Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEwSw_VdwNone_GeomP1P1_sse4_1_single.c
Location:line 515, column 5
Description:Value stored to 'j_coord_offsetD' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: None
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 __m128i ewitab;
93 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94 real *ewtab;
95 __m128 rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96 real rswitch_scalar,d_scalar;
97 __m128 dummy_mask,cutoff_mask;
98 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
99 __m128 one = _mm_set1_ps(1.0);
100 __m128 two = _mm_set1_ps(2.0);
101 x = xx[0];
102 f = ff[0];
103
104 nri = nlist->nri;
105 iinr = nlist->iinr;
106 jindex = nlist->jindex;
107 jjnr = nlist->jjnr;
108 shiftidx = nlist->shift;
109 gid = nlist->gid;
110 shiftvec = fr->shift_vec[0];
111 fshift = fr->fshift[0];
112 facel = _mm_set1_ps(fr->epsfac);
113 charge = mdatoms->chargeA;
114
115 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
116 ewtab = fr->ic->tabq_coul_FDV0;
117 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
118 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
119
120 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
121 rcutoff_scalar = fr->rcoulomb;
122 rcutoff = _mm_set1_ps(rcutoff_scalar);
123 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
124
125 rswitch_scalar = fr->rcoulomb_switch;
126 rswitch = _mm_set1_ps(rswitch_scalar);
127 /* Setup switch parameters */
128 d_scalar = rcutoff_scalar-rswitch_scalar;
129 d = _mm_set1_ps(d_scalar);
130 swV3 = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
131 swV4 = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
132 swV5 = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
133 swF2 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
134 swF3 = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
135 swF4 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136
137 /* Avoid stupid compiler warnings */
138 jnrA = jnrB = jnrC = jnrD = 0;
139 j_coord_offsetA = 0;
140 j_coord_offsetB = 0;
141 j_coord_offsetC = 0;
142 j_coord_offsetD = 0;
143
144 outeriter = 0;
145 inneriter = 0;
146
147 for(iidx=0;iidx<4*DIM3;iidx++)
148 {
149 scratch[iidx] = 0.0;
150 }
151
152 /* Start outer loop over neighborlists */
153 for(iidx=0; iidx<nri; iidx++)
154 {
155 /* Load shift vector for this list */
156 i_shift_offset = DIM3*shiftidx[iidx];
157
158 /* Load limits for loop over neighbors */
159 j_index_start = jindex[iidx];
160 j_index_end = jindex[iidx+1];
161
162 /* Get outer coordinate index */
163 inr = iinr[iidx];
164 i_coord_offset = DIM3*inr;
165
166 /* Load i particle coords and add shift vector */
167 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
168
169 fix0 = _mm_setzero_ps();
170 fiy0 = _mm_setzero_ps();
171 fiz0 = _mm_setzero_ps();
172
173 /* Load parameters for i particles */
174 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
175
176 /* Reset potential sums */
177 velecsum = _mm_setzero_ps();
178
179 /* Start inner kernel loop */
180 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181 {
182
183 /* Get j neighbor index, and coordinate index */
184 jnrA = jjnr[jidx];
185 jnrB = jjnr[jidx+1];
186 jnrC = jjnr[jidx+2];
187 jnrD = jjnr[jidx+3];
188 j_coord_offsetA = DIM3*jnrA;
189 j_coord_offsetB = DIM3*jnrB;
190 j_coord_offsetC = DIM3*jnrC;
191 j_coord_offsetD = DIM3*jnrD;
192
193 /* load j atom coordinates */
194 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195 x+j_coord_offsetC,x+j_coord_offsetD,
196 &jx0,&jy0,&jz0);
197
198 /* Calculate displacement vector */
199 dx00 = _mm_sub_ps(ix0,jx0);
200 dy00 = _mm_sub_ps(iy0,jy0);
201 dz00 = _mm_sub_ps(iz0,jz0);
202
203 /* Calculate squared distance and things based on it */
204 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
205
206 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
207
208 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
209
210 /* Load parameters for j particles */
211 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
212 charge+jnrC+0,charge+jnrD+0);
213
214 /**************************
215 * CALCULATE INTERACTIONS *
216 **************************/
217
218 if (gmx_mm_any_lt(rsq00,rcutoff2))
219 {
220
221 r00 = _mm_mul_ps(rsq00,rinv00);
222
223 /* Compute parameters for interactions between i and j atoms */
224 qq00 = _mm_mul_ps(iq0,jq0);
225
226 /* EWALD ELECTROSTATICS */
227
228 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
229 ewrt = _mm_mul_ps(r00,ewtabscale);
230 ewitab = _mm_cvttps_epi32(ewrt);
231 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
232 ewitab = _mm_slli_epi32(ewitab,2);
233 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
234 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
