Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse4_1_single.c
Location:line 141, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: LennardJones
56 * Geometry: Water3-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 int nvdwtype;
99 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100 int *vdwtype;
101 real *vdwparam;
102 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
103 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
104 __m128 dummy_mask,cutoff_mask;
105 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106 __m128 one = _mm_set1_ps(1.0);
107 __m128 two = _mm_set1_ps(2.0);
108 x = xx[0];
109 f = ff[0];
110
111 nri = nlist->nri;
112 iinr = nlist->iinr;
113 jindex = nlist->jindex;
114 jjnr = nlist->jjnr;
115 shiftidx = nlist->shift;
116 gid = nlist->gid;
117 shiftvec = fr->shift_vec[0];
118 fshift = fr->fshift[0];
119 facel = _mm_set1_ps(fr->epsfac);
120 charge = mdatoms->chargeA;
121 krf = _mm_set1_ps(fr->ic->k_rf);
122 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
123 crf = _mm_set1_ps(fr->ic->c_rf);
124 nvdwtype = fr->ntype;
125 vdwparam = fr->nbfp;
126 vdwtype = mdatoms->typeA;
127
128 /* Setup water-specific parameters */
129 inr = nlist->iinr[0];
130 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
134
135 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136 rcutoff_scalar = fr->rcoulomb;
137 rcutoff = _mm_set1_ps(rcutoff_scalar);
138 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
139
140 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
141 rvdw = _mm_set1_ps(fr->rvdw);
Value stored to 'rvdw' is never read
142
143 /* Avoid stupid compiler warnings */
144 jnrA = jnrB = jnrC = jnrD = 0;
145 j_coord_offsetA = 0;
146 j_coord_offsetB = 0;
147 j_coord_offsetC = 0;
148 j_coord_offsetD = 0;
149
150 outeriter = 0;
151 inneriter = 0;
152
153 for(iidx=0;iidx<4*DIM3;iidx++)
154 {
155 scratch[iidx] = 0.0;
156 }
157
158 /* Start outer loop over neighborlists */
159 for(iidx=0; iidx<nri; iidx++)
160 {
161 /* Load shift vector for this list */
162 i_shift_offset = DIM3*shiftidx[iidx];
163
164 /* Load limits for loop over neighbors */
165 j_index_start = jindex[iidx];
166 j_index_end = jindex[iidx+1];
167
168 /* Get outer coordinate index */
169 inr = iinr[iidx];
170 i_coord_offset = DIM3*inr;
171
172 /* Load i particle coords and add shift vector */
173 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
175
176 fix0 = _mm_setzero_ps();
177 fiy0 = _mm_setzero_ps();
178 fiz0 = _mm_setzero_ps();
179 fix1 = _mm_setzero_ps();
180 fiy1 = _mm_setzero_ps();
181 fiz1 = _mm_setzero_ps();
182 fix2 = _mm_setzero_ps();
183 fiy2 = _mm_setzero_ps();
184 fiz2 = _mm_setzero_ps();
185
186 /* Reset potential sums */
187 velecsum = _mm_setzero_ps();
188 vvdwsum = _mm_setzero_ps();
189
190 /* Start inner kernel loop */
191 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192 {
193
194 /* Get j neighbor index, and coordinate index */
195 jnrA = jjnr[jidx];
196 jnrB = jjnr[jidx+1];
197 jnrC = jjnr[jidx+2];
198 jnrD = jjnr[jidx+3];
199 j_coord_offsetA = DIM3*jnrA;
200 j_coord_offsetB = DIM3*jnrB;
201 j_coord_offsetC = DIM3*jnrC;
202 j_coord_offsetD = DIM3*jnrD;
203
204 /* load j atom coordinates */
205 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206 x+j_coord_offsetC,x+j_coord_offsetD,
207 &jx0,&jy0,&jz0);
208
209 /* Calculate displacement vector */
210 dx00 = _mm_sub_ps(ix0,jx0);
211 dy00 = _mm_sub_ps(iy0,jy0);
212 dz00 = _mm_sub_ps(iz0,jz0);
213 dx10 = _mm_sub_ps(ix1,jx0);
214 dy10 = _mm_sub_ps(iy1,jy0);
215 dz10 = _mm_sub_ps(iz1,jz0);
216 dx20 = _mm_sub_ps(ix2,jx0);
217 dy20 = _mm_sub_ps(iy2,jy0);
218 dz20 = _mm_sub_ps(iz2,jz0);
219
220 /* Calculate squared distance and things based on it */
221 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
222 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
223 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
224
225 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
226 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
227 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
228
229 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
230 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
231 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
232
233 /* Load parameters for j particles */
