Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwCSTab_GeomW4W4_c.c
Location:line 787, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW4W4_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwCSTab_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 int vfitab;
105 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
106 real *vftab;
107 int ewitab;
108 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
109 real *ewtab;
110
111 x = xx[0];
112 f = ff[0];
113
114 nri = nlist->nri;
115 iinr = nlist->iinr;
116 jindex = nlist->jindex;
117 jjnr = nlist->jjnr;
118 shiftidx = nlist->shift;
119 gid = nlist->gid;
120 shiftvec = fr->shift_vec[0];
121 fshift = fr->fshift[0];
122 facel = fr->epsfac;
123 charge = mdatoms->chargeA;
124 nvdwtype = fr->ntype;
125 vdwparam = fr->nbfp;
126 vdwtype = mdatoms->typeA;
127
128 vftab = kernel_data->table_vdw->data;
129 vftabscale = kernel_data->table_vdw->scale;
130
131 sh_ewald = fr->ic->sh_ewald;
132 ewtab = fr->ic->tabq_coul_FDV0;
133 ewtabscale = fr->ic->tabq_scale;
134 ewtabhalfspace = 0.5/ewtabscale;
135
136 /* Setup water-specific parameters */
137 inr = nlist->iinr[0];
138 iq1 = facel*charge[inr+1];
139 iq2 = facel*charge[inr+2];
140 iq3 = facel*charge[inr+3];
141 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
142
143 jq1 = charge[inr+1];
144 jq2 = charge[inr+2];
145 jq3 = charge[inr+3];
146 vdwjidx0 = 2*vdwtype[inr+0];
147 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
148 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
149 qq11 = iq1*jq1;
150 qq12 = iq1*jq2;
151 qq13 = iq1*jq3;
152 qq21 = iq2*jq1;
153 qq22 = iq2*jq2;
154 qq23 = iq2*jq3;
155 qq31 = iq3*jq1;
156 qq32 = iq3*jq2;
157 qq33 = iq3*jq3;
158
159 outeriter = 0;
160 inneriter = 0;
161
162 /* Start outer loop over neighborlists */
163 for(iidx=0; iidx<nri; iidx++)
164 {
165 /* Load shift vector for this list */
166 i_shift_offset = DIM3*shiftidx[iidx];
167 shX = shiftvec[i_shift_offset+XX0];
168 shY = shiftvec[i_shift_offset+YY1];
169 shZ = shiftvec[i_shift_offset+ZZ2];
170
171 /* Load limits for loop over neighbors */
172 j_index_start = jindex[iidx];
173 j_index_end = jindex[iidx+1];
174
175 /* Get outer coordinate index */
176 inr = iinr[iidx];
177 i_coord_offset = DIM3*inr;
178
179 /* Load i particle coords and add shift vector */
180 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
181 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
182 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
183 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
184 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
185 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
186 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
187 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
188 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
189 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
190 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
191 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
192
193 fix0 = 0.0;
194 fiy0 = 0.0;
195 fiz0 = 0.0;
196 fix1 = 0.0;
197 fiy1 = 0.0;
198 fiz1 = 0.0;
199 fix2 = 0.0;
200 fiy2 = 0.0;
201 fiz2 = 0.0;
202 fix3 = 0.0;
203 fiy3 = 0.0;
204 fiz3 = 0.0;
205
206 /* Reset potential sums */
207 velecsum = 0.0;
208 vvdwsum = 0.0;
209
210 /* Start inner kernel loop */
211 for(jidx=j_index_start; jidx<j_index_end; jidx++)
212 {
213 /* Get j neighbor index, and coordinate index */
214 jnr = jjnr[jidx];
215 j_coord_offset = DIM3*jnr;
216
217 /* load j atom coordinates */
218 jx0 = x[j_coord_offset+DIM3*0+XX0];
219 jy0 = x[j_coord_offset+DIM3*0+YY1];
220 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
221 jx1 = x[j_coord_offset+DIM3*1+XX0];
222 jy1 = x[j_coord_offset+DIM3*1+YY1];
223 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
224 jx2 = x[j_coord_offset+DIM3*2+XX0];
225 jy2 = x[j_coord_offset+DIM3*2+YY1];
226 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