235 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
236 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
237 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
238 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
239 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
240 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
241 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
242
243 d = _mm_sub_ps(r00,rswitch);
244 d = _mm_max_ps(d,_mm_setzero_ps());
245 d2 = _mm_mul_ps(d,d);
246 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
247
248 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
249
250 /* Evaluate switch function */
251 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
252 felec = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
253 velec = _mm_mul_ps(velec,sw);
254 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
255
256 /* Update potential sum for this i atom from the interaction with this j atom. */
257 velec = _mm_and_ps(velec,cutoff_mask);
258 velecsum = _mm_add_ps(velecsum,velec);
259
260 fscal = felec;
261
262 fscal = _mm_and_ps(fscal,cutoff_mask);
263
264 /* Calculate temporary vectorial force */
265 tx = _mm_mul_ps(fscal,dx00);
266 ty = _mm_mul_ps(fscal,dy00);
267 tz = _mm_mul_ps(fscal,dz00);
268
269 /* Update vectorial force */
270 fix0 = _mm_add_ps(fix0,tx);
271 fiy0 = _mm_add_ps(fiy0,ty);
272 fiz0 = _mm_add_ps(fiz0,tz);
273
274 fjptrA = f+j_coord_offsetA;
275 fjptrB = f+j_coord_offsetB;
276 fjptrC = f+j_coord_offsetC;
277 fjptrD = f+j_coord_offsetD;
278 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
279
280 }
281
282 /* Inner loop uses 65 flops */
283 }
284
285 if(jidx<j_index_end)
286 {
287
288 /* Get j neighbor index, and coordinate index */
289 jnrlistA = jjnr[jidx];
290 jnrlistB = jjnr[jidx+1];
291 jnrlistC = jjnr[jidx+2];
292 jnrlistD = jjnr[jidx+3];
293 /* Sign of each element will be negative for non-real atoms.
294 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
295 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
296 */
297 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
298 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
299 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
300 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
301 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
302 j_coord_offsetA = DIM3*jnrA;
303 j_coord_offsetB = DIM3*jnrB;
304 j_coord_offsetC = DIM3*jnrC;
305 j_coord_offsetD = DIM3*jnrD;
306
307 /* load j atom coordinates */
308 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
309 x+j_coord_offsetC,x+j_coord_offsetD,
310 &jx0,&jy0,&jz0);
311
312 /* Calculate displacement vector */
313 dx00 = _mm_sub_ps(ix0,jx0);
314 dy00 = _mm_sub_ps(iy0,jy0);
315 dz00 = _mm_sub_ps(iz0,jz0);
316
317 /* Calculate squared distance and things based on it */
318 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
319
320 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
321
322 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
323
324 /* Load parameters for j particles */
325 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
326 charge+jnrC+0,charge+jnrD+0);
327
328 /**************************
329 * CALCULATE INTERACTIONS *
330 **************************/
331
332 if (gmx_mm_any_lt(rsq00,rcutoff2))
333 {
334
335 r00 = _mm_mul_ps(rsq00,rinv00);
336 r00 = _mm_andnot_ps(dummy_mask,r00);
337
338 /* Compute parameters for interactions between i and j atoms */
339 qq00 = _mm_mul_ps(iq0,jq0);
340
341 /* EWALD ELECTROSTATICS */
342
343 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344 ewrt = _mm_mul_ps(r00,ewtabscale);
345 ewitab = _mm_cvttps_epi32(ewrt);
346 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
347 ewitab = _mm_slli_epi32(ewitab,2);
348 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
349 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
350 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
351 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
352 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
353 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
354 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
355 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
356 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
357
358 d = _mm_sub_ps(r00,rswitch);
359 d = _mm_max_ps(d,_mm_setzero_ps());
360 d2 = _mm_mul_ps(d,d);
361 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
362
363 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
364
365 /* Evaluate switch function */
366 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
367 felec = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
368 velec = _mm_mul_ps(velec,sw);
369 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
