Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_c.c
Location:line 1035, column 13
Description:Value stored to 'r00' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 real c6grid_00;
105 real c6grid_11;
106 real c6grid_12;
107 real c6grid_13;
108 real c6grid_21;
109 real c6grid_22;
110 real c6grid_23;
111 real c6grid_31;
112 real c6grid_32;
113 real c6grid_33;
114 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
115 real *vdwgridparam;
116 int ewitab;
117 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
118 real *ewtab;
119
120 x = xx[0];
121 f = ff[0];
122
123 nri = nlist->nri;
124 iinr = nlist->iinr;
125 jindex = nlist->jindex;
126 jjnr = nlist->jjnr;
127 shiftidx = nlist->shift;
128 gid = nlist->gid;
129 shiftvec = fr->shift_vec[0];
130 fshift = fr->fshift[0];
131 facel = fr->epsfac;
132 charge = mdatoms->chargeA;
133 nvdwtype = fr->ntype;
134 vdwparam = fr->nbfp;
135 vdwtype = mdatoms->typeA;
136 vdwgridparam = fr->ljpme_c6grid;
137 ewclj = fr->ewaldcoeff_lj;
138 sh_lj_ewald = fr->ic->sh_lj_ewald;
139 ewclj2 = ewclj*ewclj;
140 ewclj6 = ewclj2*ewclj2*ewclj2;
141
142 sh_ewald = fr->ic->sh_ewald;
143 ewtab = fr->ic->tabq_coul_FDV0;
144 ewtabscale = fr->ic->tabq_scale;
145 ewtabhalfspace = 0.5/ewtabscale;
146
147 /* Setup water-specific parameters */
148 inr = nlist->iinr[0];
149 iq1 = facel*charge[inr+1];
150 iq2 = facel*charge[inr+2];
151 iq3 = facel*charge[inr+3];
152 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
153
154 jq1 = charge[inr+1];
155 jq2 = charge[inr+2];
156 jq3 = charge[inr+3];
157 vdwjidx0 = 2*vdwtype[inr+0];
158 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
159 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
160 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
161 qq11 = iq1*jq1;
162 qq12 = iq1*jq2;
163 qq13 = iq1*jq3;
164 qq21 = iq2*jq1;
165 qq22 = iq2*jq2;
166 qq23 = iq2*jq3;
167 qq31 = iq3*jq1;
168 qq32 = iq3*jq2;
169 qq33 = iq3*jq3;
170
171 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
172 rcutoff = fr->rcoulomb;
173 rcutoff2 = rcutoff*rcutoff;
174
175 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
176 rvdw = fr->rvdw;
177
178 outeriter = 0;
179 inneriter = 0;
180
181 /* Start outer loop over neighborlists */
182 for(iidx=0; iidx<nri; iidx++)
183 {
184 /* Load shift vector for this list */
185 i_shift_offset = DIM3*shiftidx[iidx];
186 shX = shiftvec[i_shift_offset+XX0];
187 shY = shiftvec[i_shift_offset+YY1];
188 shZ = shiftvec[i_shift_offset+ZZ2];
189
190 /* Load limits for loop over neighbors */
191 j_index_start = jindex[iidx];
192 j_index_end = jindex[iidx+1];
193
194 /* Get outer coordinate index */
195 inr = iinr[iidx];
196 i_coord_offset = DIM3*inr;
197
198 /* Load i particle coords and add shift vector */
199 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
200 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
201 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
202 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
203 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
204 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
205 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
206 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
207 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
208 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
209 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
210 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
211
212 fix0 = 0.0;
213 fiy0 = 0.0;
214 fiz0 = 0.0;
215 fix1 = 0.0;
216 fiy1 = 0.0;
217 fiz1 = 0.0;
218 fix2 = 0.0;
219 fiy2 = 0.0;
220 fiz2 = 0.0;
221 fix3 = 0.0;
222 fiy3 = 0.0;
223 fiz3 = 0.0;
224
225 /* Reset potential sums */
226 velecsum = 0.0;
227 vvdwsum = 0.0;
228
229 /* Start inner kernel loop */
230 for(jidx=j_index_start; jidx<j_index_end; jidx++)
231 {
232 /* Get j neighbor index, and coordinate index */
233 jnr = jjnr[jidx];
234 j_coord_offset = DIM3*jnr;
235
236 /* load j atom coordinates */
237 jx0 = x[j_coord_offset+DIM3*0+XX0];
238 jy0 = x[j_coord_offset+DIM3*0+YY1];
239 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
240 jx1 = x[j_coord_offset+DIM3*1+XX0];
241 jy1 = x[j_coord_offset+DIM3*1+YY1];
242 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
243 jx2 = x[j_coord_offset+DIM3*2+XX0];
244 jy2 = x[j_coord_offset+DIM3*2+YY1];
245 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
246 jx3 = x[j_coord_offset+DIM3*3+XX0];
247 jy3 = x[j_coord_offset+DIM3*3+YY1];
248 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
249
250 /* Calculate displacement vector */
251 dx00 = ix0 - jx0;
