Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwLJEw_GeomP1P1_c.c
Location:line 314, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 real c6grid_00;
84 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
85 real *vdwgridparam;
86 int ewitab;
87 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
88 real *ewtab;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 nvdwtype = fr->ntype;
104 vdwparam = fr->nbfp;
105 vdwtype = mdatoms->typeA;
106 vdwgridparam = fr->ljpme_c6grid;
107 ewclj = fr->ewaldcoeff_lj;
108 sh_lj_ewald = fr->ic->sh_lj_ewald;
109 ewclj2 = ewclj*ewclj;
110 ewclj6 = ewclj2*ewclj2*ewclj2;
111
112 sh_ewald = fr->ic->sh_ewald;
113 ewtab = fr->ic->tabq_coul_FDV0;
114 ewtabscale = fr->ic->tabq_scale;
115 ewtabhalfspace = 0.5/ewtabscale;
116
117 outeriter = 0;
118 inneriter = 0;
119
120 /* Start outer loop over neighborlists */
121 for(iidx=0; iidx<nri; iidx++)
122 {
123 /* Load shift vector for this list */
124 i_shift_offset = DIM3*shiftidx[iidx];
125 shX = shiftvec[i_shift_offset+XX0];
126 shY = shiftvec[i_shift_offset+YY1];
127 shZ = shiftvec[i_shift_offset+ZZ2];
128
129 /* Load limits for loop over neighbors */
130 j_index_start = jindex[iidx];
131 j_index_end = jindex[iidx+1];
132
133 /* Get outer coordinate index */
134 inr = iinr[iidx];
135 i_coord_offset = DIM3*inr;
136
137 /* Load i particle coords and add shift vector */
138 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
139 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
140 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
141
142 fix0 = 0.0;
143 fiy0 = 0.0;
144 fiz0 = 0.0;
145
146 /* Load parameters for i particles */
147 iq0 = facel*charge[inr+0];
148 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
149
150 /* Reset potential sums */
151 velecsum = 0.0;
152 vvdwsum = 0.0;
153
154 /* Start inner kernel loop */
155 for(jidx=j_index_start; jidx<j_index_end; jidx++)
156 {
157 /* Get j neighbor index, and coordinate index */
158 jnr = jjnr[jidx];
159 j_coord_offset = DIM3*jnr;
160
161 /* load j atom coordinates */
162 jx0 = x[j_coord_offset+DIM3*0+XX0];
163 jy0 = x[j_coord_offset+DIM3*0+YY1];
164 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
165
166 /* Calculate displacement vector */
167 dx00 = ix0 - jx0;
168 dy00 = iy0 - jy0;
169 dz00 = iz0 - jz0;
170
171 /* Calculate squared distance and things based on it */
172 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
173
174 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
175
176 rinvsq00 = rinv00*rinv00;
177
178 /* Load parameters for j particles */
179 jq0 = charge[jnr+0];
180 vdwjidx0 = 2*vdwtype[jnr+0];
181
182 /**************************
183 * CALCULATE INTERACTIONS *
184 **************************/
185
186 r00 = rsq00*rinv00;
187
188 qq00 = iq0*jq0;
189 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
190 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
191 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
192
193 /* EWALD ELECTROSTATICS */
194
195 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
196 ewrt = r00*ewtabscale;
197 ewitab = ewrt;
198 eweps = ewrt-ewitab;
199 ewitab = 4*ewitab;
200 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
201 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
202 felec = qq00*rinv00*(rinvsq00-felec);
203
204 rinvsix = rinvsq00*rinvsq00*rinvsq00;
205 ewcljrsq = ewclj2*rsq00;
206 exponent = exp(-ewcljrsq);
207 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
208 vvdw6 = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
209 vvdw12 = c12_00*rinvsix*rinvsix;
210 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
211 fvdw = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