370
371 /* Update potential sum for this i atom from the interaction with this j atom. */
372 velec = _mm_and_ps(velec,cutoff_mask);
373 velec = _mm_andnot_ps(dummy_mask,velec);
374 velecsum = _mm_add_ps(velecsum,velec);
375
376 fscal = felec;
377
378 fscal = _mm_and_ps(fscal,cutoff_mask);
379
380 fscal = _mm_andnot_ps(dummy_mask,fscal);
381
382 /* Calculate temporary vectorial force */
383 tx = _mm_mul_ps(fscal,dx00);
384 ty = _mm_mul_ps(fscal,dy00);
385 tz = _mm_mul_ps(fscal,dz00);
386
387 /* Update vectorial force */
388 fix0 = _mm_add_ps(fix0,tx);
389 fiy0 = _mm_add_ps(fiy0,ty);
390 fiz0 = _mm_add_ps(fiz0,tz);
391
392 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
393 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
394 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
395 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
396 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
397
398 }
399
400 /* Inner loop uses 66 flops */
401 }
402
403 /* End of innermost loop */
404
405 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
406 f+i_coord_offset,fshift+i_shift_offset);
407
408 ggid = gid[iidx];
409 /* Update potential energies */
410 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
411
412 /* Increment number of inner iterations */
413 inneriter += j_index_end - j_index_start;
414
415 /* Outer loop uses 8 flops */
416 }
417
418 /* Increment number of outer iterations */
419 outeriter += nri;
420
421 /* Update outer/inner flops */
422
423 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*66)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*8 + inneriter
*66
;
424}
425/*
426 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse4_1_single
427 * Electrostatics interaction: Ewald
428 * VdW interaction: None
429 * Geometry: Particle-Particle
430 * Calculate force/pot: Force
431 */
432void
433nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse4_1_single
434 (t_nblist * gmx_restrict nlist,
435 rvec * gmx_restrict xx,
436 rvec * gmx_restrict ff,
437 t_forcerec * gmx_restrict fr,
438 t_mdatoms * gmx_restrict mdatoms,
439 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
440 t_nrnb * gmx_restrict nrnb)
441{
442 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
443 * just 0 for non-waters.
444 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
445 * jnr indices corresponding to data put in the four positions in the SIMD register.
446 */
447 int i_shift_offset,i_coord_offset,outeriter,inneriter;
448 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
449 int jnrA,jnrB,jnrC,jnrD;
450 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
451 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
452 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
453 real rcutoff_scalar;
454 real *shiftvec,*fshift,*x,*f;
455 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
456 real scratch[4*DIM3];
457 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
458 int vdwioffset0;
459 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
460 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
461 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
462 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
463 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
464 real *charge;
465 __m128i ewitab;
466 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
467 real *ewtab;
468 __m128 rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
469 real rswitch_scalar,d_scalar;
470 __m128 dummy_mask,cutoff_mask;
471 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
472 __m128 one = _mm_set1_ps(1.0);
473 __m128 two = _mm_set1_ps(2.0);
474 x = xx[0];
475 f = ff[0];
476
477 nri = nlist->nri;
478 iinr = nlist->iinr;
479 jindex = nlist->jindex;
480 jjnr = nlist->jjnr;
481 shiftidx = nlist->shift;
482 gid = nlist->gid;
483 shiftvec = fr->shift_vec[0];
484 fshift = fr->fshift[0];
485 facel = _mm_set1_ps(fr->epsfac);
486 charge = mdatoms->chargeA;
487
488 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
489 ewtab = fr->ic->tabq_coul_FDV0;
490 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
491 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
492
493 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
494 rcutoff_scalar = fr->rcoulomb;
495 rcutoff = _mm_set1_ps(rcutoff_scalar);
496 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
497
498 rswitch_scalar = fr->rcoulomb_switch;
499 rswitch = _mm_set1_ps(rswitch_scalar);
500 /* Setup switch parameters */
501 d_scalar = rcutoff_scalar-rswitch_scalar;
502 d = _mm_set1_ps(d_scalar);
503 swV3 = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
504 swV4 = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