252 dy00 = iy0 - jy0;
253 dz00 = iz0 - jz0;
254 dx11 = ix1 - jx1;
255 dy11 = iy1 - jy1;
256 dz11 = iz1 - jz1;
257 dx12 = ix1 - jx2;
258 dy12 = iy1 - jy2;
259 dz12 = iz1 - jz2;
260 dx13 = ix1 - jx3;
261 dy13 = iy1 - jy3;
262 dz13 = iz1 - jz3;
263 dx21 = ix2 - jx1;
264 dy21 = iy2 - jy1;
265 dz21 = iz2 - jz1;
266 dx22 = ix2 - jx2;
267 dy22 = iy2 - jy2;
268 dz22 = iz2 - jz2;
269 dx23 = ix2 - jx3;
270 dy23 = iy2 - jy3;
271 dz23 = iz2 - jz3;
272 dx31 = ix3 - jx1;
273 dy31 = iy3 - jy1;
274 dz31 = iz3 - jz1;
275 dx32 = ix3 - jx2;
276 dy32 = iy3 - jy2;
277 dz32 = iz3 - jz2;
278 dx33 = ix3 - jx3;
279 dy33 = iy3 - jy3;
280 dz33 = iz3 - jz3;
281
282 /* Calculate squared distance and things based on it */
283 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
284 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
285 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
286 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
287 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
288 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
289 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
290 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
291 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
292 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
293
294 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
295 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
296 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
297 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
298 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
299 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
300 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
301 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
302 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
303 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
304
305 rinvsq00 = rinv00*rinv00;
306 rinvsq11 = rinv11*rinv11;
307 rinvsq12 = rinv12*rinv12;
308 rinvsq13 = rinv13*rinv13;
309 rinvsq21 = rinv21*rinv21;
310 rinvsq22 = rinv22*rinv22;
311 rinvsq23 = rinv23*rinv23;
312 rinvsq31 = rinv31*rinv31;
313 rinvsq32 = rinv32*rinv32;
314 rinvsq33 = rinv33*rinv33;
315
316 /**************************
317 * CALCULATE INTERACTIONS *
318 **************************/
319
320 if (rsq00<rcutoff2)
321 {
322
323 r00 = rsq00*rinv00;
324
325 rinvsix = rinvsq00*rinvsq00*rinvsq00;
326 ewcljrsq = ewclj2*rsq00;
327 exponent = exp(-ewcljrsq);
328 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
329 vvdw6 = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
330 vvdw12 = c12_00*rinvsix*rinvsix;
331 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6 - c6grid_00*sh_lj_ewald)*(1.0/6.0);
332 fvdw = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
333
334 /* Update potential sums from outer loop */
335 vvdwsum += vvdw;
336
337 fscal = fvdw;
338
339 /* Calculate temporary vectorial force */
340 tx = fscal*dx00;
341 ty = fscal*dy00;
342 tz = fscal*dz00;
343
344 /* Update vectorial force */
345 fix0 += tx;
346 fiy0 += ty;
347 fiz0 += tz;
348 f[j_coord_offset+DIM3*0+XX0] -= tx;
349 f[j_coord_offset+DIM3*0+YY1] -= ty;
350 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
351
352 }
353
354 /**************************
355 * CALCULATE INTERACTIONS *
356 **************************/
357
358 if (rsq11<rcutoff2)
359 {
360
361 r11 = rsq11*rinv11;
362
363 /* EWALD ELECTROSTATICS */
364
365 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
366 ewrt = r11*ewtabscale;
367 ewitab = ewrt;
368 eweps = ewrt-ewitab;
369 ewitab = 4*ewitab;
370 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
371 velec = qq11*((rinv11-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
372 felec = qq11*rinv11*(rinvsq11-felec);
373
374 /* Update potential sums from outer loop */
375 velecsum += velec;
376
377 fscal = felec;
378
379 /* Calculate temporary vectorial force */
380 tx = fscal*dx11;
381 ty = fscal*dy11;
382 tz = fscal*dz11;
383
384 /* Update vectorial force */
385 fix1 += tx;
386 fiy1 += ty;
387 fiz1 += tz;
388 f[j_coord_offset+DIM3*1+XX0] -= tx;
389 f[j_coord_offset+DIM3*1+YY1] -= ty;
390 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
391
392 }
393
394 /**************************
395 * CALCULATE INTERACTIONS *
396 **************************/
397
398 if (rsq12<rcutoff2)
399 {
400
401 r12 = rsq12*rinv12;
402
403 /* EWALD ELECTROSTATICS */
404
405 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
406 ewrt = r12*ewtabscale;
407 ewitab = ewrt;
408 eweps = ewrt-ewitab;
409 ewitab = 4*ewitab;
410 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