234 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235 charge+jnrC+0,charge+jnrD+0);
236 vdwjidx0A = 2*vdwtype[jnrA+0];
237 vdwjidx0B = 2*vdwtype[jnrB+0];
238 vdwjidx0C = 2*vdwtype[jnrC+0];
239 vdwjidx0D = 2*vdwtype[jnrD+0];
240
241 fjx0 = _mm_setzero_ps();
242 fjy0 = _mm_setzero_ps();
243 fjz0 = _mm_setzero_ps();
244
245 /**************************
246 * CALCULATE INTERACTIONS *
247 **************************/
248
249 if (gmx_mm_any_lt(rsq00,rcutoff2))
250 {
251
252 /* Compute parameters for interactions between i and j atoms */
253 qq00 = _mm_mul_ps(iq0,jq0);
254 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
255 vdwparam+vdwioffset0+vdwjidx0B,
256 vdwparam+vdwioffset0+vdwjidx0C,
257 vdwparam+vdwioffset0+vdwjidx0D,
258 &c6_00,&c12_00);
259
260 /* REACTION-FIELD ELECTROSTATICS */
261 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
262 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
263
264 /* LENNARD-JONES DISPERSION/REPULSION */
265
266 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
267 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
268 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
269 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
270 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
271 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
272
273 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
274
275 /* Update potential sum for this i atom from the interaction with this j atom. */
276 velec = _mm_and_ps(velec,cutoff_mask);
277 velecsum = _mm_add_ps(velecsum,velec);
278 vvdw = _mm_and_ps(vvdw,cutoff_mask);
279 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
280
281 fscal = _mm_add_ps(felec,fvdw);
282
283 fscal = _mm_and_ps(fscal,cutoff_mask);
284
285 /* Calculate temporary vectorial force */
286 tx = _mm_mul_ps(fscal,dx00);
287 ty = _mm_mul_ps(fscal,dy00);
288 tz = _mm_mul_ps(fscal,dz00);
289
290 /* Update vectorial force */
291 fix0 = _mm_add_ps(fix0,tx);
292 fiy0 = _mm_add_ps(fiy0,ty);
293 fiz0 = _mm_add_ps(fiz0,tz);
294
295 fjx0 = _mm_add_ps(fjx0,tx);
296 fjy0 = _mm_add_ps(fjy0,ty);
297 fjz0 = _mm_add_ps(fjz0,tz);
298
299 }
300
301 /**************************
302 * CALCULATE INTERACTIONS *
303 **************************/
304
305 if (gmx_mm_any_lt(rsq10,rcutoff2))
306 {
307
308 /* Compute parameters for interactions between i and j atoms */
309 qq10 = _mm_mul_ps(iq1,jq0);
310
311 /* REACTION-FIELD ELECTROSTATICS */
312 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
313 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
314
315 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
316
317 /* Update potential sum for this i atom from the interaction with this j atom. */
318 velec = _mm_and_ps(velec,cutoff_mask);
319 velecsum = _mm_add_ps(velecsum,velec);
320
321 fscal = felec;
322
323 fscal = _mm_and_ps(fscal,cutoff_mask);
324
325 /* Calculate temporary vectorial force */
326 tx = _mm_mul_ps(fscal,dx10);
327 ty = _mm_mul_ps(fscal,dy10);
328 tz = _mm_mul_ps(fscal,dz10);
329
330 /* Update vectorial force */
331 fix1 = _mm_add_ps(fix1,tx);
332 fiy1 = _mm_add_ps(fiy1,ty);
333 fiz1 = _mm_add_ps(fiz1,tz);
334
335 fjx0 = _mm_add_ps(fjx0,tx);
336 fjy0 = _mm_add_ps(fjy0,ty);
337 fjz0 = _mm_add_ps(fjz0,tz);
338
339 }
340
341 /**************************
342 * CALCULATE INTERACTIONS *
343 **************************/
344
345 if (gmx_mm_any_lt(rsq20,rcutoff2))
346 {
347
348 /* Compute parameters for interactions between i and j atoms */
349 qq20 = _mm_mul_ps(iq2,jq0);
350
351 /* REACTION-FIELD ELECTROSTATICS */
352 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
353 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
354
355 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
356
357 /* Update potential sum for this i atom from the interaction with this j atom. */
358 velec = _mm_and_ps(velec,cutoff_mask);
359 velecsum = _mm_add_ps(velecsum,velec);
360
361 fscal = felec;
362
363 fscal = _mm_and_ps(fscal,cutoff_mask);
364
365 /* Calculate temporary vectorial force */
366 tx = _mm_mul_ps(fscal,dx20);
367 ty = _mm_mul_ps(fscal,dy20);
368 tz = _mm_mul_ps(fscal,dz20);
369
370 /* Update vectorial force */
371 fix2 = _mm_add_ps(fix2,tx);
372 fiy2 = _mm_add_ps(fiy2,ty);
373 fiz2 = _mm_add_ps(fiz2,tz);
374
375 fjx0 = _mm_add_ps(fjx0,tx);
376 fjy0 = _mm_add_ps(fjy0,ty);
377 fjz0 = _mm_add_ps(fjz0,tz);
