Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCoul_VdwBham_GeomW4P1_c.c
Location:line 437, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwBham_GeomW4P1_VF_c
51 * Electrostatics interaction: Coulomb
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCoul_VdwBham_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 /* Setup water-specific parameters */
111 inr = nlist->iinr[0];
112 iq1 = facel*charge[inr+1];
113 iq2 = facel*charge[inr+2];
114 iq3 = facel*charge[inr+3];
115 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
116
117 outeriter = 0;
118 inneriter = 0;
119
120 /* Start outer loop over neighborlists */
121 for(iidx=0; iidx<nri; iidx++)
122 {
123 /* Load shift vector for this list */
124 i_shift_offset = DIM3*shiftidx[iidx];
125 shX = shiftvec[i_shift_offset+XX0];
126 shY = shiftvec[i_shift_offset+YY1];
127 shZ = shiftvec[i_shift_offset+ZZ2];
128
129 /* Load limits for loop over neighbors */
130 j_index_start = jindex[iidx];
131 j_index_end = jindex[iidx+1];
132
133 /* Get outer coordinate index */
134 inr = iinr[iidx];
135 i_coord_offset = DIM3*inr;
136
137 /* Load i particle coords and add shift vector */
138 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
139 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
140 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
141 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
142 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
143 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
144 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
145 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
146 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
147 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
148 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
149 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
150
151 fix0 = 0.0;
152 fiy0 = 0.0;
153 fiz0 = 0.0;
154 fix1 = 0.0;
155 fiy1 = 0.0;
156 fiz1 = 0.0;
157 fix2 = 0.0;
158 fiy2 = 0.0;
159 fiz2 = 0.0;
160 fix3 = 0.0;
161 fiy3 = 0.0;
162 fiz3 = 0.0;
163
164 /* Reset potential sums */
165 velecsum = 0.0;
166 vvdwsum = 0.0;
167
168 /* Start inner kernel loop */
169 for(jidx=j_index_start; jidx<j_index_end; jidx++)
170 {
171 /* Get j neighbor index, and coordinate index */
172 jnr = jjnr[jidx];
173 j_coord_offset = DIM3*jnr;
174
175 /* load j atom coordinates */
176 jx0 = x[j_coord_offset+DIM3*0+XX0];
177 jy0 = x[j_coord_offset+DIM3*0+YY1];
178 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
179
180 /* Calculate displacement vector */
181 dx00 = ix0 - jx0;
182 dy00 = iy0 - jy0;
183 dz00 = iz0 - jz0;
184 dx10 = ix1 - jx0;
185 dy10 = iy1 - jy0;
186 dz10 = iz1 - jz0;
187 dx20 = ix2 - jx0;
188 dy20 = iy2 - jy0;
189 dz20 = iz2 - jz0;
190 dx30 = ix3 - jx0;
191 dy30 = iy3 - jy0;
192 dz30 = iz3 - jz0;
193
194 /* Calculate squared distance and things based on it */
195 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
196 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
197 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
198 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
199
200 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
201 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
202 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
203 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
204
205 rinvsq00 = rinv00*rinv00;
206 rinvsq10 = rinv10*rinv10;
207 rinvsq20 = rinv20*rinv20;
208 rinvsq30 = rinv30*rinv30;
209
210 /* Load parameters for j particles */
211 jq0 = charge[jnr+0];
212 vdwjidx0 = 3*vdwtype[jnr+0];
213
214 /**************************
215 * CALCULATE INTERACTIONS *
216 **************************/
217
218 r00 = rsq00*rinv00;
219
220 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
221 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
222 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
223
224 /* BUCKINGHAM DISPERSION/REPULSION */
225 rinvsix = rinvsq00*rinvsq00*rinvsq00;
226 vvdw6 = c6_00*rinvsix;
227 br = cexp2_00*r00;
228 vvdwexp = cexp1_00*exp(-br);
229 vvdw = vvdwexp - vvdw6*(1.0/6.0);
230 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
231
232 /* Update potential sums from outer loop */
233 vvdwsum += vvdw;
234
235 fscal = fvdw;
236
237 /* Calculate temporary vectorial force */
238 tx = fscal*dx00;
239 ty = fscal*dy00;