411 velec = qq12*((rinv12-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
412 felec = qq12*rinv12*(rinvsq12-felec);
413
414 /* Update potential sums from outer loop */
415 velecsum += velec;
416
417 fscal = felec;
418
419 /* Calculate temporary vectorial force */
420 tx = fscal*dx12;
421 ty = fscal*dy12;
422 tz = fscal*dz12;
423
424 /* Update vectorial force */
425 fix1 += tx;
426 fiy1 += ty;
427 fiz1 += tz;
428 f[j_coord_offset+DIM3*2+XX0] -= tx;
429 f[j_coord_offset+DIM3*2+YY1] -= ty;
430 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
431
432 }
433
434 /**************************
435 * CALCULATE INTERACTIONS *
436 **************************/
437
438 if (rsq13<rcutoff2)
439 {
440
441 r13 = rsq13*rinv13;
442
443 /* EWALD ELECTROSTATICS */
444
445 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
446 ewrt = r13*ewtabscale;
447 ewitab = ewrt;
448 eweps = ewrt-ewitab;
449 ewitab = 4*ewitab;
450 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
451 velec = qq13*((rinv13-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
452 felec = qq13*rinv13*(rinvsq13-felec);
453
454 /* Update potential sums from outer loop */
455 velecsum += velec;
456
457 fscal = felec;
458
459 /* Calculate temporary vectorial force */
460 tx = fscal*dx13;
461 ty = fscal*dy13;
462 tz = fscal*dz13;
463
464 /* Update vectorial force */
465 fix1 += tx;
466 fiy1 += ty;
467 fiz1 += tz;
468 f[j_coord_offset+DIM3*3+XX0] -= tx;
469 f[j_coord_offset+DIM3*3+YY1] -= ty;
470 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
471
472 }
473
474 /**************************
475 * CALCULATE INTERACTIONS *
476 **************************/
477
478 if (rsq21<rcutoff2)
479 {
480
481 r21 = rsq21*rinv21;
482
483 /* EWALD ELECTROSTATICS */
484
485 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
486 ewrt = r21*ewtabscale;
487 ewitab = ewrt;
488 eweps = ewrt-ewitab;
489 ewitab = 4*ewitab;
490 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
491 velec = qq21*((rinv21-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
492 felec = qq21*rinv21*(rinvsq21-felec);
493
494 /* Update potential sums from outer loop */
495 velecsum += velec;
496
497 fscal = felec;
498
499 /* Calculate temporary vectorial force */
500 tx = fscal*dx21;
501 ty = fscal*dy21;
502 tz = fscal*dz21;
503
504 /* Update vectorial force */
505 fix2 += tx;
506 fiy2 += ty;
507 fiz2 += tz;
508 f[j_coord_offset+DIM3*1+XX0] -= tx;
509 f[j_coord_offset+DIM3*1+YY1] -= ty;
510 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
511
512 }
513
514 /**************************
515 * CALCULATE INTERACTIONS *
516 **************************/
517
518 if (rsq22<rcutoff2)
519 {
520
521 r22 = rsq22*rinv22;
522
523 /* EWALD ELECTROSTATICS */
524
525 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
526 ewrt = r22*ewtabscale;
527 ewitab = ewrt;
528 eweps = ewrt-ewitab;
529 ewitab = 4*ewitab;
530 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
531 velec = qq22*((rinv22-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
532 felec = qq22*rinv22*(rinvsq22-felec);
533
534 /* Update potential sums from outer loop */
535 velecsum += velec;
536
537 fscal = felec;
538
539 /* Calculate temporary vectorial force */
540 tx = fscal*dx22;
541 ty = fscal*dy22;
542 tz = fscal*dz22;
543
544 /* Update vectorial force */
545 fix2 += tx;
546 fiy2 += ty;
547 fiz2 += tz;
548 f[j_coord_offset+DIM3*2+XX0] -= tx;
549 f[j_coord_offset+DIM3*2+YY1] -= ty;
550 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
551
552 }
553
554 /**************************
555 * CALCULATE INTERACTIONS *
556 **************************/
557
558 if (rsq23<rcutoff2)
559 {
560
561 r23 = rsq23*rinv23;
562
563 /* EWALD ELECTROSTATICS */
564
565 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
566 ewrt = r23*ewtabscale;
567 ewitab = ewrt;
568 eweps = ewrt-ewitab;
569 ewitab = 4*ewitab;
570 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
571 velec = qq23*((rinv23-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
572 felec = qq23*rinv23*(rinvsq23-felec);
573
574 /* Update potential sums from outer loop */
575 velecsum += velec;
576
577 fscal = felec;
578
579 /* Calculate temporary vectorial force */
580 tx = fscal*dx23;
581 ty = fscal*dy23;
582 tz = fscal*dz23;
583
584 /* Update vectorial force */
585 fix2 += tx;
586 fiy2 += ty;
587 fiz2 += tz;
588 f[j_coord_offset+DIM3*3+XX0] -= tx;
589 f[j_coord_offset+DIM3*3+YY1] -= ty;
590 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
591
592 }
593
594 /**************************
595 * CALCULATE INTERACTIONS *
596 **************************/
597
