];
153 jy0 = x[j_coord_offset+DIM3*0+YY1];
154 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
155
156 /* Calculate displacement vector */
157 dx00 = ix0 - jx0;
158 dy00 = iy0 - jy0;
159 dz00 = iz0 - jz0;
160
161 /* Calculate squared distance and things based on it */
162 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
163
164 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
165
166 /* Load parameters for j particles */
167 jq0 = charge[jnr+0];
168 vdwjidx0 = 2*vdwtype[jnr+0];
169
170 /**************************
171 * CALCULATE INTERACTIONS *
172 **************************/
173
174 r00 = rsq00*rinv00;
175
176 qq00 = iq0*jq0;
177 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
178 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
179
180 /* Calculate table index by multiplying r with table scale and truncate to integer */
181 rt = r00*vftabscale;
182 vfitab = rt;
183 vfeps = rt-vfitab;
184 vfitab = 3*4*vfitab;
185
186 /* CUBIC SPLINE TABLE ELECTROSTATICS */
187 Y = vftab[vfitab];
188 F = vftab[vfitab+1];
189 Geps = vfeps*vftab[vfitab+2];
190 Heps2 = vfeps*vfeps*vftab[vfitab+3];
191 Fp = F+Geps+Heps2;
192 VV = Y+vfeps*Fp;
193 velec = qq00*VV;
194 FF = Fp+Geps+2.0*Heps2;
195 felec = -qq00*FF*vftabscale*rinv00;
196
197 /* CUBIC SPLINE TABLE DISPERSION */
198 vfitab += 4;
199 Y = vftab[vfitab];
200 F = vftab[vfitab+1];
201 Geps = vfeps*vftab[vfitab+2];
202 Heps2 = vfeps*vfeps*vftab[vfitab+3];
203 Fp = F+Geps+Heps2;
204 VV = Y+vfeps*Fp;
205 vvdw6 = c6_00*VV;
206 FF = Fp+Geps+2.0*Heps2;
207 fvdw6 = c6_00*FF;
208
209 /* CUBIC SPLINE TABLE REPULSION */
210 Y = vftab[vfitab+4];
211 F = vftab[vfitab+5];
212 Geps = vfeps*vftab[vfitab+6];
213 Heps2 = vfeps*vfeps*vftab[vfitab+7];
214 Fp = F+Geps+Heps2;
215 VV = Y+vfeps*Fp;
216 vvdw12 = c12_00*VV;
217 FF = Fp+Geps+2.0*Heps2;
218 fvdw12 = c12_00*FF;
219 vvdw = vvdw12+vvdw6;
220 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
221
222 /* Update potential sums from outer loop */
223 velecsum += velec;
224 vvdwsum += vvdw;
225
226 fscal = felec+fvdw;
227
228 /* Calculate temporary vectorial force */
229 tx = fscal*dx00;
230 ty = fscal*dy00;
231 tz = fscal*dz00;
232
233 /* Update vectorial force */
234 fix0 += tx;
235 fiy0 += ty;
236 fiz0 += tz;
237 f[j_coord_offset+DIM3*0+XX0] -= tx;
238 f[j_coord_offset+DIM3*0+YY1] -= ty;
239 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
240
241 /* Inner loop uses 73 flops */
242 }
243 /* End of innermost loop */
244
245 tx = ty = tz = 0;
246 f[i_coord_offset+DIM3*0+XX0] += fix0;
247 f[i_coord_offset+DIM3*0+YY1] += fiy0;
248 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
249 tx += fix0;
250 ty += fiy0;
251 tz += fiz0;
252 fshift[i_shift_offset+XX0] += tx;
253 fshift[i_shift_offset+YY1] += ty;
254 fshift[i_shift_offset+ZZ2] += tz;
255
256 ggid = gid[iidx];
257 /* Update potential energies */
258 kernel_data->energygrp_elec[ggid] += velecsum;
259 kernel_data->energygrp_vdw[ggid] += vvdwsum;
260
261 /* Increment number of inner iterations */
262 inneriter += j_index_end - j_index_start;
263
264 /* Outer loop uses 15 flops */
265 }
266
267 /* Increment number of outer iterations */
268 outeriter += nri;
269
270 /* Update outer/inner flops */
271
272 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*73)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*73
;
273}
274/*
275 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_c
276 * Electrostatics interaction: CubicSplineTable
277 * VdW interaction: CubicSplineTable
278 * Geometry: Particle-Particle
279 * Calculate force/pot: Force
280 */
281void
282nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_c
283 (t_nblist * gmx_restrict__restrict nlist,
284 rvec * gmx_restrict__restrict xx,
285 rvec * gmx_restrict__restrict ff,
286 t_forcerec * gmx_restrict__restrict fr,
287 t_mdatoms * gmx_restrict__restrict mdatoms,
288 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
289 t_nrnb * gmx_restrict__restrict nrnb)
290{
291 int i_shift_offset,i_coord_offset,j_coord_offset;
292 int j_index_start,j_index_end;
293 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
294 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
295 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
296 real *shiftvec,*fshift,*x,*f;
297 int vdwioffset0;
298 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
299 int vdwjidx0;
300 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
301 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
302 real velec,felec,velecsum,facel,crf,krf,krf2;
303 real *charge;
304 int nvdwtype;
305 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
306 int *vdwtype;
307 real *vdwparam;
308 int vfitab;