240 tz = fscal*dz00;
241
242 /* Update vectorial force */
243 fix0 += tx;
244 fiy0 += ty;
245 fiz0 += tz;
246 f[j_coord_offset+DIM3*0+XX0] -= tx;
247 f[j_coord_offset+DIM3*0+YY1] -= ty;
248 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
249
250 /**************************
251 * CALCULATE INTERACTIONS *
252 **************************/
253
254 qq10 = iq1*jq0;
255
256 /* COULOMB ELECTROSTATICS */
257 velec = qq10*rinv10;
258 felec = velec*rinvsq10;
259
260 /* Update potential sums from outer loop */
261 velecsum += velec;
262
263 fscal = felec;
264
265 /* Calculate temporary vectorial force */
266 tx = fscal*dx10;
267 ty = fscal*dy10;
268 tz = fscal*dz10;
269
270 /* Update vectorial force */
271 fix1 += tx;
272 fiy1 += ty;
273 fiz1 += tz;
274 f[j_coord_offset+DIM3*0+XX0] -= tx;
275 f[j_coord_offset+DIM3*0+YY1] -= ty;
276 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
277
278 /**************************
279 * CALCULATE INTERACTIONS *
280 **************************/
281
282 qq20 = iq2*jq0;
283
284 /* COULOMB ELECTROSTATICS */
285 velec = qq20*rinv20;
286 felec = velec*rinvsq20;
287
288 /* Update potential sums from outer loop */
289 velecsum += velec;
290
291 fscal = felec;
292
293 /* Calculate temporary vectorial force */
294 tx = fscal*dx20;
295 ty = fscal*dy20;
296 tz = fscal*dz20;
297
298 /* Update vectorial force */
299 fix2 += tx;
300 fiy2 += ty;
301 fiz2 += tz;
302 f[j_coord_offset+DIM3*0+XX0] -= tx;
303 f[j_coord_offset+DIM3*0+YY1] -= ty;
304 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
305
306 /**************************
307 * CALCULATE INTERACTIONS *
308 **************************/
309
310 qq30 = iq3*jq0;
311
312 /* COULOMB ELECTROSTATICS */
313 velec = qq30*rinv30;
314 felec = velec*rinvsq30;
315
316 /* Update potential sums from outer loop */
317 velecsum += velec;
318
319 fscal = felec;
320
321 /* Calculate temporary vectorial force */
322 tx = fscal*dx30;
323 ty = fscal*dy30;
324 tz = fscal*dz30;
325
326 /* Update vectorial force */
327 fix3 += tx;
328 fiy3 += ty;
329 fiz3 += tz;
330 f[j_coord_offset+DIM3*0+XX0] -= tx;
331 f[j_coord_offset+DIM3*0+YY1] -= ty;
332 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
333
334 /* Inner loop uses 145 flops */
335 }
336 /* End of innermost loop */
337
338 tx = ty = tz = 0;
339 f[i_coord_offset+DIM3*0+XX0] += fix0;
340 f[i_coord_offset+DIM3*0+YY1] += fiy0;
341 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
342 tx += fix0;
343 ty += fiy0;
344 tz += fiz0;
345 f[i_coord_offset+DIM3*1+XX0] += fix1;
346 f[i_coord_offset+DIM3*1+YY1] += fiy1;
347 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
348 tx += fix1;
349 ty += fiy1;
350 tz += fiz1;
351 f[i_coord_offset+DIM3*2+XX0] += fix2;
352 f[i_coord_offset+DIM3*2+YY1] += fiy2;
353 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
354 tx += fix2;
355 ty += fiy2;
356 tz += fiz2;
357 f[i_coord_offset+DIM3*3+XX0] += fix3;
358 f[i_coord_offset+DIM3*3+YY1] += fiy3;
359 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
360 tx += fix3;
361 ty += fiy3;
362 tz += fiz3;
363 fshift[i_shift_offset+XX0] += tx;
364 fshift[i_shift_offset+YY1] += ty;
365 fshift[i_shift_offset+ZZ2] += tz;
366
367 ggid = gid[iidx];
368 /* Update potential energies */
369 kernel_data->energygrp_elec[ggid] += velecsum;
370 kernel_data->energygrp_vdw[ggid] += vvdwsum;
371
372 /* Increment number of inner iterations */
373 inneriter += j_index_end - j_index_start;
374
375 /* Outer loop uses 41 flops */
376 }
377
378 /* Increment number of outer iterations */
379 outeriter += nri;
380
381 /* Update outer/inner flops */
382
383 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*145)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*145
;
384}
385/*
386 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwBham_GeomW4P1_F_c
387 * Electrostatics interaction: Coulomb
388 * VdW interaction: Buckingham
389 * Geometry: Water4-Particle
390 * Calculate force/pot: Force
391 */
392void
393nb_kernel_ElecCoul_VdwBham_GeomW4P1_F_c
394 (t_nblist * gmx_restrict__restrict nlist,
395 rvec * gmx_restrict__restrict xx,
396 rvec * gmx_restrict__restrict ff,
397 t_forcerec * gmx_restrict__restrict fr,
398 t_mdatoms * gmx_restrict__restrict mdatoms,
399 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
400 t_nrnb * gmx_restrict__restrict nrnb)
401{