598 if (rsq31<rcutoff2)
599 {
600
601 r31 = rsq31*rinv31;
602
603 /* EWALD ELECTROSTATICS */
604
605 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606 ewrt = r31*ewtabscale;
607 ewitab = ewrt;
608 eweps = ewrt-ewitab;
609 ewitab = 4*ewitab;
610 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
611 velec = qq31*((rinv31-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
612 felec = qq31*rinv31*(rinvsq31-felec);
613
614 /* Update potential sums from outer loop */
615 velecsum += velec;
616
617 fscal = felec;
618
619 /* Calculate temporary vectorial force */
620 tx = fscal*dx31;
621 ty = fscal*dy31;
622 tz = fscal*dz31;
623
624 /* Update vectorial force */
625 fix3 += tx;
626 fiy3 += ty;
627 fiz3 += tz;
628 f[j_coord_offset+DIM3*1+XX0] -= tx;
629 f[j_coord_offset+DIM3*1+YY1] -= ty;
630 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
631
632 }
633
634 /**************************
635 * CALCULATE INTERACTIONS *
636 **************************/
637
638 if (rsq32<rcutoff2)
639 {
640
641 r32 = rsq32*rinv32;
642
643 /* EWALD ELECTROSTATICS */
644
645 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
646 ewrt = r32*ewtabscale;
647 ewitab = ewrt;
648 eweps = ewrt-ewitab;
649 ewitab = 4*ewitab;
650 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
651 velec = qq32*((rinv32-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
652 felec = qq32*rinv32*(rinvsq32-felec);
653
654 /* Update potential sums from outer loop */
655 velecsum += velec;
656
657 fscal = felec;
658
659 /* Calculate temporary vectorial force */
660 tx = fscal*dx32;
661 ty = fscal*dy32;
662 tz = fscal*dz32;
663
664 /* Update vectorial force */
665 fix3 += tx;
666 fiy3 += ty;
667 fiz3 += tz;
668 f[j_coord_offset+DIM3*2+XX0] -= tx;
669 f[j_coord_offset+DIM3*2+YY1] -= ty;
670 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
671
672 }
673
674 /**************************
675 * CALCULATE INTERACTIONS *
676 **************************/
677
678 if (rsq33<rcutoff2)
679 {
680
681 r33 = rsq33*rinv33;
682
683 /* EWALD ELECTROSTATICS */
684
685 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686 ewrt = r33*ewtabscale;
687 ewitab = ewrt;
688 eweps = ewrt-ewitab;
689 ewitab = 4*ewitab;
690 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
691 velec = qq33*((rinv33-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
692 felec = qq33*rinv33*(rinvsq33-felec);
693
694 /* Update potential sums from outer loop */
695 velecsum += velec;
696
697 fscal = felec;
698
699 /* Calculate temporary vectorial force */
700 tx = fscal*dx33;
701 ty = fscal*dy33;
702 tz = fscal*dz33;
703
704 /* Update vectorial force */
705 fix3 += tx;
706 fiy3 += ty;
707 fiz3 += tz;
708 f[j_coord_offset+DIM3*3+XX0] -= tx;
709 f[j_coord_offset+DIM3*3+YY1] -= ty;
710 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
711
712 }
713
714 /* Inner loop uses 424 flops */
715 }
716 /* End of innermost loop */
717
718 tx = ty = tz = 0;
719 f[i_coord_offset+DIM3*0+XX0] += fix0;
720 f[i_coord_offset+DIM3*0+YY1] += fiy0;
721 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
722 tx += fix0;
723 ty += fiy0;
724 tz += fiz0;
725 f[i_coord_offset+DIM3*1+XX0] += fix1;
726 f[i_coord_offset+DIM3*1+YY1] += fiy1;
727 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
728 tx += fix1;
729 ty += fiy1;
730 tz += fiz1;
731 f[i_coord_offset+DIM3*2+XX0] += fix2;
732 f[i_coord_offset+DIM3*2+YY1] += fiy2;
733 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
734 tx += fix2;
735 ty += fiy2;
736 tz += fiz2;
737 f[i_coord_offset+DIM3*3+XX0] += fix3;
738 f[i_coord_offset+DIM3*3+YY1] += fiy3;
739 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
740 tx += fix3;
741 ty += fiy3;
742 tz += fiz3;
743 fshift[i_shift_offset+XX0] += tx;
744 fshift[i_shift_offset+YY1] += ty;
745 fshift[i_shift_offset+ZZ2] += tz;
746
747 ggid = gid[iidx];
748 /* Update potential energies */
749 kernel_data->energygrp_elec[ggid] += velecsum;
750 kernel_data->energygrp_vdw[ggid] += vvdwsum;
751
752 /* Increment number of inner iterations */
753 inneriter += j_index_end - j_index_start;
754
755 /* Outer loop uses 41 flops */
756 }
757
758 /* Increment number of outer iterations */
759 outeriter += nri;
760
761 /* Update outer/inner flops */
762
763 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*424)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*424
;
764}
765/*
766 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_F_c
767 * Electrostatics interaction: Ewald
768 * VdW interaction: LJEwald
769 * Geometry: Water4-Water4
770 * Calculate force/pot: Force
771 */
772void
773nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_F_c
774 (t_nblist * gmx_restrict__restrict nlist,
775 rvec * gmx_restrict__restrict xx,
776 rvec * gmx_restrict__restrict ff,
777 t_forcerec * gmx_restrict__restrict fr,
778 t_mdatoms * gmx_restrict__restrict mdatoms,
779 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
780 t_nrnb * gmx_restrict__restrict nrnb)
781{
782 int i_shift_offset,i_coord_offset,j_coord_offset;
783 int j_index_start,j_index_end;
784 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
785 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
786 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
787 real *shiftvec,*fshift,*x,*f;
788 int vdwioffset0;
789 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
790 int vdwioffset1;
791 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
792 int vdwioffset2;
793 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
794 int vdwioffset3;
795 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
796 int vdwjidx0;
797 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
798 int vdwjidx1;
799 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
800 int vdwjidx2;
801 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
802 int vdwjidx3;
803 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
804 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
805 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
806 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
807 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
808 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
809 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
810 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
811 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
812 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
813 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
814 real velec,felec,velecsum,facel,crf,krf,krf2;
815 real *charge;
816 int nvdwtype;
817 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
818 int *vdwtype;
819 real *vdwparam;
820 real c6grid_00;
821 real c6grid_11;
822 real c6grid_12;
823 real c6grid_13;
824 real c6grid_21;
825 real c6grid_22;
826 real c6grid_23;
827 real c6grid_31;
828 real c6grid_32;
829 real c6grid_33;
830 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
831 real *vdwgridparam;
832 int ewitab;
833 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
834 real *ewtab;
835
836 x = xx[0];
837 f = ff[0];
838
839 nri = nlist->nri;
840 iinr = nlist->iinr;
841 jindex = nlist->jindex;
842 jjnr = nlist->jjnr;
843 shiftidx = nlist->shift;
844 gid = nlist->gid;
845 shiftvec = fr->shift_vec[0];
846 fshift = fr->fshift[0];
847 facel = fr->epsfac;
848 charge = mdatoms->chargeA;
849 nvdwtype = fr->ntype;
850 vdwparam = fr->nbfp;
851 vdwtype = mdatoms->typeA;
852 vdwgridparam = fr->ljpme_c6grid;
853 ewclj = fr->ewaldcoeff_lj;
854 sh_lj_ewald = fr->ic->sh_lj_ewald;
855 ewclj2 = ewclj*ewclj;
856 ewclj6 = ewclj2*ewclj2*ewclj2;
857
858 sh_ewald = fr->ic->sh_ewald;
859 ewtab = fr->ic->tabq_coul_F;
860 ewtabscale = fr->ic->tabq_scale;
861 ewtabhalfspace = 0.5/ewtabscale;
862
863 /* Setup water-specific parameters */
864 inr = nlist->iinr[0];
865 iq1 = facel*charge[inr+1];
866 iq2 = facel*charge[inr+2];
867 iq3 = facel*charge[inr+3];
868 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
869
870 jq1 = charge[inr+1];
871 jq2 = charge[inr+2];
872 jq3 = charge[inr+3];
873 vdwjidx0 = 2*vdwtype[inr+0];
874 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
875 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
876 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
877 qq11 = iq1*jq1;
878 qq12 = iq1*jq2;
879 qq13 = iq1*jq3;
880 qq21 = iq2*jq1;
881 qq22 = iq2*jq2;
882 qq23 = iq2*jq3;
883 qq31 = iq3*jq1;
884 qq32 = iq3*jq2;
885 qq33 = iq3*jq3;
886
887 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
888 rcutoff = fr->rcoulomb;
889 rcutoff2 = rcutoff*rcutoff;
890
891 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
892 rvdw = fr->rvdw;
893
894 outeriter = 0;
895 inneriter = 0;
896
897 /* Start outer loop over neighborlists */
898 for(iidx=0; iidx<nri; iidx++)
899 {
900 /* Load shift vector for this list */
901 i_shift_offset = DIM3*shiftidx[iidx];
902 shX = shiftvec[i_shift_offset+XX0];
903 shY = shiftvec[i_shift_offset+YY1];
904 shZ = shiftvec[i_shift_offset+ZZ2];
905
906 /* Load limits for loop over neighbors */
907 j_index_start = jindex[iidx];
908 j_index_end = jindex[iidx+1];
909
910 /* Get outer coordinate index */
911 inr = iinr[iidx];
912 i_coord_offset = DIM3*inr;
913