378
379 }
380
381 fjptrA = f+j_coord_offsetA;
382 fjptrB = f+j_coord_offsetB;
383 fjptrC = f+j_coord_offsetC;
384 fjptrD = f+j_coord_offsetD;
385
386 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
387
388 /* Inner loop uses 126 flops */
389 }
390
391 if(jidx<j_index_end)
392 {
393
394 /* Get j neighbor index, and coordinate index */
395 jnrlistA = jjnr[jidx];
396 jnrlistB = jjnr[jidx+1];
397 jnrlistC = jjnr[jidx+2];
398 jnrlistD = jjnr[jidx+3];
399 /* Sign of each element will be negative for non-real atoms.
400 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
401 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
402 */
403 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
404 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
405 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
406 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
407 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
408 j_coord_offsetA = DIM3*jnrA;
409 j_coord_offsetB = DIM3*jnrB;
410 j_coord_offsetC = DIM3*jnrC;
411 j_coord_offsetD = DIM3*jnrD;
412
413 /* load j atom coordinates */
414 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
415 x+j_coord_offsetC,x+j_coord_offsetD,
416 &jx0,&jy0,&jz0);
417
418 /* Calculate displacement vector */
419 dx00 = _mm_sub_ps(ix0,jx0);
420 dy00 = _mm_sub_ps(iy0,jy0);
421 dz00 = _mm_sub_ps(iz0,jz0);
422 dx10 = _mm_sub_ps(ix1,jx0);
423 dy10 = _mm_sub_ps(iy1,jy0);
424 dz10 = _mm_sub_ps(iz1,jz0);
425 dx20 = _mm_sub_ps(ix2,jx0);
426 dy20 = _mm_sub_ps(iy2,jy0);
427 dz20 = _mm_sub_ps(iz2,jz0);
428
429 /* Calculate squared distance and things based on it */
430 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
431 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
432 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
433
434 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
435 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
436 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
437
438 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
439 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
440 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
441
442 /* Load parameters for j particles */
443 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
444 charge+jnrC+0,charge+jnrD+0);
445 vdwjidx0A = 2*vdwtype[jnrA+0];
446 vdwjidx0B = 2*vdwtype[jnrB+0];
447 vdwjidx0C = 2*vdwtype[jnrC+0];
448 vdwjidx0D = 2*vdwtype[jnrD+0];
449
450 fjx0 = _mm_setzero_ps();
451 fjy0 = _mm_setzero_ps();
452 fjz0 = _mm_setzero_ps();
453
454 /**************************
455 * CALCULATE INTERACTIONS *
456 **************************/
457
458 if (gmx_mm_any_lt(rsq00,rcutoff2))
459 {
460
461 /* Compute parameters for interactions between i and j atoms */
462 qq00 = _mm_mul_ps(iq0,jq0);
463 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
464 vdwparam+vdwioffset0+vdwjidx0B,
465 vdwparam+vdwioffset0+vdwjidx0C,
466 vdwparam+vdwioffset0+vdwjidx0D,
467 &c6_00,&c12_00);
468
469 /* REACTION-FIELD ELECTROSTATICS */
470 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
471 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
472
473 /* LENNARD-JONES DISPERSION/REPULSION */
474
475 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
476 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
477 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
478 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
479 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
480 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
481
482 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
483
484 /* Update potential sum for this i atom from the interaction with this j atom. */
485 velec = _mm_and_ps(velec,cutoff_mask);
486 velec = _mm_andnot_ps(dummy_mask,velec);
487 velecsum = _mm_add_ps(velecsum,velec);
488 vvdw = _mm_and_ps(vvdw,cutoff_mask);
489 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
490 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
491
492 fscal = _mm_add_ps(felec,fvdw);
493
494 fscal = _mm_and_ps(fscal,cutoff_mask);
495
496 fscal = _mm_andnot_ps(dummy_mask,fscal);
497
498 /* Calculate temporary vectorial force */
499 tx = _mm_mul_ps(fscal,dx00);
500 ty = _mm_mul_ps(fscal,dy00);
501 tz = _mm_mul_ps(fscal,dz00);
502
503 /* Update vectorial force */
504 fix0 = _mm_add_ps(fix0,tx);