227 jx3 = x[j_coord_offset+DIM3*3+XX0];
228 jy3 = x[j_coord_offset+DIM3*3+YY1];
229 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
230
231 /* Calculate displacement vector */
232 dx00 = ix0 - jx0;
233 dy00 = iy0 - jy0;
234 dz00 = iz0 - jz0;
235 dx11 = ix1 - jx1;
236 dy11 = iy1 - jy1;
237 dz11 = iz1 - jz1;
238 dx12 = ix1 - jx2;
239 dy12 = iy1 - jy2;
240 dz12 = iz1 - jz2;
241 dx13 = ix1 - jx3;
242 dy13 = iy1 - jy3;
243 dz13 = iz1 - jz3;
244 dx21 = ix2 - jx1;
245 dy21 = iy2 - jy1;
246 dz21 = iz2 - jz1;
247 dx22 = ix2 - jx2;
248 dy22 = iy2 - jy2;
249 dz22 = iz2 - jz2;
250 dx23 = ix2 - jx3;
251 dy23 = iy2 - jy3;
252 dz23 = iz2 - jz3;
253 dx31 = ix3 - jx1;
254 dy31 = iy3 - jy1;
255 dz31 = iz3 - jz1;
256 dx32 = ix3 - jx2;
257 dy32 = iy3 - jy2;
258 dz32 = iz3 - jz2;
259 dx33 = ix3 - jx3;
260 dy33 = iy3 - jy3;
261 dz33 = iz3 - jz3;
262
263 /* Calculate squared distance and things based on it */
264 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
265 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
266 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
267 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
268 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
269 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
270 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
271 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
272 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
273 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
274
275 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
276 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
277 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
278 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
279 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
280 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
281 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
282 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
283 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
284 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
285
286 rinvsq11 = rinv11*rinv11;
287 rinvsq12 = rinv12*rinv12;
288 rinvsq13 = rinv13*rinv13;
289 rinvsq21 = rinv21*rinv21;
290 rinvsq22 = rinv22*rinv22;
291 rinvsq23 = rinv23*rinv23;
292 rinvsq31 = rinv31*rinv31;
293 rinvsq32 = rinv32*rinv32;
294 rinvsq33 = rinv33*rinv33;
295
296 /**************************
297 * CALCULATE INTERACTIONS *
298 **************************/
299
300 r00 = rsq00*rinv00;
301
302 /* Calculate table index by multiplying r with table scale and truncate to integer */
303 rt = r00*vftabscale;
304 vfitab = rt;
305 vfeps = rt-vfitab;
306 vfitab = 2*4*vfitab;
307
308 /* CUBIC SPLINE TABLE DISPERSION */
309 vfitab += 0;
310 Y = vftab[vfitab];
311 F = vftab[vfitab+1];
312 Geps = vfeps*vftab[vfitab+2];
313 Heps2 = vfeps*vfeps*vftab[vfitab+3];
314 Fp = F+Geps+Heps2;
315 VV = Y+vfeps*Fp;
316 vvdw6 = c6_00*VV;
317 FF = Fp+Geps+2.0*Heps2;
318 fvdw6 = c6_00*FF;
319
320 /* CUBIC SPLINE TABLE REPULSION */
321 Y = vftab[vfitab+4];
322 F = vftab[vfitab+5];
323 Geps = vfeps*vftab[vfitab+6];
324 Heps2 = vfeps*vfeps*vftab[vfitab+7];
325 Fp = F+Geps+Heps2;
326 VV = Y+vfeps*Fp;
327 vvdw12 = c12_00*VV;
328 FF = Fp+Geps+2.0*Heps2;
329 fvdw12 = c12_00*FF;
330 vvdw = vvdw12+vvdw6;
331 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
332
333 /* Update potential sums from outer loop */
334 vvdwsum += vvdw;
335
336 fscal = fvdw;
337
338 /* Calculate temporary vectorial force */
339 tx = fscal*dx00;
340 ty = fscal*dy00;
341 tz = fscal*dz00;
342
343 /* Update vectorial force */
344 fix0 += tx;
345 fiy0 += ty;
346 fiz0 += tz;
347 f[j_coord_offset+DIM3*0+XX0] -= tx;
348 f[j_coord_offset+DIM3*0+YY1] -= ty;
349 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
350
351 /**************************
352 * CALCULATE INTERACTIONS *
353 **************************/
354
355 r11 = rsq11*rinv11;
356
357 /* EWALD ELECTROSTATICS */
358