402 int i_shift_offset,i_coord_offset,j_coord_offset;
403 int j_index_start,j_index_end;
404 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
405 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
406 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
407 real *shiftvec,*fshift,*x,*f;
408 int vdwioffset0;
409 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
410 int vdwioffset1;
411 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
412 int vdwioffset2;
413 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
414 int vdwioffset3;
415 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
416 int vdwjidx0;
417 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
418 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
419 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
420 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
421 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
422 real velec,felec,velecsum,facel,crf,krf,krf2;
423 real *charge;
424 int nvdwtype;
425 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
426 int *vdwtype;
427 real *vdwparam;
428
429 x = xx[0];
430 f = ff[0];
431
432 nri = nlist->nri;
433 iinr = nlist->iinr;
434 jindex = nlist->jindex;
435 jjnr = nlist->jjnr;
436 shiftidx = nlist->shift;
437 gid = nlist->gid;
Value stored to 'gid' is never read
438 shiftvec = fr->shift_vec[0];
439 fshift = fr->fshift[0];
440 facel = fr->epsfac;
441 charge = mdatoms->chargeA;
442 nvdwtype = fr->ntype;
443 vdwparam = fr->nbfp;
444 vdwtype = mdatoms->typeA;
445
446 /* Setup water-specific parameters */
447 inr = nlist->iinr[0];
448 iq1 = facel*charge[inr+1];
449 iq2 = facel*charge[inr+2];
450 iq3 = facel*charge[inr+3];
451 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
452
453 outeriter = 0;
454 inneriter = 0;
455
456 /* Start outer loop over neighborlists */
457 for(iidx=0; iidx<nri; iidx++)
458 {
459 /* Load shift vector for this list */
460 i_shift_offset = DIM3*shiftidx[iidx];
461 shX = shiftvec[i_shift_offset+XX0];
462 shY = shiftvec[i_shift_offset+YY1];
463 shZ = shiftvec[i_shift_offset+ZZ2];
464
465 /* Load limits for loop over neighbors */
466 j_index_start = jindex[iidx];
467 j_index_end = jindex[iidx+1];
468
469 /* Get outer coordinate index */
470 inr = iinr[iidx];
471 i_coord_offset = DIM3*inr;
472
473 /* Load i particle coords and add shift vector */
474 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
475 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
476 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
477 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
478 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
479 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
480 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
481 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
482 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
483 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
484 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
485 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
486
487 fix0 = 0.0;
488 fiy0 = 0.0;
489 fiz0 = 0.0;
490 fix1 = 0.0;
491 fiy1 = 0.0;
492 fiz1 = 0.0;
493 fix2 = 0.0;
494 fiy2 = 0.0;
495 fiz2 = 0.0;
496 fix3 = 0.0;
497 fiy3 = 0.0;
498 fiz3 = 0.0;
499
500 /* Start inner kernel loop */
501 for(jidx=j_index_start; jidx<j_index_end; jidx++)
502 {
503 /* Get j neighbor index, and coordinate index */
504 jnr = jjnr[jidx];
505 j_coord_offset = DIM3*jnr;
506
507 /* load j atom coordinates */
508 jx0 = x[j_coord_offset+DIM3*0+XX0];
509 jy0 = x[j_coord_offset+DIM3*0+YY1];
510 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
511
512 /* Calculate displacement vector */
513 dx00 = ix0 - jx0;
514 dy00 = iy0 - jy0;
515 dz00 = iz0 - jz0;
516 dx10 = ix1 - jx0;
517 dy10 = iy1 - jy0;
518 dz10 = iz1 - jz0;
519 dx20 = ix2 - jx0;
520 dy20 = iy2 - jy0;
521 dz20 = iz2 - jz0;
522 dx30 = ix3 - jx0;
523 dy30 = iy3 - jy0;
524 dz30 = iz3 - jz0;
525
526 /* Calculate squared distance and things based on it */
527 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
528 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
529 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
530 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
531
532 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
533 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
