Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwLJEw_GeomW3P1_c.c
Location:line 116, column 5
Description:Value stored to 'sh_lj_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 real c6grid_00;
90 real c6grid_10;
91 real c6grid_20;
92 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
93 real *vdwgridparam;
94 int ewitab;
95 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
96 real *ewtab;
97
98 x = xx[0];
99 f = ff[0];
100
101 nri = nlist->nri;
102 iinr = nlist->iinr;
103 jindex = nlist->jindex;
104 jjnr = nlist->jjnr;
105 shiftidx = nlist->shift;
106 gid = nlist->gid;
107 shiftvec = fr->shift_vec[0];
108 fshift = fr->fshift[0];
109 facel = fr->epsfac;
110 charge = mdatoms->chargeA;
111 nvdwtype = fr->ntype;
112 vdwparam = fr->nbfp;
113 vdwtype = mdatoms->typeA;
114 vdwgridparam = fr->ljpme_c6grid;
115 ewclj = fr->ewaldcoeff_lj;
116 sh_lj_ewald = fr->ic->sh_lj_ewald;
Value stored to 'sh_lj_ewald' is never read
117 ewclj2 = ewclj*ewclj;
118 ewclj6 = ewclj2*ewclj2*ewclj2;
119
120 sh_ewald = fr->ic->sh_ewald;
121 ewtab = fr->ic->tabq_coul_FDV0;
122 ewtabscale = fr->ic->tabq_scale;
123 ewtabhalfspace = 0.5/ewtabscale;
124
125 /* Setup water-specific parameters */
126 inr = nlist->iinr[0];
127 iq0 = facel*charge[inr+0];
128 iq1 = facel*charge[inr+1];
129 iq2 = facel*charge[inr+2];
130 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
131
132 outeriter = 0;
133 inneriter = 0;
134
135 /* Start outer loop over neighborlists */
136 for(iidx=0; iidx<nri; iidx++)
137 {
138 /* Load shift vector for this list */
139 i_shift_offset = DIM3*shiftidx[iidx];
140 shX = shiftvec[i_shift_offset+XX0];
141 shY = shiftvec[i_shift_offset+YY1];
142 shZ = shiftvec[i_shift_offset+ZZ2];
143
144 /* Load limits for loop over neighbors */
145 j_index_start = jindex[iidx];
146 j_index_end = jindex[iidx+1];
147
148 /* Get outer coordinate index */
149 inr = iinr[iidx];
150 i_coord_offset = DIM3*inr;
151
152 /* Load i particle coords and add shift vector */
153 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
154 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
155 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
156 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
157 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
158 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
159 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
160 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
161 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
162
163 fix0 = 0.0;
164 fiy0 = 0.0;
165 fiz0 = 0.0;
166 fix1 = 0.0;
167 fiy1 = 0.0;
168 fiz1 = 0.0;
169 fix2 = 0.0;
170 fiy2 = 0.0;
171 fiz2 = 0.0;
172
173 /* Reset potential sums */
174 velecsum = 0.0;
175 vvdwsum = 0.0;
176
177 /* Start inner kernel loop */
178 for(jidx=j_index_start; jidx<j_index_end; jidx++)
179 {
180 /* Get j neighbor index, and coordinate index */
181 jnr = jjnr[jidx];
182 j_coord_offset = DIM3*jnr;
183
184 /* load j atom coordinates */
185 jx0 = x[j_coord_offset+DIM3*0+XX0];
186 jy0 = x[j_coord_offset+DIM3*0+YY1];
187 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
188
189 /* Calculate displacement vector */
190 dx00 = ix0 - jx0;
191 dy00 = iy0 - jy0;
192 dz00 = iz0 - jz0;
193 dx10 = ix1 - jx0;
194 dy10 = iy1 - jy0;
195 dz10 = iz1 - jz0;
196 dx20 = ix2 - jx0;
197 dy20 = iy2 - jy0;
198 dz20 = iz2 - jz0;
199
200 /* Calculate squared distance and things based on it */
201 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
202 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
203 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
204
205 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
206 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
207 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
208
209 rinvsq00 = rinv00*rinv00;
210 rinvsq10 = rinv10*rinv10;
211 rinvsq20 = rinv20*rinv20;
212
213 /* Load parameters for j particles */
214 jq0 = charge[jnr+0];
215 vdwjidx0 = 2*vdwtype[jnr+0];
216
217 /**************************
218 * CALCULATE INTERACTIONS *
219 **************************/
220
221 r00 = rsq00*rinv00;
222
223 qq00 = iq0*jq0;
224 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
225 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
226 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
227
228 /* EWALD ELECTROSTATICS */
229
230 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
231 ewrt = r00*ewtabscale;
232 ewitab = ewrt;
233 eweps = ewrt-ewitab;