505 swV5 = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
506 swF2 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
507 swF3 = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
508 swF4 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
509
510 /* Avoid stupid compiler warnings */
511 jnrA = jnrB = jnrC = jnrD = 0;
512 j_coord_offsetA = 0;
513 j_coord_offsetB = 0;
514 j_coord_offsetC = 0;
515 j_coord_offsetD = 0;
Value stored to 'j_coord_offsetD' is never read
516
517 outeriter = 0;
518 inneriter = 0;
519
520 for(iidx=0;iidx<4*DIM3;iidx++)
521 {
522 scratch[iidx] = 0.0;
523 }
524
525 /* Start outer loop over neighborlists */
526 for(iidx=0; iidx<nri; iidx++)
527 {
528 /* Load shift vector for this list */
529 i_shift_offset = DIM3*shiftidx[iidx];
530
531 /* Load limits for loop over neighbors */
532 j_index_start = jindex[iidx];
533 j_index_end = jindex[iidx+1];
534
535 /* Get outer coordinate index */
536 inr = iinr[iidx];
537 i_coord_offset = DIM3*inr;
538
539 /* Load i particle coords and add shift vector */
540 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
541
542 fix0 = _mm_setzero_ps();
543 fiy0 = _mm_setzero_ps();
544 fiz0 = _mm_setzero_ps();
545
546 /* Load parameters for i particles */
547 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
548
549 /* Start inner kernel loop */
550 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
551 {
552
553 /* Get j neighbor index, and coordinate index */
554 jnrA = jjnr[jidx];
555 jnrB = jjnr[jidx+1];
556 jnrC = jjnr[jidx+2];
557 jnrD = jjnr[jidx+3];
558 j_coord_offsetA = DIM3*jnrA;
559 j_coord_offsetB = DIM3*jnrB;
560 j_coord_offsetC = DIM3*jnrC;
561 j_coord_offsetD = DIM3*jnrD;
562
563 /* load j atom coordinates */
564 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
565 x+j_coord_offsetC,x+j_coord_offsetD,
566 &jx0,&jy0,&jz0);
567
568 /* Calculate displacement vector */
569 dx00 = _mm_sub_ps(ix0,jx0);
570 dy00 = _mm_sub_ps(iy0,jy0);
571 dz00 = _mm_sub_ps(iz0,jz0);
572
573 /* Calculate squared distance and things based on it */
574 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
575
576 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
577
578 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
579
580 /* Load parameters for j particles */
581 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
582 charge+jnrC+0,charge+jnrD+0);
583
584 /**************************
585 * CALCULATE INTERACTIONS *
586 **************************/
587
588 if (gmx_mm_any_lt(rsq00,rcutoff2))
589 {
590
591 r00 = _mm_mul_ps(rsq00,rinv00);
592
593 /* Compute parameters for interactions between i and j atoms */
594 qq00 = _mm_mul_ps(iq0,jq0);
595
596 /* EWALD ELECTROSTATICS */
597
598 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599 ewrt = _mm_mul_ps(r00,ewtabscale);
600 ewitab = _mm_cvttps_epi32(ewrt);
601 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
602 ewitab = _mm_slli_epi32(ewitab,2);
603 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
604 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
605 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
606 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
607 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
608 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
609 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
610 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
611 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
612
613 d = _mm_sub_ps(r00,rswitch);
614 d = _mm_max_ps(d,_mm_setzero_ps());
615 d2 = _mm_mul_ps(d,d);
616 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
617
618 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
619
620 /* Evaluate switch function */
621 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
622 felec = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
623 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
624
625 fscal = felec;
626
627 fscal = _mm_and_ps(fscal,cutoff_mask);
628
629 /* Calculate temporary vectorial force */
630 tx = _mm_mul_ps(fscal,dx00);
631 ty = _mm_mul_ps(fscal,dy00);
632 tz = _mm_mul_ps(fscal,dz00);
633
634 /* Update vectorial force */
635 fix0 = _mm_add_ps(fix0,tx);
636 fiy0 = _mm_add_ps(fiy0,ty);
637 fiz0 = _mm_add_ps(fiz0,tz);
638
639 fjptrA = f+j_coord_offsetA;
640 fjptrB = f+j_coord_offsetB;
641 fjptrC = f+j_coord_offsetC;
642 fjptrD = f+j_coord_offsetD;
643 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
644
645 }
646
647 /* Inner loop uses 62 flops */
648 }
649
650 if(jidx<j_index_end)
651 {
652
653 /* Get j neighbor index, and coordinate index */
654 jnrlistA = jjnr[jidx];
655 jnrlistB = jjnr[jidx+1];
656 jnrlistC = jjnr[jidx+2];
657 jnrlistD = jjnr[jidx+3];
658 /* Sign of each element will be negative for non-real atoms.