212
213 /* Update potential sums from outer loop */
214 velecsum += velec;
215 vvdwsum += vvdw;
216
217 fscal = felec+fvdw;
218
219 /* Calculate temporary vectorial force */
220 tx = fscal*dx00;
221 ty = fscal*dy00;
222 tz = fscal*dz00;
223
224 /* Update vectorial force */
225 fix0 += tx;
226 fiy0 += ty;
227 fiz0 += tz;
228 f[j_coord_offset+DIM3*0+XX0] -= tx;
229 f[j_coord_offset+DIM3*0+YY1] -= ty;
230 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
231
232 /* Inner loop uses 67 flops */
233 }
234 /* End of innermost loop */
235
236 tx = ty = tz = 0;
237 f[i_coord_offset+DIM3*0+XX0] += fix0;
238 f[i_coord_offset+DIM3*0+YY1] += fiy0;
239 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
240 tx += fix0;
241 ty += fiy0;
242 tz += fiz0;
243 fshift[i_shift_offset+XX0] += tx;
244 fshift[i_shift_offset+YY1] += ty;
245 fshift[i_shift_offset+ZZ2] += tz;
246
247 ggid = gid[iidx];
248 /* Update potential energies */
249 kernel_data->energygrp_elec[ggid] += velecsum;
250 kernel_data->energygrp_vdw[ggid] += vvdwsum;
251
252 /* Increment number of inner iterations */
253 inneriter += j_index_end - j_index_start;
254
255 /* Outer loop uses 15 flops */
256 }
257
258 /* Increment number of outer iterations */
259 outeriter += nri;
260
261 /* Update outer/inner flops */
262
263 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*67)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*67
;
264}
265/*
266 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_c
267 * Electrostatics interaction: Ewald
268 * VdW interaction: LJEwald
269 * Geometry: Particle-Particle
270 * Calculate force/pot: Force
271 */
272void
273nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_c
274 (t_nblist * gmx_restrict__restrict nlist,
275 rvec * gmx_restrict__restrict xx,
276 rvec * gmx_restrict__restrict ff,
277 t_forcerec * gmx_restrict__restrict fr,
278 t_mdatoms * gmx_restrict__restrict mdatoms,
279 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
280 t_nrnb * gmx_restrict__restrict nrnb)
281{
282 int i_shift_offset,i_coord_offset,j_coord_offset;
283 int j_index_start,j_index_end;
284 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
285 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
286 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
287 real *shiftvec,*fshift,*x,*f;
288 int vdwioffset0;
289 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
290 int vdwjidx0;
291 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
292 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
293 real velec,felec,velecsum,facel,crf,krf,krf2;
294 real *charge;
295 int nvdwtype;
296 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
297 int *vdwtype;
298 real *vdwparam;
299 real c6grid_00;
300 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
301 real *vdwgridparam;
302 int ewitab;
303 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
304 real *ewtab;
305
306 x = xx[0];
307 f = ff[0];
308
309 nri = nlist->nri;
310 iinr = nlist->iinr;
311 jindex = nlist->jindex;
312 jjnr = nlist->jjnr;
313 shiftidx = nlist->shift;
314 gid = nlist->gid;
Value stored to 'gid' is never read
315 shiftvec = fr->shift_vec[0];
316 fshift = fr->fshift[0];
317 facel = fr->epsfac;
318 charge = mdatoms->chargeA;
319 nvdwtype = fr->ntype;
320 vdwparam = fr->nbfp;
321 vdwtype = mdatoms->typeA;
322 vdwgridparam = fr->ljpme_c6grid;
323 ewclj = fr->ewaldcoeff_lj;
324 sh_lj_ewald = fr->ic->sh_lj_ewald;
325 ewclj2 = ewclj*ewclj;
326 ewclj6 = ewclj2*ewclj2*ewclj2;
327
328 sh_ewald = fr->ic->sh_ewald;
329 ewtab = fr->ic->tabq_coul_F;
330 ewtabscale = fr->ic->tabq_scale;
331 ewtabhalfspace = 0.5/ewtabscale;
332
333 outeriter = 0;
334 inneriter = 0;
335