234 ewitab = 4*ewitab;
235 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
236 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
237 felec = qq00*rinv00*(rinvsq00-felec);
238
239 rinvsix = rinvsq00*rinvsq00*rinvsq00;
240 ewcljrsq = ewclj2*rsq00;
241 exponent = exp(-ewcljrsq);
242 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
243 vvdw6 = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
244 vvdw12 = c12_00*rinvsix*rinvsix;
245 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
246 fvdw = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
247
248 /* Update potential sums from outer loop */
249 velecsum += velec;
250 vvdwsum += vvdw;
251
252 fscal = felec+fvdw;
253
254 /* Calculate temporary vectorial force */
255 tx = fscal*dx00;
256 ty = fscal*dy00;
257 tz = fscal*dz00;
258
259 /* Update vectorial force */
260 fix0 += tx;
261 fiy0 += ty;
262 fiz0 += tz;
263 f[j_coord_offset+DIM3*0+XX0] -= tx;
264 f[j_coord_offset+DIM3*0+YY1] -= ty;
265 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
266
267 /**************************
268 * CALCULATE INTERACTIONS *
269 **************************/
270
271 r10 = rsq10*rinv10;
272
273 qq10 = iq1*jq0;
274
275 /* EWALD ELECTROSTATICS */
276
277 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
278 ewrt = r10*ewtabscale;
279 ewitab = ewrt;
280 eweps = ewrt-ewitab;
281 ewitab = 4*ewitab;
282 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
283 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
284 felec = qq10*rinv10*(rinvsq10-felec);
285
286 /* Update potential sums from outer loop */
287 velecsum += velec;
288
289 fscal = felec;
290
291 /* Calculate temporary vectorial force */
292 tx = fscal*dx10;
293 ty = fscal*dy10;
294 tz = fscal*dz10;
295
296 /* Update vectorial force */
297 fix1 += tx;
298 fiy1 += ty;
299 fiz1 += tz;
300 f[j_coord_offset+DIM3*0+XX0] -= tx;
301 f[j_coord_offset+DIM3*0+YY1] -= ty;
302 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
303
304 /**************************
305 * CALCULATE INTERACTIONS *
306 **************************/
307
308 r20 = rsq20*rinv20;
309
310 qq20 = iq2*jq0;
311
312 /* EWALD ELECTROSTATICS */
313
314 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315 ewrt = r20*ewtabscale;
316 ewitab = ewrt;
317 eweps = ewrt-ewitab;
318 ewitab = 4*ewitab;
319 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
320 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
321 felec = qq20*rinv20*(rinvsq20-felec);
322
323 /* Update potential sums from outer loop */
324 velecsum += velec;
325
326 fscal = felec;
327
328 /* Calculate temporary vectorial force */
329 tx = fscal*dx20;
330 ty = fscal*dy20;
331 tz = fscal*dz20;
332
333 /* Update vectorial force */
334 fix2 += tx;
335 fiy2 += ty;
336 fiz2 += tz;
337 f[j_coord_offset+DIM3*0+XX0] -= tx;
338 f[j_coord_offset+DIM3*0+YY1] -= ty;
339 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
340
341 /* Inner loop uses 149 flops */
342 }
343 /* End of innermost loop */
344
345 tx = ty = tz = 0;
346 f[i_coord_offset+DIM3*0+XX0] += fix0;
347 f[i_coord_offset+DIM3*0+YY1] += fiy0;
348 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
349 tx += fix0;
350 ty += fiy0;
351 tz += fiz0;
352 f[i_coord_offset+DIM3*1+XX0] += fix1;
353 f[i_coord_offset+DIM3*1+YY1] += fiy1;
354 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
355 tx += fix1;
356 ty += fiy1;
357 tz += fiz1;
358 f[i_coord_offset+DIM3*2+XX0] += fix2;
359 f[i_coord_offset+DIM3*2+YY1] += fiy2;
360 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
361 tx += fix2;
362 ty += fiy2;
363 tz += fiz2;
364 fshift[i_shift_offset+XX0] += tx;
365 fshift[i_shift_offset+YY1] += ty;
366 fshift[i_shift_offset+ZZ2] += tz;
367
368 ggid = gid[iidx];
369 /* Update potential energies */
370 kernel_data->energygrp_elec[ggid] += velecsum;
371 kernel_data->energygrp_vdw[ggid] += vvdwsum;
372
373 /* Increment number of inner iterations */
374 inneriter += j_index_end - j_index_start;
375
376 /* Outer loop uses 32 flops */
377 }
378
379 /* Increment number of outer iterations */
380 outeriter += nri;
381
382 /* Update outer/inner flops */
383
384 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*149)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*149
;
385}
386/*
387 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_c
388 * Electrostatics interaction: Ewald
389 * VdW interaction: LJEwald
390 * Geometry: Water3-Particle
391 * Calculate force/pot: Force