505 fiy0 = _mm_add_ps(fiy0,ty);
506 fiz0 = _mm_add_ps(fiz0,tz);
507
508 fjx0 = _mm_add_ps(fjx0,tx);
509 fjy0 = _mm_add_ps(fjy0,ty);
510 fjz0 = _mm_add_ps(fjz0,tz);
511
512 }
513
514 /**************************
515 * CALCULATE INTERACTIONS *
516 **************************/
517
518 if (gmx_mm_any_lt(rsq10,rcutoff2))
519 {
520
521 /* Compute parameters for interactions between i and j atoms */
522 qq10 = _mm_mul_ps(iq1,jq0);
523
524 /* REACTION-FIELD ELECTROSTATICS */
525 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
526 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
527
528 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
529
530 /* Update potential sum for this i atom from the interaction with this j atom. */
531 velec = _mm_and_ps(velec,cutoff_mask);
532 velec = _mm_andnot_ps(dummy_mask,velec);
533 velecsum = _mm_add_ps(velecsum,velec);
534
535 fscal = felec;
536
537 fscal = _mm_and_ps(fscal,cutoff_mask);
538
539 fscal = _mm_andnot_ps(dummy_mask,fscal);
540
541 /* Calculate temporary vectorial force */
542 tx = _mm_mul_ps(fscal,dx10);
543 ty = _mm_mul_ps(fscal,dy10);
544 tz = _mm_mul_ps(fscal,dz10);
545
546 /* Update vectorial force */
547 fix1 = _mm_add_ps(fix1,tx);
548 fiy1 = _mm_add_ps(fiy1,ty);
549 fiz1 = _mm_add_ps(fiz1,tz);
550
551 fjx0 = _mm_add_ps(fjx0,tx);
552 fjy0 = _mm_add_ps(fjy0,ty);
553 fjz0 = _mm_add_ps(fjz0,tz);
554
555 }
556
557 /**************************
558 * CALCULATE INTERACTIONS *
559 **************************/
560
561 if (gmx_mm_any_lt(rsq20,rcutoff2))
562 {
563
564 /* Compute parameters for interactions between i and j atoms */
565 qq20 = _mm_mul_ps(iq2,jq0);
566
567 /* REACTION-FIELD ELECTROSTATICS */
568 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
569 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
570
571 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
572
573 /* Update potential sum for this i atom from the interaction with this j atom. */
574 velec = _mm_and_ps(velec,cutoff_mask);
575 velec = _mm_andnot_ps(dummy_mask,velec);
576 velecsum = _mm_add_ps(velecsum,velec);
577
578 fscal = felec;
579
580 fscal = _mm_and_ps(fscal,cutoff_mask);
581
582 fscal = _mm_andnot_ps(dummy_mask,fscal);
583
584 /* Calculate temporary vectorial force */
585 tx = _mm_mul_ps(fscal,dx20);
586 ty = _mm_mul_ps(fscal,dy20);
587 tz = _mm_mul_ps(fscal,dz20);
588
589 /* Update vectorial force */
590 fix2 = _mm_add_ps(fix2,tx);
591 fiy2 = _mm_add_ps(fiy2,ty);
592 fiz2 = _mm_add_ps(fiz2,tz);
593
594 fjx0 = _mm_add_ps(fjx0,tx);
595 fjy0 = _mm_add_ps(fjy0,ty);
596 fjz0 = _mm_add_ps(fjz0,tz);
597
598 }
599
600 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
601 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
602 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
603 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
604
605 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
606
607 /* Inner loop uses 126 flops */
608 }
609
610 /* End of innermost loop */
611
612 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
613 f+i_coord_offset,fshift+i_shift_offset);
614
615 ggid = gid[iidx];
616 /* Update potential energies */
617 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
618 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
619
620 /* Increment number of inner iterations */
621 inneriter += j_index_end - j_index_start;
622
623 /* Outer loop uses 20 flops */
624 }
625
626 /* Increment number of outer iterations */
627 outeriter += nri;
628
629 /* Update outer/inner flops */
630
631 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*126)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*20 + inneriter
*126
;
632}
633/*
634 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse4_1_single
635 * Electrostatics interaction: ReactionField
636 * VdW interaction: LennardJones
637 * Geometry: Water3-Particle
638 * Calculate force/pot: Force
639 */
640void
641nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse4_1_single
642 (t_nblist * gmx_restrict nlist,
643 rvec * gmx_restrict xx,
644 rvec * gmx_restrict ff,
645 t_forcerec * gmx_restrict fr,
646 t_mdatoms * gmx_restrict mdatoms,
647 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
648 t_nrnb * gmx_restrict nrnb)
649{
650 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
651 * just 0 for non-waters.