914 /* Load i particle coords and add shift vector */
915 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
916 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
917 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
918 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
919 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
920 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
921 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
922 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
923 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
924 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
925 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
926 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
927
928 fix0 = 0.0;
929 fiy0 = 0.0;
930 fiz0 = 0.0;
931 fix1 = 0.0;
932 fiy1 = 0.0;
933 fiz1 = 0.0;
934 fix2 = 0.0;
935 fiy2 = 0.0;
936 fiz2 = 0.0;
937 fix3 = 0.0;
938 fiy3 = 0.0;
939 fiz3 = 0.0;
940
941 /* Start inner kernel loop */
942 for(jidx=j_index_start; jidx<j_index_end; jidx++)
943 {
944 /* Get j neighbor index, and coordinate index */
945 jnr = jjnr[jidx];
946 j_coord_offset = DIM3*jnr;
947
948 /* load j atom coordinates */
949 jx0 = x[j_coord_offset+DIM3*0+XX0];
950 jy0 = x[j_coord_offset+DIM3*0+YY1];
951 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
952 jx1 = x[j_coord_offset+DIM3*1+XX0];
953 jy1 = x[j_coord_offset+DIM3*1+YY1];
954 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
955 jx2 = x[j_coord_offset+DIM3*2+XX0];
956 jy2 = x[j_coord_offset+DIM3*2+YY1];
957 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
958 jx3 = x[j_coord_offset+DIM3*3+XX0];
959 jy3 = x[j_coord_offset+DIM3*3+YY1];
960 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
961
962 /* Calculate displacement vector */
963 dx00 = ix0 - jx0;
964 dy00 = iy0 - jy0;
965 dz00 = iz0 - jz0;
966 dx11 = ix1 - jx1;
967 dy11 = iy1 - jy1;
968 dz11 = iz1 - jz1;
969 dx12 = ix1 - jx2;
970 dy12 = iy1 - jy2;
971 dz12 = iz1 - jz2;
972 dx13 = ix1 - jx3;
973 dy13 = iy1 - jy3;
974 dz13 = iz1 - jz3;
975 dx21 = ix2 - jx1;
976 dy21 = iy2 - jy1;
977 dz21 = iz2 - jz1;
978 dx22 = ix2 - jx2;
979 dy22 = iy2 - jy2;
980 dz22 = iz2 - jz2;
981 dx23 = ix2 - jx3;
982 dy23 = iy2 - jy3;
983 dz23 = iz2 - jz3;
984 dx31 = ix3 - jx1;
985 dy31 = iy3 - jy1;
986 dz31 = iz3 - jz1;
987 dx32 = ix3 - jx2;
988 dy32 = iy3 - jy2;
989 dz32 = iz3 - jz2;
990 dx33 = ix3 - jx3;
991 dy33 = iy3 - jy3;
992 dz33 = iz3 - jz3;
993
994 /* Calculate squared distance and things based on it */
995 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
996 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
997 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
998 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
999 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
1000 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
1001 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
1002 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
1003 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
1004 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
1005
1006 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
1007 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
1008 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
1009 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
1010 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
1011 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
1012 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
1013 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
1014 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
1015 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
1016
1017 rinvsq00 = rinv00*rinv00;
1018 rinvsq11 = rinv11*rinv11;
1019 rinvsq12 = rinv12*rinv12;
1020 rinvsq13 = rinv13*rinv13;
1021 rinvsq21 = rinv21*rinv21;
1022 rinvsq22 = rinv22*rinv22;
1023 rinvsq23 = rinv23*rinv23;
1024 rinvsq31 = rinv31*rinv31;
1025 rinvsq32 = rinv32*rinv32;
1026 rinvsq33 = rinv33*rinv33;
1027
1028 /**************************
1029 * CALCULATE INTERACTIONS *
1030 **************************/
1031
1032 if (rsq00<rcutoff2)
1033 {
1034
1035 r00 = rsq00*rinv00;
Value stored to 'r00' is never read
1036
1037 rinvsix = rinvsq00*rinvsq00*rinvsq00;
1038 ewcljrsq = ewclj2*rsq00;
1039 exponent = exp(-ewcljrsq);
1040 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
1041 fvdw = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
1042
1043 fscal = fvdw;
1044
1045 /* Calculate temporary vectorial force */
1046 tx = fscal*dx00;
1047 ty = fscal*dy00;
1048 tz = fscal*dz00;
1049