392 */
393void
394nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_c
395 (t_nblist * gmx_restrict__restrict nlist,
396 rvec * gmx_restrict__restrict xx,
397 rvec * gmx_restrict__restrict ff,
398 t_forcerec * gmx_restrict__restrict fr,
399 t_mdatoms * gmx_restrict__restrict mdatoms,
400 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
401 t_nrnb * gmx_restrict__restrict nrnb)
402{
403 int i_shift_offset,i_coord_offset,j_coord_offset;
404 int j_index_start,j_index_end;
405 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
406 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
407 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
408 real *shiftvec,*fshift,*x,*f;
409 int vdwioffset0;
410 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
411 int vdwioffset1;
412 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
413 int vdwioffset2;
414 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
415 int vdwjidx0;
416 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
418 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
419 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
420 real velec,felec,velecsum,facel,crf,krf,krf2;
421 real *charge;
422 int nvdwtype;
423 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
424 int *vdwtype;
425 real *vdwparam;
426 real c6grid_00;
427 real c6grid_10;
428 real c6grid_20;
429 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
430 real *vdwgridparam;
431 int ewitab;
432 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
433 real *ewtab;
434
435 x = xx[0];
436 f = ff[0];
437
438 nri = nlist->nri;
439 iinr = nlist->iinr;
440 jindex = nlist->jindex;
441 jjnr = nlist->jjnr;
442 shiftidx = nlist->shift;
443 gid = nlist->gid;
444 shiftvec = fr->shift_vec[0];
445 fshift = fr->fshift[0];
446 facel = fr->epsfac;
447 charge = mdatoms->chargeA;
448 nvdwtype = fr->ntype;
449 vdwparam = fr->nbfp;
450 vdwtype = mdatoms->typeA;
451 vdwgridparam = fr->ljpme_c6grid;
452 ewclj = fr->ewaldcoeff_lj;
453 sh_lj_ewald = fr->ic->sh_lj_ewald;
454 ewclj2 = ewclj*ewclj;
455 ewclj6 = ewclj2*ewclj2*ewclj2;
456
457 sh_ewald = fr->ic->sh_ewald;
458 ewtab = fr->ic->tabq_coul_F;
459 ewtabscale = fr->ic->tabq_scale;
460 ewtabhalfspace = 0.5/ewtabscale;
461
462 /* Setup water-specific parameters */
463 inr = nlist->iinr[0];
464 iq0 = facel*charge[inr+0];
465 iq1 = facel*charge[inr+1];
466 iq2 = facel*charge[inr+2];
467 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
468
469 outeriter = 0;
470 inneriter = 0;
471
472 /* Start outer loop over neighborlists */
473 for(iidx=0; iidx<nri; iidx++)
474 {
475 /* Load shift vector for this list */
476 i_shift_offset = DIM3*shiftidx[iidx];
477 shX = shiftvec[i_shift_offset+XX0];
478 shY = shiftvec[i_shift_offset+YY1];
479 shZ = shiftvec[i_shift_offset+ZZ2];
480
481 /* Load limits for loop over neighbors */
482 j_index_start = jindex[iidx];
483 j_index_end = jindex[iidx+1];
484
485 /* Get outer coordinate index */
486 inr = iinr[iidx];
487 i_coord_offset = DIM3*inr;
488
489 /* Load i particle coords and add shift vector */
490 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
491 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
492 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
493 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
494 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
495 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
496 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
497 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
498 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
499
500 fix0 = 0.0;
501 fiy0 = 0.0;
502 fiz0 = 0.0;
503 fix1 = 0.0;
504 fiy1 = 0.0;
505 fiz1 = 0.0;
506 fix2 = 0.0;
507 fiy2 = 0.0;
508 fiz2 = 0.0;
509
510 /* Start inner kernel loop */
511 for(jidx=j_index_start; jidx<j_index_end; jidx++)
512 {
513 /* Get j neighbor index, and coordinate index */
514 jnr = jjnr[jidx];
515 j_coord_offset = DIM3*jnr;
516
517 /* load j atom coordinates */
518 jx0 = x[j_coord_offset+DIM3*0+XX0];
519 jy0 = x[j_coord_offset+DIM3*0+YY1];
520 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
521
522 /* Calculate displacement vector */
523 dx00 = ix0 - jx0;
524 dy00 = iy0 - jy0;
525 dz00 = iz0 - jz0;
526 dx10 = ix1 - jx0;
527 dy10 = iy1 - jy0;
528 dz10 = iz1 - jz0;
529 dx20 = ix2 - jx0;
530 dy20 = iy2 - jy0;
531 dz20 = iz2 - jz0;
532
533 /* Calculate squared distance and things based on it */
