Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_c.c
Location:line 422, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_c
51 * Electrostatics interaction: Coulomb
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int vfitab;
90 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
91 real *vftab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 vftab = kernel_data->table_vdw->data;
111 vftabscale = kernel_data->table_vdw->scale;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq0 = facel*charge[inr+0];
116 iq1 = facel*charge[inr+1];
117 iq2 = facel*charge[inr+2];
118 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
119
120 outeriter = 0;
121 inneriter = 0;
122
123 /* Start outer loop over neighborlists */
124 for(iidx=0; iidx<nri; iidx++)
125 {
126 /* Load shift vector for this list */
127 i_shift_offset = DIM3*shiftidx[iidx];
128 shX = shiftvec[i_shift_offset+XX0];
129 shY = shiftvec[i_shift_offset+YY1];
130 shZ = shiftvec[i_shift_offset+ZZ2];
131
132 /* Load limits for loop over neighbors */
133 j_index_start = jindex[iidx];
134 j_index_end = jindex[iidx+1];
135
136 /* Get outer coordinate index */
137 inr = iinr[iidx];
138 i_coord_offset = DIM3*inr;
139
140 /* Load i particle coords and add shift vector */
141 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
142 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
143 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
144 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
145 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
146 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
147 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
148 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
149 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
150
151 fix0 = 0.0;
152 fiy0 = 0.0;
153 fiz0 = 0.0;
154 fix1 = 0.0;
155 fiy1 = 0.0;
156 fiz1 = 0.0;
157 fix2 = 0.0;
158 fiy2 = 0.0;
159 fiz2 = 0.0;
160
161 /* Reset potential sums */
162 velecsum = 0.0;
163 vvdwsum = 0.0;
164
165 /* Start inner kernel loop */
166 for(jidx=j_index_start; jidx<j_index_end; jidx++)
167 {
168 /* Get j neighbor index, and coordinate index */
169 jnr = jjnr[jidx];
170 j_coord_offset = DIM3*jnr;
171
172 /* load j atom coordinates */
173 jx0 = x[j_coord_offset+DIM3*0+XX0];
174 jy0 = x[j_coord_offset+DIM3*0+YY1];
175 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
176
177 /* Calculate displacement vector */
178 dx00 = ix0 - jx0;
179 dy00 = iy0 - jy0;
180 dz00 = iz0 - jz0;
181 dx10 = ix1 - jx0;
182 dy10 = iy1 - jy0;
183 dz10 = iz1 - jz0;
184 dx20 = ix2 - jx0;
185 dy20 = iy2 - jy0;
186 dz20 = iz2 - jz0;
187
188 /* Calculate squared distance and things based on it */
189 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
190 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
191 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
192
193 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
194 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
195 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
196
197 rinvsq00 = rinv00*rinv00;
198 rinvsq10 = rinv10*rinv10;
199 rinvsq20 = rinv20*rinv20;
200
201 /* Load parameters for j particles */
202 jq0 = charge[jnr+0];
203 vdwjidx0 = 2*vdwtype[jnr+0];
204
205 /**************************
206 * CALCULATE INTERACTIONS *
207 **************************/
208
209 r00 = rsq00*rinv00;
210
211 qq00 = iq0*jq0;
212 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
213 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
214
215 /* Calculate table index by multiplying r with table scale and truncate to integer */
216 rt = r00*vftabscale;
217 vfitab = rt;
218 vfeps = rt-vfitab;
219 vfitab = 2*4*vfitab;
220
221 /* COULOMB ELECTROSTATICS */
222 velec = qq00*rinv00;
223 felec = velec*rinvsq00;
224
225 /* CUBIC SPLINE TABLE DISPERSION */
226 vfitab += 0;
227 Y = vftab[vfitab];
228 F = vftab[vfitab+1];
229 Geps = vfeps*vftab[vfitab+2];
230 Heps2 = vfeps*vfeps*vftab[vfitab+3];
231 Fp = F+Geps+Heps2;
232 VV = Y+vfeps*Fp;
233 vvdw6 = c6_00*VV;
234 FF = Fp+Geps+2.0*Heps2;