652 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
653 * jnr indices corresponding to data put in the four positions in the SIMD register.
654 */
655 int i_shift_offset,i_coord_offset,outeriter,inneriter;
656 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
657 int jnrA,jnrB,jnrC,jnrD;
658 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
659 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
660 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
661 real rcutoff_scalar;
662 real *shiftvec,*fshift,*x,*f;
663 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
664 real scratch[4*DIM3];
665 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
666 int vdwioffset0;
667 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
668 int vdwioffset1;
669 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
670 int vdwioffset2;
671 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
672 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
673 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
674 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
675 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
676 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
677 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
678 real *charge;
679 int nvdwtype;
680 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
681 int *vdwtype;
682 real *vdwparam;
683 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
684 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
685 __m128 dummy_mask,cutoff_mask;
686 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
687 __m128 one = _mm_set1_ps(1.0);
688 __m128 two = _mm_set1_ps(2.0);
689 x = xx[0];
690 f = ff[0];
691
692 nri = nlist->nri;
693 iinr = nlist->iinr;
694 jindex = nlist->jindex;
695 jjnr = nlist->jjnr;
696 shiftidx = nlist->shift;
697 gid = nlist->gid;
698 shiftvec = fr->shift_vec[0];
699 fshift = fr->fshift[0];
700 facel = _mm_set1_ps(fr->epsfac);
701 charge = mdatoms->chargeA;
702 krf = _mm_set1_ps(fr->ic->k_rf);
703 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
704 crf = _mm_set1_ps(fr->ic->c_rf);
705 nvdwtype = fr->ntype;
706 vdwparam = fr->nbfp;
707 vdwtype = mdatoms->typeA;
708
709 /* Setup water-specific parameters */
710 inr = nlist->iinr[0];
711 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
712 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
713 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
714 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
715
716 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
717 rcutoff_scalar = fr->rcoulomb;
718 rcutoff = _mm_set1_ps(rcutoff_scalar);
719 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
720
721 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
722 rvdw = _mm_set1_ps(fr->rvdw);
723
724 /* Avoid stupid compiler warnings */
725 jnrA = jnrB = jnrC = jnrD = 0;
726 j_coord_offsetA = 0;
727 j_coord_offsetB = 0;
728 j_coord_offsetC = 0;
729 j_coord_offsetD = 0;
730
731 outeriter = 0;
732 inneriter = 0;
733
734 for(iidx=0;iidx<4*DIM3;iidx++)
735 {
736 scratch[iidx] = 0.0;
737 }
738
739 /* Start outer loop over neighborlists */
740 for(iidx=0; iidx<nri; iidx++)
741 {
742 /* Load shift vector for this list */
743 i_shift_offset = DIM3*shiftidx[iidx];
744
745 /* Load limits for loop over neighbors */
746 j_index_start = jindex[iidx];
747 j_index_end = jindex[iidx+1];
748
749 /* Get outer coordinate index */
750 inr = iinr[iidx];
751 i_coord_offset = DIM3*inr;
752
753 /* Load i particle coords and add shift vector */
754 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
755 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
756
757 fix0 = _mm_setzero_ps();
758 fiy0 = _mm_setzero_ps();
759 fiz0 = _mm_setzero_ps();
760 fix1 = _mm_setzero_ps();
761 fiy1 = _mm_setzero_ps();
762 fiz1 = _mm_setzero_ps();
763 fix2 = _mm_setzero_ps();