1050 /* Update vectorial force */
1051 fix0 += tx;
1052 fiy0 += ty;
1053 fiz0 += tz;
1054 f[j_coord_offset+DIM3*0+XX0] -= tx;
1055 f[j_coord_offset+DIM3*0+YY1] -= ty;
1056 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1057
1058 }
1059
1060 /**************************
1061 * CALCULATE INTERACTIONS *
1062 **************************/
1063
1064 if (rsq11<rcutoff2)
1065 {
1066
1067 r11 = rsq11*rinv11;
1068
1069 /* EWALD ELECTROSTATICS */
1070
1071 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1072 ewrt = r11*ewtabscale;
1073 ewitab = ewrt;
1074 eweps = ewrt-ewitab;
1075 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1076 felec = qq11*rinv11*(rinvsq11-felec);
1077
1078 fscal = felec;
1079
1080 /* Calculate temporary vectorial force */
1081 tx = fscal*dx11;
1082 ty = fscal*dy11;
1083 tz = fscal*dz11;
1084
1085 /* Update vectorial force */
1086 fix1 += tx;
1087 fiy1 += ty;
1088 fiz1 += tz;
1089 f[j_coord_offset+DIM3*1+XX0] -= tx;
1090 f[j_coord_offset+DIM3*1+YY1] -= ty;
1091 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1092
1093 }
1094
1095 /**************************
1096 * CALCULATE INTERACTIONS *
1097 **************************/
1098
1099 if (rsq12<rcutoff2)
1100 {
1101
1102 r12 = rsq12*rinv12;
1103
1104 /* EWALD ELECTROSTATICS */
1105
1106 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1107 ewrt = r12*ewtabscale;
1108 ewitab = ewrt;
1109 eweps = ewrt-ewitab;
1110 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1111 felec = qq12*rinv12*(rinvsq12-felec);
1112
1113 fscal = felec;
1114
1115 /* Calculate temporary vectorial force */
1116 tx = fscal*dx12;
1117 ty = fscal*dy12;
1118 tz = fscal*dz12;
1119
1120 /* Update vectorial force */
1121 fix1 += tx;
1122 fiy1 += ty;
1123 fiz1 += tz;
1124 f[j_coord_offset+DIM3*2+XX0] -= tx;
1125 f[j_coord_offset+DIM3*2+YY1] -= ty;
1126 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1127
1128 }
1129
1130 /**************************
1131 * CALCULATE INTERACTIONS *
1132 **************************/
1133
1134 if (rsq13<rcutoff2)
1135 {
1136
1137 r13 = rsq13*rinv13;
1138
1139 /* EWALD ELECTROSTATICS */
1140
1141 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1142 ewrt = r13*ewtabscale;
1143 ewitab = ewrt;
1144 eweps = ewrt-ewitab;
1145 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1146 felec = qq13*rinv13*(rinvsq13-felec);
1147
1148 fscal = felec;
1149
1150 /* Calculate temporary vectorial force */
1151 tx = fscal*dx13;
1152 ty = fscal*dy13;
1153 tz = fscal*dz13;
1154
1155 /* Update vectorial force */
1156 fix1 += tx;
1157 fiy1 += ty;
1158 fiz1 += tz;
1159 f[j_coord_offset+DIM3*3+XX0] -= tx;
1160 f[j_coord_offset+DIM3*3+YY1] -= ty;
1161 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1162
1163 }
1164
1165 /**************************
1166 * CALCULATE INTERACTIONS *
1167 **************************/
1168
1169 if (rsq21<rcutoff2)
1170 {
1171
1172 r21 = rsq21*rinv21;
1173
1174 /* EWALD ELECTROSTATICS */
1175
1176 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1177 ewrt = r21*ewtabscale;
1178 ewitab = ewrt;
1179 eweps = ewrt-ewitab;
1180 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1181 felec = qq21*rinv21*(rinvsq21-felec);
1182
1183 fscal = felec;
1184
1185 /* Calculate temporary vectorial force */
1186 tx = fscal*dx21;
1187 ty = fscal*dy21;
1188 tz = fscal*dz21;
1189
1190 /* Update vectorial force */
1191 fix2 += tx;
1192 fiy2 += ty;
1193 fiz2 += tz;
1194 f[j_coord_offset+DIM3*1+XX0] -= tx;
1195 f[j_coord_offset+DIM3*1+YY1] -= ty;
1196 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1197
1198 }
1199
1200 /**************************
1201 * CALCULATE INTERACTIONS *
1202 **************************/
1203
1204 if (rsq22<rcutoff2)
1205 {
1206
1207 r22 = rsq22*rinv22;
1208
1209 /* EWALD ELECTROSTATICS */
1210
1211 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1212 ewrt = r22*ewtabscale;
1213 ewitab = ewrt;
1214 eweps = ewrt-ewitab;
1215 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1216 felec = qq22*rinv22*(rinvsq22-felec);
1217
1218 fscal = felec;
1219
1220 /* Calculate temporary vectorial force */
1221 tx = fscal*dx22;
1222 ty = fscal*dy22;
1223 tz = fscal*dz22;
1224
1225 /* Update vectorial force */
1226 fix2 += tx;
1227 fiy2 += ty;
1228 fiz2 += tz;
1229 f[j_coord_offset+DIM3*2+XX0] -= tx;
1230 f[j_coord_offset+DIM3*2+YY1] -= ty;
1231 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1232
1233 }
1234
1235 /**************************
1236 * CALCULATE INTERACTIONS *
1237 **************************/
1238
1239 if (rsq23<rcutoff2)
1240 {
1241
1242 r23 = rsq23*rinv23;
1243
1244 /* EWALD ELECTROSTATICS */