235 fvdw6 = c6_00*FF;
236
237 /* CUBIC SPLINE TABLE REPULSION */
238 Y = vftab[vfitab+4];
239 F = vftab[vfitab+5];
240 Geps = vfeps*vftab[vfitab+6];
241 Heps2 = vfeps*vfeps*vftab[vfitab+7];
242 Fp = F+Geps+Heps2;
243 VV = Y+vfeps*Fp;
244 vvdw12 = c12_00*VV;
245 FF = Fp+Geps+2.0*Heps2;
246 fvdw12 = c12_00*FF;
247 vvdw = vvdw12+vvdw6;
248 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
249
250 /* Update potential sums from outer loop */
251 velecsum += velec;
252 vvdwsum += vvdw;
253
254 fscal = felec+fvdw;
255
256 /* Calculate temporary vectorial force */
257 tx = fscal*dx00;
258 ty = fscal*dy00;
259 tz = fscal*dz00;
260
261 /* Update vectorial force */
262 fix0 += tx;
263 fiy0 += ty;
264 fiz0 += tz;
265 f[j_coord_offset+DIM3*0+XX0] -= tx;
266 f[j_coord_offset+DIM3*0+YY1] -= ty;
267 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
268
269 /**************************
270 * CALCULATE INTERACTIONS *
271 **************************/
272
273 qq10 = iq1*jq0;
274
275 /* COULOMB ELECTROSTATICS */
276 velec = qq10*rinv10;
277 felec = velec*rinvsq10;
278
279 /* Update potential sums from outer loop */
280 velecsum += velec;
281
282 fscal = felec;
283
284 /* Calculate temporary vectorial force */
285 tx = fscal*dx10;
286 ty = fscal*dy10;
287 tz = fscal*dz10;
288
289 /* Update vectorial force */
290 fix1 += tx;
291 fiy1 += ty;
292 fiz1 += tz;
293 f[j_coord_offset+DIM3*0+XX0] -= tx;
294 f[j_coord_offset+DIM3*0+YY1] -= ty;
295 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
296
297 /**************************
298 * CALCULATE INTERACTIONS *
299 **************************/
300
301 qq20 = iq2*jq0;
302
303 /* COULOMB ELECTROSTATICS */
304 velec = qq20*rinv20;
305 felec = velec*rinvsq20;
306
307 /* Update potential sums from outer loop */
308 velecsum += velec;
309
310 fscal = felec;
311
312 /* Calculate temporary vectorial force */
313 tx = fscal*dx20;
314 ty = fscal*dy20;
315 tz = fscal*dz20;
316
317 /* Update vectorial force */
318 fix2 += tx;
319 fiy2 += ty;
320 fiz2 += tz;
321 f[j_coord_offset+DIM3*0+XX0] -= tx;
322 f[j_coord_offset+DIM3*0+YY1] -= ty;
323 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
324
325 /* Inner loop uses 118 flops */
326 }
327 /* End of innermost loop */
328
329 tx = ty = tz = 0;
330 f[i_coord_offset+DIM3*0+XX0] += fix0;
331 f[i_coord_offset+DIM3*0+YY1] += fiy0;
332 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
333 tx += fix0;
334 ty += fiy0;
335 tz += fiz0;
336 f[i_coord_offset+DIM3*1+XX0] += fix1;
337 f[i_coord_offset+DIM3*1+YY1] += fiy1;
338 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
339 tx += fix1;
340 ty += fiy1;
341 tz += fiz1;
342 f[i_coord_offset+DIM3*2+XX0] += fix2;
343 f[i_coord_offset+DIM3*2+YY1] += fiy2;
344 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
345 tx += fix2;
346 ty += fiy2;
347 tz += fiz2;
348 fshift[i_shift_offset+XX0] += tx;
349 fshift[i_shift_offset+YY1] += ty;
350 fshift[i_shift_offset+ZZ2] += tz;
351
352 ggid = gid[iidx];
353 /* Update potential energies */
354 kernel_data->energygrp_elec[ggid] += velecsum;
355 kernel_data->energygrp_vdw[ggid] += vvdwsum;
356
357 /* Increment number of inner iterations */
358 inneriter += j_index_end - j_index_start;
359
360 /* Outer loop uses 32 flops */
361 }
362
363 /* Increment number of outer iterations */
364 outeriter += nri;
365
366 /* Update outer/inner flops */
367
368 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*118)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*118
;
369}
370/*
371 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_c
372 * Electrostatics interaction: Coulomb
373 * VdW interaction: CubicSplineTable
374 * Geometry: Water3-Particle
375 * Calculate force/pot: Force
376 */
377void
378nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_c
379 (t_nblist * gmx_restrict__restrict nlist,
380 rvec * gmx_restrict__restrict xx,
381 rvec * gmx_restrict__restrict ff,
382 t_forcerec * gmx_restrict__restrict fr,
383 t_mdatoms * gmx_restrict__restrict mdatoms,
384 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