764 fiy2 = _mm_setzero_ps();
765 fiz2 = _mm_setzero_ps();
766
767 /* Start inner kernel loop */
768 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
769 {
770
771 /* Get j neighbor index, and coordinate index */
772 jnrA = jjnr[jidx];
773 jnrB = jjnr[jidx+1];
774 jnrC = jjnr[jidx+2];
775 jnrD = jjnr[jidx+3];
776 j_coord_offsetA = DIM3*jnrA;
777 j_coord_offsetB = DIM3*jnrB;
778 j_coord_offsetC = DIM3*jnrC;
779 j_coord_offsetD = DIM3*jnrD;
780
781 /* load j atom coordinates */
782 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
783 x+j_coord_offsetC,x+j_coord_offsetD,
784 &jx0,&jy0,&jz0);
785
786 /* Calculate displacement vector */
787 dx00 = _mm_sub_ps(ix0,jx0);
788 dy00 = _mm_sub_ps(iy0,jy0);
789 dz00 = _mm_sub_ps(iz0,jz0);
790 dx10 = _mm_sub_ps(ix1,jx0);
791 dy10 = _mm_sub_ps(iy1,jy0);
792 dz10 = _mm_sub_ps(iz1,jz0);
793 dx20 = _mm_sub_ps(ix2,jx0);
794 dy20 = _mm_sub_ps(iy2,jy0);
795 dz20 = _mm_sub_ps(iz2,jz0);
796
797 /* Calculate squared distance and things based on it */
798 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
799 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
800 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
801
802 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
803 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
804 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
805
806 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
807 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
808 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
809
810 /* Load parameters for j particles */
811 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
812 charge+jnrC+0,charge+jnrD+0);
813 vdwjidx0A = 2*vdwtype[jnrA+0];
814 vdwjidx0B = 2*vdwtype[jnrB+0];
815 vdwjidx0C = 2*vdwtype[jnrC+0];
816 vdwjidx0D = 2*vdwtype[jnrD+0];
817
818 fjx0 = _mm_setzero_ps();
819 fjy0 = _mm_setzero_ps();
820 fjz0 = _mm_setzero_ps();
821
822 /**************************
823 * CALCULATE INTERACTIONS *
824 **************************/
825
826 if (gmx_mm_any_lt(rsq00,rcutoff2))
827 {
828
829 /* Compute parameters for interactions between i and j atoms */
830 qq00 = _mm_mul_ps(iq0,jq0);
831 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
832 vdwparam+vdwioffset0+vdwjidx0B,
833 vdwparam+vdwioffset0+vdwjidx0C,
834 vdwparam+vdwioffset0+vdwjidx0D,
835 &c6_00,&c12_00);
836
837 /* REACTION-FIELD ELECTROSTATICS */
838 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
839
840 /* LENNARD-JONES DISPERSION/REPULSION */
841
842 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
843 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
844
845 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
846
847 fscal = _mm_add_ps(felec,fvdw);
848
849 fscal = _mm_and_ps(fscal,cutoff_mask);
850
851 /* Calculate temporary vectorial force */
852 tx = _mm_mul_ps(fscal,dx00);
853 ty = _mm_mul_ps(fscal,dy00);
854 tz = _mm_mul_ps(fscal,dz00);
855
856 /* Update vectorial force */
857 fix0 = _mm_add_ps(fix0,tx);
858 fiy0 = _mm_add_ps(fiy0,ty);
859 fiz0 = _mm_add_ps(fiz0,tz);
860
861 fjx0 = _mm_add_ps(fjx0,tx);
862 fjy0 = _mm_add_ps(fjy0,ty);
863 fjz0 = _mm_add_ps(fjz0,tz);
864
865 }
866
867 /**************************
868 * CALCULATE INTERACTIONS *
869 **************************/
870
871 if (gmx_mm_any_lt(rsq10,rcutoff2))
872 {
873
874 /* Compute parameters for interactions between i and j atoms */
875 qq10 = _mm_mul_ps(iq1,jq0);
876
877 /* REACTION-FIELD ELECTROSTATICS */
878 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
879
880 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
881
882 fscal = felec;
883
884 fscal = _mm_and_ps(fscal,cutoff_mask);
885
886 /* Calculate temporary vectorial force */
887 tx = _mm_mul_ps(fscal,dx10);
888 ty = _mm_mul_ps(fscal,dy10);
889 tz = _mm_mul_ps(fscal,dz10);
890
891 /* Update vectorial force */
892 fix1 = _mm_add_ps(fix1,tx);