534 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
535 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
536 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
537
538 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
539 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
540 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
541
542 rinvsq00 = rinv00*rinv00;
543 rinvsq10 = rinv10*rinv10;
544 rinvsq20 = rinv20*rinv20;
545
546 /* Load parameters for j particles */
547 jq0 = charge[jnr+0];
548 vdwjidx0 = 2*vdwtype[jnr+0];
549
550 /**************************
551 * CALCULATE INTERACTIONS *
552 **************************/
553
554 r00 = rsq00*rinv00;
555
556 qq00 = iq0*jq0;
557 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
558 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
559 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
560
561 /* EWALD ELECTROSTATICS */
562
563 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
564 ewrt = r00*ewtabscale;
565 ewitab = ewrt;
566 eweps = ewrt-ewitab;
567 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
568 felec = qq00*rinv00*(rinvsq00-felec);
569
570 rinvsix = rinvsq00*rinvsq00*rinvsq00;
571 ewcljrsq = ewclj2*rsq00;
572 exponent = exp(-ewcljrsq);
573 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
574 fvdw = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
575
576 fscal = felec+fvdw;
577
578 /* Calculate temporary vectorial force */
579 tx = fscal*dx00;
580 ty = fscal*dy00;
581 tz = fscal*dz00;
582
583 /* Update vectorial force */
584 fix0 += tx;
585 fiy0 += ty;
586 fiz0 += tz;
587 f[j_coord_offset+DIM3*0+XX0] -= tx;
588 f[j_coord_offset+DIM3*0+YY1] -= ty;
589 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
590
591 /**************************
592 * CALCULATE INTERACTIONS *
593 **************************/
594
595 r10 = rsq10*rinv10;
596
597 qq10 = iq1*jq0;
598
599 /* EWALD ELECTROSTATICS */
600
601 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602 ewrt = r10*ewtabscale;
603 ewitab = ewrt;
604 eweps = ewrt-ewitab;
605 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
606 felec = qq10*rinv10*(rinvsq10-felec);
607
608 fscal = felec;
609
610 /* Calculate temporary vectorial force */
611 tx = fscal*dx10;
612 ty = fscal*dy10;
613 tz = fscal*dz10;
614
615 /* Update vectorial force */
616 fix1 += tx;
617 fiy1 += ty;
618 fiz1 += tz;
619 f[j_coord_offset+DIM3*0+XX0] -= tx;
620 f[j_coord_offset+DIM3*0+YY1] -= ty;
621 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
622
623 /**************************
624 * CALCULATE INTERACTIONS *
625 **************************/
626
627 r20 = rsq20*rinv20;
628
629 qq20 = iq2*jq0;
630
631 /* EWALD ELECTROSTATICS */
632
633 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
634 ewrt = r20*ewtabscale;
635 ewitab = ewrt;
636 eweps = ewrt-ewitab;
637 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
638 felec = qq20*rinv20*(rinvsq20-felec);
639
640 fscal = felec;
641
642 /* Calculate temporary vectorial force */
643 tx = fscal*dx20;
644 ty = fscal*dy20;
645 tz = fscal*dz20;
646
647 /* Update vectorial force */
648 fix2 += tx;
649 fiy2 += ty;
650 fiz2 += tz;
651 f[j_coord_offset+DIM3*0+XX0] -= tx;
652 f[j_coord_offset+DIM3*0+YY1] -= ty;
653 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
654
655 /* Inner loop uses 123 flops */
656 }
657 /* End of innermost loop */
658
659 tx = ty = tz = 0;
660 f[i_coord_offset+DIM3*0+XX0] += fix0;
661 f[i_coord_offset+DIM3*0+YY1] += fiy0;
662 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
663 tx += fix0;
664 ty += fiy0;
665 tz += fiz0;
666 f[i_coord_offset+DIM3*1+XX0] += fix1;
667 f[i_coord_offset+DIM3*1+YY1] += fiy1;
668 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
669 tx += fix1;
670 ty += fiy1;
671 tz += fiz1;
672 f[i_coord_offset+DIM3*2+XX0] += fix2;
673 f[i_coord_offset+DIM3*2+YY1] += fiy2;
674 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
675 tx += fix2;
676 ty += fiy2;
677 tz += fiz2;
678 fshift[i_shift_offset+XX0] += tx;
679 fshift[i_shift_offset+YY1] += ty;
680 fshift[i_shift_offset+ZZ2] += tz;
681
682 /* Increment number of inner iterations */
683 inneriter += j_index_end - j_index_start;
684
685 /* Outer loop uses 30 flops */
686 }
687
688 /* Increment number of outer iterations */
689 outeriter += nri;
690
691 /* Update outer/inner flops */
692
693 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*123)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*123
;
694}