385 t_nrnb * gmx_restrict__restrict nrnb)
386{
387 int i_shift_offset,i_coord_offset,j_coord_offset;
388 int j_index_start,j_index_end;
389 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
390 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
391 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
392 real *shiftvec,*fshift,*x,*f;
393 int vdwioffset0;
394 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
395 int vdwioffset1;
396 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
397 int vdwioffset2;
398 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
399 int vdwjidx0;
400 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
401 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
402 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
403 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
404 real velec,felec,velecsum,facel,crf,krf,krf2;
405 real *charge;
406 int nvdwtype;
407 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
408 int *vdwtype;
409 real *vdwparam;
410 int vfitab;
411 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
412 real *vftab;
413
414 x = xx[0];
415 f = ff[0];
416
417 nri = nlist->nri;
418 iinr = nlist->iinr;
419 jindex = nlist->jindex;
420 jjnr = nlist->jjnr;
421 shiftidx = nlist->shift;
422 gid = nlist->gid;
Value stored to 'gid' is never read
423 shiftvec = fr->shift_vec[0];
424 fshift = fr->fshift[0];
425 facel = fr->epsfac;
426 charge = mdatoms->chargeA;
427 nvdwtype = fr->ntype;
428 vdwparam = fr->nbfp;
429 vdwtype = mdatoms->typeA;
430
431 vftab = kernel_data->table_vdw->data;
432 vftabscale = kernel_data->table_vdw->scale;
433
434 /* Setup water-specific parameters */
435 inr = nlist->iinr[0];
436 iq0 = facel*charge[inr+0];
437 iq1 = facel*charge[inr+1];
438 iq2 = facel*charge[inr+2];
439 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
440
441 outeriter = 0;
442 inneriter = 0;
443
444 /* Start outer loop over neighborlists */
445 for(iidx=0; iidx<nri; iidx++)
446 {
447 /* Load shift vector for this list */
448 i_shift_offset = DIM3*shiftidx[iidx];
449 shX = shiftvec[i_shift_offset+XX0];
450 shY = shiftvec[i_shift_offset+YY1];
451 shZ = shiftvec[i_shift_offset+ZZ2];
452
453 /* Load limits for loop over neighbors */
454 j_index_start = jindex[iidx];
455 j_index_end = jindex[iidx+1];
456
457 /* Get outer coordinate index */
458 inr = iinr[iidx];
459 i_coord_offset = DIM3*inr;
460
461 /* Load i particle coords and add shift vector */
462 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
463 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
464 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
465 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
466 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
467 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
468 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
469 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
470 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
471
472 fix0 = 0.0;
473 fiy0 = 0.0;
474 fiz0 = 0.0;
475 fix1 = 0.0;
476 fiy1 = 0.0;
477 fiz1 = 0.0;
478 fix2 = 0.0;
479 fiy2 = 0.0;
480 fiz2 = 0.0;
481
482 /* Start inner kernel loop */
483 for(jidx=j_index_start; jidx<j_index_end; jidx++)
484 {
485 /* Get j neighbor index, and coordinate index */
486 jnr = jjnr[jidx];
487 j_coord_offset = DIM3*jnr;
488
489 /* load j atom coordinates */
490 jx0 = x[j_coord_offset+DIM3*0+XX0];
491 jy0 = x[j_coord_offset+DIM3*0+YY1];
492 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
493
494 /* Calculate displacement vector */
495 dx00 = ix0 - jx0;
496 dy00 = iy0 - jy0;
497 dz00 = iz0 - jz0;
498 dx10 = ix1 - jx0;
499 dy10 = iy1 - jy0;
500 dz10 = iz1 - jz0;
501 dx20 = ix2 - jx0;
502 dy20 = iy2 - jy0;
503 dz20 = iz2 - jz0;
504
505 /* Calculate squared distance and things based on it */
506 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
507 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
508 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
509
510 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