659 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
660 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
661 */
662 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
663 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
664 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
665 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
666 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
667 j_coord_offsetA = DIM3*jnrA;
668 j_coord_offsetB = DIM3*jnrB;
669 j_coord_offsetC = DIM3*jnrC;
670 j_coord_offsetD = DIM3*jnrD;
671
672 /* load j atom coordinates */
673 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
674 x+j_coord_offsetC,x+j_coord_offsetD,
675 &jx0,&jy0,&jz0);
676
677 /* Calculate displacement vector */
678 dx00 = _mm_sub_ps(ix0,jx0);
679 dy00 = _mm_sub_ps(iy0,jy0);
680 dz00 = _mm_sub_ps(iz0,jz0);
681
682 /* Calculate squared distance and things based on it */
683 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
684
685 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
686
687 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
688
689 /* Load parameters for j particles */
690 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
691 charge+jnrC+0,charge+jnrD+0);
692
693 /**************************
694 * CALCULATE INTERACTIONS *
695 **************************/
696
697 if (gmx_mm_any_lt(rsq00,rcutoff2))
698 {
699
700 r00 = _mm_mul_ps(rsq00,rinv00);
701 r00 = _mm_andnot_ps(dummy_mask,r00);
702
703 /* Compute parameters for interactions between i and j atoms */
704 qq00 = _mm_mul_ps(iq0,jq0);
705
706 /* EWALD ELECTROSTATICS */
707
708 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
709 ewrt = _mm_mul_ps(r00,ewtabscale);
710 ewitab = _mm_cvttps_epi32(ewrt);
711 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
712 ewitab = _mm_slli_epi32(ewitab,2);
713 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
714 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
715 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
716 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
717 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
718 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
719 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
720 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
721 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
722
723 d = _mm_sub_ps(r00,rswitch);
724 d = _mm_max_ps(d,_mm_setzero_ps());
725 d2 = _mm_mul_ps(d,d);
726 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
727
728 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
729
730 /* Evaluate switch function */
731 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
732 felec = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
733 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
734
735 fscal = felec;
736
737 fscal = _mm_and_ps(fscal,cutoff_mask);
738
739 fscal = _mm_andnot_ps(dummy_mask,fscal);
740
741 /* Calculate temporary vectorial force */
742 tx = _mm_mul_ps(fscal,dx00);
743 ty = _mm_mul_ps(fscal,dy00);
744 tz = _mm_mul_ps(fscal,dz00);
745
746 /* Update vectorial force */
747 fix0 = _mm_add_ps(fix0,tx);
748 fiy0 = _mm_add_ps(fiy0,ty);
749 fiz0 = _mm_add_ps(fiz0,tz);
750
751 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
752 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
753 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
754 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
755 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
756
757 }
758
759 /* Inner loop uses 63 flops */
760 }
761
762 /* End of innermost loop */
763
764 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
765 f+i_coord_offset,fshift+i_shift_offset);
766
767 /* Increment number of inner iterations */
768 inneriter += j_index_end - j_index_start;
769
770 /* Outer loop uses 7 flops */
771 }
772
773 /* Increment number of outer iterations */
774 outeriter += nri;
775
776 /* Update outer/inner flops */
777
778 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*63)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*7 + inneriter*
63
;
779}