309 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
310 real *vftab;
311
312 x = xx[0];
313 f = ff[0];
314
315 nri = nlist->nri;
316 iinr = nlist->iinr;
317 jindex = nlist->jindex;
318 jjnr = nlist->jjnr;
319 shiftidx = nlist->shift;
320 gid = nlist->gid;
Value stored to 'gid' is never read
321 shiftvec = fr->shift_vec[0];
322 fshift = fr->fshift[0];
323 facel = fr->epsfac;
324 charge = mdatoms->chargeA;
325 nvdwtype = fr->ntype;
326 vdwparam = fr->nbfp;
327 vdwtype = mdatoms->typeA;
328
329 vftab = kernel_data->table_elec_vdw->data;
330 vftabscale = kernel_data->table_elec_vdw->scale;
331
332 outeriter = 0;
333 inneriter = 0;
334
335 /* Start outer loop over neighborlists */
336 for(iidx=0; iidx<nri; iidx++)
337 {
338 /* Load shift vector for this list */
339 i_shift_offset = DIM3*shiftidx[iidx];
340 shX = shiftvec[i_shift_offset+XX0];
341 shY = shiftvec[i_shift_offset+YY1];
342 shZ = shiftvec[i_shift_offset+ZZ2];
343
344 /* Load limits for loop over neighbors */
345 j_index_start = jindex[iidx];
346 j_index_end = jindex[iidx+1];
347
348 /* Get outer coordinate index */
349 inr = iinr[iidx];
350 i_coord_offset = DIM3*inr;
351
352 /* Load i particle coords and add shift vector */
353 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
354 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
355 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
356
357 fix0 = 0.0;
358 fiy0 = 0.0;
359 fiz0 = 0.0;
360
361 /* Load parameters for i particles */
362 iq0 = facel*charge[inr+0];
363 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
364
365 /* Start inner kernel loop */
366 for(jidx=j_index_start; jidx<j_index_end; jidx++)
367 {
368 /* Get j neighbor index, and coordinate index */
369 jnr = jjnr[jidx];
370 j_coord_offset = DIM3*jnr;
371
372 /* load j atom coordinates */
373 jx0 = x[j_coord_offset+DIM3*0+XX0];
374 jy0 = x[j_coord_offset+DIM3*0+YY1];
375 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
376
377 /* Calculate displacement vector */
378 dx00 = ix0 - jx0;
379 dy00 = iy0 - jy0;
380 dz00 = iz0 - jz0;
381
382 /* Calculate squared distance and things based on it */
383 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
384
385 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
386
387 /* Load parameters for j particles */
388 jq0 = charge[jnr+0];
389 vdwjidx0 = 2*vdwtype[jnr+0];
390
391 /**************************
392 * CALCULATE INTERACTIONS *
393 **************************/
394
395 r00 = rsq00*rinv00;
396
397 qq00 = iq0*jq0;
398 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
399 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
400
401 /* Calculate table index by multiplying r with table scale and truncate to integer */
402 rt = r00*vftabscale;
403 vfitab = rt;
404 vfeps = rt-vfitab;
405 vfitab = 3*4*vfitab;
406
407 /* CUBIC SPLINE TABLE ELECTROSTATICS */
408 F = vftab[vfitab+1];
409 Geps = vfeps*vftab[vfitab+2];
410 Heps2 = vfeps*vfeps*vftab[vfitab+3];
411 Fp = F+Geps+Heps2;
412 FF = Fp+Geps+2.0*Heps2;
413 felec = -qq00*FF*vftabscale*rinv00;
414
415 /* CUBIC SPLINE TABLE DISPERSION */
416 vfitab += 4;
417 F = vftab[vfitab+1];
418 Geps = vfeps*vftab[vfitab+2];
419 Heps2 = vfeps*vfeps*vftab[vfitab+3];
420 Fp = F+Geps+Heps2;
421 FF = Fp+Geps+2.0*Heps2;
422 fvdw6 = c6_00*FF;
423
424 /* CUBIC SPLINE TABLE REPULSION */
425 F = vftab[vfitab+5];
426 Geps = vfeps*vftab[vfitab+6];
427 Heps2 = vfeps*vfeps*vftab[vfitab+7];
428 Fp = F+Geps+Heps2;
429 FF = Fp+Geps+2.0*Heps2;
430 fvdw12 = c12_00*FF;
431 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
432
433 fscal = felec+fvdw;
434
435 /* Calculate temporary vectorial force */
436 tx = fscal*dx00;
437 ty = fscal*dy00;
438 tz = fscal*dz00;
439
440 /* Update vectorial force */
441 fix0 += tx;
442 fiy0 += ty;
443 fiz0 += tz;
444 f[j_coord_offset+DIM3*0+XX0] -= tx;
445 f[j_coord_offset+DIM3*0+YY1] -= ty;
446 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
447
448 /* Inner loop uses 61 flops */
449 }
450 /* End of innermost loop */
451
452 tx = ty = tz = 0;
453 f[i_coord_offset+DIM3*0+XX0] += fix0;
454 f[i_coord_offset+DIM3*0+YY1] += fiy0;
455 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
456 tx += fix0;
457 ty += fiy0;
458 tz += fiz0;
459 fshift[i_shift_offset+XX0] += tx;
460 fshift[i_shift_offset+YY1] += ty;
461 fshift[i_shift_offset+ZZ2] += tz;
462
463 /* Increment number of inner iterations */
464 inneriter += j_index_end - j_index_start;
465
466 /* Outer loop uses 13 flops */
467 }
468
469 /* Increment number of outer iterations */
470 outeriter += nri;
471
472 /* Update outer/inner flops */
473
474 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*61)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*61
;
475}