511 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
512 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
513
514 rinvsq00 = rinv00*rinv00;
515 rinvsq10 = rinv10*rinv10;
516 rinvsq20 = rinv20*rinv20;
517
518 /* Load parameters for j particles */
519 jq0 = charge[jnr+0];
520 vdwjidx0 = 2*vdwtype[jnr+0];
521
522 /**************************
523 * CALCULATE INTERACTIONS *
524 **************************/
525
526 r00 = rsq00*rinv00;
527
528 qq00 = iq0*jq0;
529 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
530 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
531
532 /* Calculate table index by multiplying r with table scale and truncate to integer */
533 rt = r00*vftabscale;
534 vfitab = rt;
535 vfeps = rt-vfitab;
536 vfitab = 2*4*vfitab;
537
538 /* COULOMB ELECTROSTATICS */
539 velec = qq00*rinv00;
540 felec = velec*rinvsq00;
541
542 /* CUBIC SPLINE TABLE DISPERSION */
543 vfitab += 0;
544 F = vftab[vfitab+1];
545 Geps = vfeps*vftab[vfitab+2];
546 Heps2 = vfeps*vfeps*vftab[vfitab+3];
547 Fp = F+Geps+Heps2;
548 FF = Fp+Geps+2.0*Heps2;
549 fvdw6 = c6_00*FF;
550
551 /* CUBIC SPLINE TABLE REPULSION */
552 F = vftab[vfitab+5];
553 Geps = vfeps*vftab[vfitab+6];
554 Heps2 = vfeps*vfeps*vftab[vfitab+7];
555 Fp = F+Geps+Heps2;
556 FF = Fp+Geps+2.0*Heps2;
557 fvdw12 = c12_00*FF;
558 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
559
560 fscal = felec+fvdw;
561
562 /* Calculate temporary vectorial force */
563 tx = fscal*dx00;
564 ty = fscal*dy00;
565 tz = fscal*dz00;
566
567 /* Update vectorial force */
568 fix0 += tx;
569 fiy0 += ty;
570 fiz0 += tz;
571 f[j_coord_offset+DIM3*0+XX0] -= tx;
572 f[j_coord_offset+DIM3*0+YY1] -= ty;
573 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
574
575 /**************************
576 * CALCULATE INTERACTIONS *
577 **************************/
578
579 qq10 = iq1*jq0;
580
581 /* COULOMB ELECTROSTATICS */
582 velec = qq10*rinv10;
583 felec = velec*rinvsq10;
584
585 fscal = felec;
586
587 /* Calculate temporary vectorial force */
588 tx = fscal*dx10;
589 ty = fscal*dy10;
590 tz = fscal*dz10;
591
592 /* Update vectorial force */
593 fix1 += tx;
594 fiy1 += ty;
595 fiz1 += tz;
596 f[j_coord_offset+DIM3*0+XX0] -= tx;
597 f[j_coord_offset+DIM3*0+YY1] -= ty;
598 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
599
600 /**************************
601 * CALCULATE INTERACTIONS *
602 **************************/
603
604 qq20 = iq2*jq0;
605
606 /* COULOMB ELECTROSTATICS */
607 velec = qq20*rinv20;
608 felec = velec*rinvsq20;
609
610 fscal = felec;
611
612 /* Calculate temporary vectorial force */
613 tx = fscal*dx20;
614 ty = fscal*dy20;
615 tz = fscal*dz20;
616
617 /* Update vectorial force */
618 fix2 += tx;
619 fiy2 += ty;
620 fiz2 += tz;
621 f[j_coord_offset+DIM3*0+XX0] -= tx;
622 f[j_coord_offset+DIM3*0+YY1] -= ty;
623 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
624
625 /* Inner loop uses 107 flops */
626 }
627 /* End of innermost loop */
628
629 tx = ty = tz = 0;
630 f[i_coord_offset+DIM3*0+XX0] += fix0;
631 f[i_coord_offset+DIM3*0+YY1] += fiy0;
632 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
633 tx += fix0;
634 ty += fiy0;
635 tz += fiz0;
636 f[i_coord_offset+DIM3*1+XX0] += fix1;
637 f[i_coord_offset+DIM3*1+YY1] += fiy1;
638 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
639 tx += fix1;
640 ty += fiy1;
641 tz += fiz1;
642 f[i_coord_offset+DIM3*2+XX0] += fix2;
643 f[i_coord_offset+DIM3*2+YY1] += fiy2;
644 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
645 tx += fix2;
646 ty += fiy2;
647 tz += fiz2;
648 fshift[i_shift_offset+XX0] += tx;
649 fshift[i_shift_offset+YY1] += ty;
650 fshift[i_shift_offset+ZZ2] += tz;
651
652 /* Increment number of inner iterations */
653 inneriter += j_index_end - j_index_start;
654
655 /* Outer loop uses 30 flops */
656 }
657
658 /* Increment number of outer iterations */
659 outeriter += nri;
660
661 /* Update outer/inner flops */
662
663 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*107)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*107
;
664}