893 fiy1 = _mm_add_ps(fiy1,ty);
894 fiz1 = _mm_add_ps(fiz1,tz);
895
896 fjx0 = _mm_add_ps(fjx0,tx);
897 fjy0 = _mm_add_ps(fjy0,ty);
898 fjz0 = _mm_add_ps(fjz0,tz);
899
900 }
901
902 /**************************
903 * CALCULATE INTERACTIONS *
904 **************************/
905
906 if (gmx_mm_any_lt(rsq20,rcutoff2))
907 {
908
909 /* Compute parameters for interactions between i and j atoms */
910 qq20 = _mm_mul_ps(iq2,jq0);
911
912 /* REACTION-FIELD ELECTROSTATICS */
913 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
914
915 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
916
917 fscal = felec;
918
919 fscal = _mm_and_ps(fscal,cutoff_mask);
920
921 /* Calculate temporary vectorial force */
922 tx = _mm_mul_ps(fscal,dx20);
923 ty = _mm_mul_ps(fscal,dy20);
924 tz = _mm_mul_ps(fscal,dz20);
925
926 /* Update vectorial force */
927 fix2 = _mm_add_ps(fix2,tx);
928 fiy2 = _mm_add_ps(fiy2,ty);
929 fiz2 = _mm_add_ps(fiz2,tz);
930
931 fjx0 = _mm_add_ps(fjx0,tx);
932 fjy0 = _mm_add_ps(fjy0,ty);
933 fjz0 = _mm_add_ps(fjz0,tz);
934
935 }
936
937 fjptrA = f+j_coord_offsetA;
938 fjptrB = f+j_coord_offsetB;
939 fjptrC = f+j_coord_offsetC;
940 fjptrD = f+j_coord_offsetD;
941
942 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
943
944 /* Inner loop uses 97 flops */
945 }
946
947 if(jidx<j_index_end)
948 {
949
950 /* Get j neighbor index, and coordinate index */
951 jnrlistA = jjnr[jidx];
952 jnrlistB = jjnr[jidx+1];
953 jnrlistC = jjnr[jidx+2];
954 jnrlistD = jjnr[jidx+3];
955 /* Sign of each element will be negative for non-real atoms.
956 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
957 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
958 */
959 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
960 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
961 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
962 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
963 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
964 j_coord_offsetA = DIM3*jnrA;
965 j_coord_offsetB = DIM3*jnrB;
966 j_coord_offsetC = DIM3*jnrC;
967 j_coord_offsetD = DIM3*jnrD;
968
969 /* load j atom coordinates */
970 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
971 x+j_coord_offsetC,x+j_coord_offsetD,
972 &jx0,&jy0,&jz0);
973
974 /* Calculate displacement vector */
975 dx00 = _mm_sub_ps(ix0,jx0);
976 dy00 = _mm_sub_ps(iy0,jy0);
977 dz00 = _mm_sub_ps(iz0,jz0);
978 dx10 = _mm_sub_ps(ix1,jx0);
979 dy10 = _mm_sub_ps(iy1,jy0);
980 dz10 = _mm_sub_ps(iz1,jz0);
981 dx20 = _mm_sub_ps(ix2,jx0);
982 dy20 = _mm_sub_ps(iy2,jy0);
983 dz20 = _mm_sub_ps(iz2,jz0);
984
985 /* Calculate squared distance and things based on it */
986 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
987 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
988 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
989
990 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
991 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
992 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
993
994 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
995 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
996 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
997
998 /* Load parameters for j particles */
999 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1000 charge+jnrC+0,charge+jnrD+0);
1001 vdwjidx0A = 2*vdwtype[jnrA+0];
1002 vdwjidx0B = 2*vdwtype[jnrB+0];
1003 vdwjidx0C = 2*vdwtype[jnrC+0];
1004 vdwjidx0D = 2*vdwtype[jnrD+0];
1005
1006 fjx0 = _mm_setzero_ps();
1007 fjy0 = _mm_setzero_ps();
1008 fjz0 = _mm_setzero_ps();
1009
1010 /**************************
1011 * CALCULATE INTERACTIONS *
1012 **************************/
1013
1014 if (gmx_mm_any_lt(rsq00,rcutoff2))
1015 {
1016
1017 /* Compute parameters for interactions between i and j atoms */
1018 qq00 = _mm_mul_ps(iq0,jq0);