534 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
535 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
536
537 rinvsq00 = rinv00*rinv00;
538 rinvsq10 = rinv10*rinv10;
539 rinvsq20 = rinv20*rinv20;
540 rinvsq30 = rinv30*rinv30;
541
542 /* Load parameters for j particles */
543 jq0 = charge[jnr+0];
544 vdwjidx0 = 3*vdwtype[jnr+0];
545
546 /**************************
547 * CALCULATE INTERACTIONS *
548 **************************/
549
550 r00 = rsq00*rinv00;
551
552 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
553 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
554 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
555
556 /* BUCKINGHAM DISPERSION/REPULSION */
557 rinvsix = rinvsq00*rinvsq00*rinvsq00;
558 vvdw6 = c6_00*rinvsix;
559 br = cexp2_00*r00;
560 vvdwexp = cexp1_00*exp(-br);
561 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
562
563 fscal = fvdw;
564
565 /* Calculate temporary vectorial force */
566 tx = fscal*dx00;
567 ty = fscal*dy00;
568 tz = fscal*dz00;
569
570 /* Update vectorial force */
571 fix0 += tx;
572 fiy0 += ty;
573 fiz0 += tz;
574 f[j_coord_offset+DIM3*0+XX0] -= tx;
575 f[j_coord_offset+DIM3*0+YY1] -= ty;
576 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
577
578 /**************************
579 * CALCULATE INTERACTIONS *
580 **************************/
581
582 qq10 = iq1*jq0;
583
584 /* COULOMB ELECTROSTATICS */
585 velec = qq10*rinv10;
586 felec = velec*rinvsq10;
587
588 fscal = felec;
589
590 /* Calculate temporary vectorial force */
591 tx = fscal*dx10;
592 ty = fscal*dy10;
593 tz = fscal*dz10;
594
595 /* Update vectorial force */
596 fix1 += tx;
597 fiy1 += ty;
598 fiz1 += tz;
599 f[j_coord_offset+DIM3*0+XX0] -= tx;
600 f[j_coord_offset+DIM3*0+YY1] -= ty;
601 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
602
603 /**************************
604 * CALCULATE INTERACTIONS *
605 **************************/
606
607 qq20 = iq2*jq0;
608
609 /* COULOMB ELECTROSTATICS */
610 velec = qq20*rinv20;
611 felec = velec*rinvsq20;
612
613 fscal = felec;
614
615 /* Calculate temporary vectorial force */
616 tx = fscal*dx20;
617 ty = fscal*dy20;
618 tz = fscal*dz20;
619
620 /* Update vectorial force */
621 fix2 += tx;
622 fiy2 += ty;
623 fiz2 += tz;
624 f[j_coord_offset+DIM3*0+XX0] -= tx;
625 f[j_coord_offset+DIM3*0+YY1] -= ty;
626 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
627
628 /**************************
629 * CALCULATE INTERACTIONS *
630 **************************/
631
632 qq30 = iq3*jq0;
633
634 /* COULOMB ELECTROSTATICS */
635 velec = qq30*rinv30;
636 felec = velec*rinvsq30;
637
638 fscal = felec;
639
640 /* Calculate temporary vectorial force */
641 tx = fscal*dx30;
642 ty = fscal*dy30;
643 tz = fscal*dz30;
644
645 /* Update vectorial force */
646 fix3 += tx;
647 fiy3 += ty;
648 fiz3 += tz;
649 f[j_coord_offset+DIM3*0+XX0] -= tx;
650 f[j_coord_offset+DIM3*0+YY1] -= ty;
651 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
652
653 /* Inner loop uses 139 flops */
654 }
655 /* End of innermost loop */
656
657 tx = ty = tz = 0;
658 f[i_coord_offset+DIM3*0+XX0] += fix0;
659 f[i_coord_offset+DIM3*0+YY1] += fiy0;
660 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
661 tx += fix0;
662 ty += fiy0;
663 tz += fiz0;
664 f[i_coord_offset+DIM3*1+XX0] += fix1;
665 f[i_coord_offset+DIM3*1+YY1] += fiy1;
666 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
667 tx += fix1;
668 ty += fiy1;
669 tz += fiz1;
670 f[i_coord_offset+DIM3*2+XX0] += fix2;
671 f[i_coord_offset+DIM3*2+YY1] += fiy2;
672 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
673 tx += fix2;
674 ty += fiy2;
675 tz += fiz2;
676 f[i_coord_offset+DIM3*3+XX0] += fix3;
677 f[i_coord_offset+DIM3*3+YY1] += fiy3;
678 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
679 tx += fix3;
680 ty += fiy3;
681 tz += fiz3;
682 fshift[i_shift_offset+XX0] += tx;
683 fshift[i_shift_offset+YY1] += ty;
684 fshift[i_shift_offset+ZZ2] += tz;
685
686 /* Increment number of inner iterations */
687 inneriter += j_index_end - j_index_start;
688
689 /* Outer loop uses 39 flops */
690 }
691
692 /* Increment number of outer iterations */
693 outeriter += nri;
694
695 /* Update outer/inner flops */
696
697 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*139)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*139
;
698}