1245
1246 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1247 ewrt = r23*ewtabscale;
1248 ewitab = ewrt;
1249 eweps = ewrt-ewitab;
1250 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1251 felec = qq23*rinv23*(rinvsq23-felec);
1252
1253 fscal = felec;
1254
1255 /* Calculate temporary vectorial force */
1256 tx = fscal*dx23;
1257 ty = fscal*dy23;
1258 tz = fscal*dz23;
1259
1260 /* Update vectorial force */
1261 fix2 += tx;
1262 fiy2 += ty;
1263 fiz2 += tz;
1264 f[j_coord_offset+DIM3*3+XX0] -= tx;
1265 f[j_coord_offset+DIM3*3+YY1] -= ty;
1266 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1267
1268 }
1269
1270 /**************************
1271 * CALCULATE INTERACTIONS *
1272 **************************/
1273
1274 if (rsq31<rcutoff2)
1275 {
1276
1277 r31 = rsq31*rinv31;
1278
1279 /* EWALD ELECTROSTATICS */
1280
1281 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1282 ewrt = r31*ewtabscale;
1283 ewitab = ewrt;
1284 eweps = ewrt-ewitab;
1285 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1286 felec = qq31*rinv31*(rinvsq31-felec);
1287
1288 fscal = felec;
1289
1290 /* Calculate temporary vectorial force */
1291 tx = fscal*dx31;
1292 ty = fscal*dy31;
1293 tz = fscal*dz31;
1294
1295 /* Update vectorial force */
1296 fix3 += tx;
1297 fiy3 += ty;
1298 fiz3 += tz;
1299 f[j_coord_offset+DIM3*1+XX0] -= tx;
1300 f[j_coord_offset+DIM3*1+YY1] -= ty;
1301 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1302
1303 }
1304
1305 /**************************
1306 * CALCULATE INTERACTIONS *
1307 **************************/
1308
1309 if (rsq32<rcutoff2)
1310 {
1311
1312 r32 = rsq32*rinv32;
1313
1314 /* EWALD ELECTROSTATICS */
1315
1316 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1317 ewrt = r32*ewtabscale;
1318 ewitab = ewrt;
1319 eweps = ewrt-ewitab;
1320 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1321 felec = qq32*rinv32*(rinvsq32-felec);
1322
1323 fscal = felec;
1324
1325 /* Calculate temporary vectorial force */
1326 tx = fscal*dx32;
1327 ty = fscal*dy32;
1328 tz = fscal*dz32;
1329
1330 /* Update vectorial force */
1331 fix3 += tx;
1332 fiy3 += ty;
1333 fiz3 += tz;
1334 f[j_coord_offset+DIM3*2+XX0] -= tx;
1335 f[j_coord_offset+DIM3*2+YY1] -= ty;
1336 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1337
1338 }
1339
1340 /**************************
1341 * CALCULATE INTERACTIONS *
1342 **************************/
1343
1344 if (rsq33<rcutoff2)
1345 {
1346
1347 r33 = rsq33*rinv33;
1348
1349 /* EWALD ELECTROSTATICS */
1350
1351 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1352 ewrt = r33*ewtabscale;
1353 ewitab = ewrt;
1354 eweps = ewrt-ewitab;
1355 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1356 felec = qq33*rinv33*(rinvsq33-felec);
1357
1358 fscal = felec;
1359
1360 /* Calculate temporary vectorial force */
1361 tx = fscal*dx33;
1362 ty = fscal*dy33;
1363 tz = fscal*dz33;
1364
1365 /* Update vectorial force */
1366 fix3 += tx;
1367 fiy3 += ty;
1368 fiz3 += tz;
1369 f[j_coord_offset+DIM3*3+XX0] -= tx;
1370 f[j_coord_offset+DIM3*3+YY1] -= ty;
1371 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1372
1373 }
1374
1375 /* Inner loop uses 341 flops */
1376 }
1377 /* End of innermost loop */
1378
1379 tx = ty = tz = 0;
1380 f[i_coord_offset+DIM3*0+XX0] += fix0;
1381 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1382 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1383 tx += fix0;
1384 ty += fiy0;
1385 tz += fiz0;
1386 f[i_coord_offset+DIM3*1+XX0] += fix1;
1387 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1388 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1389 tx += fix1;
1390 ty += fiy1;
1391 tz += fiz1;
1392 f[i_coord_offset+DIM3*2+XX0] += fix2;
1393 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1394 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1395 tx += fix2;
1396 ty += fiy2;
1397 tz += fiz2;
1398 f[i_coord_offset+DIM3*3+XX0] += fix3;
1399 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1400 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1401 tx += fix3;
1402 ty += fiy3;
1403 tz += fiz3;
1404 fshift[i_shift_offset+XX0] += tx;
1405 fshift[i_shift_offset+YY1] += ty;
1406 fshift[i_shift_offset+ZZ2] += tz;
1407
1408 /* Increment number of inner iterations */
1409 inneriter += j_index_end - j_index_start;
1410
1411 /* Outer loop uses 39 flops */
1412 }
1413
1414 /* Increment number of outer iterations */
1415 outeriter += nri;
1416
1417 /* Update outer/inner flops */
1418
1419 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*341)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*341
;
1420}