1019 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1020 vdwparam+vdwioffset0+vdwjidx0B,
1021 vdwparam+vdwioffset0+vdwjidx0C,
1022 vdwparam+vdwioffset0+vdwjidx0D,
1023 &c6_00,&c12_00);
1024
1025 /* REACTION-FIELD ELECTROSTATICS */
1026 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1027
1028 /* LENNARD-JONES DISPERSION/REPULSION */
1029
1030 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1031 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1032
1033 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
1034
1035 fscal = _mm_add_ps(felec,fvdw);
1036
1037 fscal = _mm_and_ps(fscal,cutoff_mask);
1038
1039 fscal = _mm_andnot_ps(dummy_mask,fscal);
1040
1041 /* Calculate temporary vectorial force */
1042 tx = _mm_mul_ps(fscal,dx00);
1043 ty = _mm_mul_ps(fscal,dy00);
1044 tz = _mm_mul_ps(fscal,dz00);
1045
1046 /* Update vectorial force */
1047 fix0 = _mm_add_ps(fix0,tx);
1048 fiy0 = _mm_add_ps(fiy0,ty);
1049 fiz0 = _mm_add_ps(fiz0,tz);
1050
1051 fjx0 = _mm_add_ps(fjx0,tx);
1052 fjy0 = _mm_add_ps(fjy0,ty);
1053 fjz0 = _mm_add_ps(fjz0,tz);
1054
1055 }
1056
1057 /**************************
1058 * CALCULATE INTERACTIONS *
1059 **************************/
1060
1061 if (gmx_mm_any_lt(rsq10,rcutoff2))
1062 {
1063
1064 /* Compute parameters for interactions between i and j atoms */
1065 qq10 = _mm_mul_ps(iq1,jq0);
1066
1067 /* REACTION-FIELD ELECTROSTATICS */
1068 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1069
1070 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
1071
1072 fscal = felec;
1073
1074 fscal = _mm_and_ps(fscal,cutoff_mask);
1075
1076 fscal = _mm_andnot_ps(dummy_mask,fscal);
1077
1078 /* Calculate temporary vectorial force */
1079 tx = _mm_mul_ps(fscal,dx10);
1080 ty = _mm_mul_ps(fscal,dy10);
1081 tz = _mm_mul_ps(fscal,dz10);
1082
1083 /* Update vectorial force */
1084 fix1 = _mm_add_ps(fix1,tx);
1085 fiy1 = _mm_add_ps(fiy1,ty);
1086 fiz1 = _mm_add_ps(fiz1,tz);
1087
1088 fjx0 = _mm_add_ps(fjx0,tx);
1089 fjy0 = _mm_add_ps(fjy0,ty);
1090 fjz0 = _mm_add_ps(fjz0,tz);
1091
1092 }
1093
1094 /**************************
1095 * CALCULATE INTERACTIONS *
1096 **************************/
1097
1098 if (gmx_mm_any_lt(rsq20,rcutoff2))
1099 {
1100
1101 /* Compute parameters for interactions between i and j atoms */
1102 qq20 = _mm_mul_ps(iq2,jq0);
1103
1104 /* REACTION-FIELD ELECTROSTATICS */
1105 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1106
1107 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
1108
1109 fscal = felec;
1110
1111 fscal = _mm_and_ps(fscal,cutoff_mask);
1112
1113 fscal = _mm_andnot_ps(dummy_mask,fscal);
1114
1115 /* Calculate temporary vectorial force */
1116 tx = _mm_mul_ps(fscal,dx20);
1117 ty = _mm_mul_ps(fscal,dy20);
1118 tz = _mm_mul_ps(fscal,dz20);
1119
1120 /* Update vectorial force */
1121 fix2 = _mm_add_ps(fix2,tx);
1122 fiy2 = _mm_add_ps(fiy2,ty);
1123 fiz2 = _mm_add_ps(fiz2,tz);
1124
1125 fjx0 = _mm_add_ps(fjx0,tx);
1126 fjy0 = _mm_add_ps(fjy0,ty);
1127 fjz0 = _mm_add_ps(fjz0,tz);
1128
1129 }
1130
1131 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1132 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1133 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1134 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1135
1136 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1137
1138 /* Inner loop uses 97 flops */
1139 }
1140
1141 /* End of innermost loop */
1142
1143 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1144 f+i_coord_offset,fshift+i_shift_offset);
1145
1146 /* Increment number of inner iterations */
1147 inneriter += j_index_end - j_index_start;
1148
1149 /* Outer loop uses 18 flops */
1150 }
1151
1152 /* Increment number of outer iterations */
1153 outeriter += nri;
1154
1155 /* Update outer/inner flops */
1156
1157 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*18 + inneriter
*97
;
1158}