336 /* Start outer loop over neighborlists */
337 for(iidx=0; iidx<nri; iidx++)
338 {
339 /* Load shift vector for this list */
340 i_shift_offset = DIM3*shiftidx[iidx];
341 shX = shiftvec[i_shift_offset+XX0];
342 shY = shiftvec[i_shift_offset+YY1];
343 shZ = shiftvec[i_shift_offset+ZZ2];
344
345 /* Load limits for loop over neighbors */
346 j_index_start = jindex[iidx];
347 j_index_end = jindex[iidx+1];
348
349 /* Get outer coordinate index */
350 inr = iinr[iidx];
351 i_coord_offset = DIM3*inr;
352
353 /* Load i particle coords and add shift vector */
354 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
355 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
356 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
357
358 fix0 = 0.0;
359 fiy0 = 0.0;
360 fiz0 = 0.0;
361
362 /* Load parameters for i particles */
363 iq0 = facel*charge[inr+0];
364 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
365
366 /* Start inner kernel loop */
367 for(jidx=j_index_start; jidx<j_index_end; jidx++)
368 {
369 /* Get j neighbor index, and coordinate index */
370 jnr = jjnr[jidx];
371 j_coord_offset = DIM3*jnr;
372
373 /* load j atom coordinates */
374 jx0 = x[j_coord_offset+DIM3*0+XX0];
375 jy0 = x[j_coord_offset+DIM3*0+YY1];
376 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
377
378 /* Calculate displacement vector */
379 dx00 = ix0 - jx0;
380 dy00 = iy0 - jy0;
381 dz00 = iz0 - jz0;
382
383 /* Calculate squared distance and things based on it */
384 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
385
386 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
387
388 rinvsq00 = rinv00*rinv00;
389
390 /* Load parameters for j particles */
391 jq0 = charge[jnr+0];
392 vdwjidx0 = 2*vdwtype[jnr+0];
393
394 /**************************
395 * CALCULATE INTERACTIONS *
396 **************************/
397
398 r00 = rsq00*rinv00;
399
400 qq00 = iq0*jq0;
401 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
402 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
403 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
404
405 /* EWALD ELECTROSTATICS */
406
407 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
408 ewrt = r00*ewtabscale;
409 ewitab = ewrt;
410 eweps = ewrt-ewitab;
411 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
412 felec = qq00*rinv00*(rinvsq00-felec);
413
414 rinvsix = rinvsq00*rinvsq00*rinvsq00;
415 ewcljrsq = ewclj2*rsq00;
416 exponent = exp(-ewcljrsq);
417 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
418 fvdw = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
419
420 fscal = felec+fvdw;
421
422 /* Calculate temporary vectorial force */
423 tx = fscal*dx00;
424 ty = fscal*dy00;
425 tz = fscal*dz00;
426
427 /* Update vectorial force */
428 fix0 += tx;
429 fiy0 += ty;
430 fiz0 += tz;
431 f[j_coord_offset+DIM3*0+XX0] -= tx;
432 f[j_coord_offset+DIM3*0+YY1] -= ty;
433 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
434
435 /* Inner loop uses 55 flops */
436 }
437 /* End of innermost loop */
438
439 tx = ty = tz = 0;
440 f[i_coord_offset+DIM3*0+XX0] += fix0;
441 f[i_coord_offset+DIM3*0+YY1] += fiy0;
442 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
443 tx += fix0;
444 ty += fiy0;
445 tz += fiz0;
446 fshift[i_shift_offset+XX0] += tx;
447 fshift[i_shift_offset+YY1] += ty;
448 fshift[i_shift_offset+ZZ2] += tz;
449
450 /* Increment number of inner iterations */
451 inneriter += j_index_end - j_index_start;
452
453 /* Outer loop uses 13 flops */
454 }
455
456 /* Increment number of outer iterations */
457 outeriter += nri;
458
459 /* Update outer/inner flops */
460
461 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*55)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*55
;
462}