359 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
360 ewrt = r11*ewtabscale;
361 ewitab = ewrt;
362 eweps = ewrt-ewitab;
363 ewitab = 4*ewitab;
364 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
365 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
366 felec = qq11*rinv11*(rinvsq11-felec);
367
368 /* Update potential sums from outer loop */
369 velecsum += velec;
370
371 fscal = felec;
372
373 /* Calculate temporary vectorial force */
374 tx = fscal*dx11;
375 ty = fscal*dy11;
376 tz = fscal*dz11;
377
378 /* Update vectorial force */
379 fix1 += tx;
380 fiy1 += ty;
381 fiz1 += tz;
382 f[j_coord_offset+DIM3*1+XX0] -= tx;
383 f[j_coord_offset+DIM3*1+YY1] -= ty;
384 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
385
386 /**************************
387 * CALCULATE INTERACTIONS *
388 **************************/
389
390 r12 = rsq12*rinv12;
391
392 /* EWALD ELECTROSTATICS */
393
394 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395 ewrt = r12*ewtabscale;
396 ewitab = ewrt;
397 eweps = ewrt-ewitab;
398 ewitab = 4*ewitab;
399 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
400 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
401 felec = qq12*rinv12*(rinvsq12-felec);
402
403 /* Update potential sums from outer loop */
404 velecsum += velec;
405
406 fscal = felec;
407
408 /* Calculate temporary vectorial force */
409 tx = fscal*dx12;
410 ty = fscal*dy12;
411 tz = fscal*dz12;
412
413 /* Update vectorial force */
414 fix1 += tx;
415 fiy1 += ty;
416 fiz1 += tz;
417 f[j_coord_offset+DIM3*2+XX0] -= tx;
418 f[j_coord_offset+DIM3*2+YY1] -= ty;
419 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
420
421 /**************************
422 * CALCULATE INTERACTIONS *
423 **************************/
424
425 r13 = rsq13*rinv13;
426
427 /* EWALD ELECTROSTATICS */
428
429 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
430 ewrt = r13*ewtabscale;
431 ewitab = ewrt;
432 eweps = ewrt-ewitab;
433 ewitab = 4*ewitab;
434 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
435 velec = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
436 felec = qq13*rinv13*(rinvsq13-felec);
437
438 /* Update potential sums from outer loop */
439 velecsum += velec;
440
441 fscal = felec;
442
443 /* Calculate temporary vectorial force */
444 tx = fscal*dx13;
445 ty = fscal*dy13;
446 tz = fscal*dz13;
447
448 /* Update vectorial force */
449 fix1 += tx;
450 fiy1 += ty;
451 fiz1 += tz;
452 f[j_coord_offset+DIM3*3+XX0] -= tx;
453 f[j_coord_offset+DIM3*3+YY1] -= ty;
454 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
455
456 /**************************
457 * CALCULATE INTERACTIONS *
458 **************************/
459
460 r21 = rsq21*rinv21;
461
462 /* EWALD ELECTROSTATICS */
463
464 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
465 ewrt = r21*ewtabscale;
466 ewitab = ewrt;
467 eweps = ewrt-ewitab;
468 ewitab = 4*ewitab;
469 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
470 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
471 felec = qq21*rinv21*(rinvsq21-felec);
472
473 /* Update potential sums from outer loop */
474 velecsum += velec;
475
476 fscal = felec;
477
478 /* Calculate temporary vectorial force */
479 tx = fscal*dx21;
480 ty = fscal*dy21;
481 tz = fscal*dz21;
482
483 /* Update vectorial force */
484 fix2 += tx;
485 fiy2 += ty;
486 fiz2 += tz;
487 f[j_coord_offset+DIM3*1+XX0] -= tx;
488 f[j_coord_offset+DIM3*1+YY1] -= ty;
489 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
490
491 /**************************
492 * CALCULATE INTERACTIONS *
493 **************************/
494
495 r22 = rsq22*rinv22;
496
497 /* EWALD ELECTROSTATICS */
498
499 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500 ewrt = r22*ewtabscale;
501 ewitab = ewrt;
502 eweps = ewrt-ewitab;
503 ewitab = 4*ewitab;
504 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
505 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
506 felec = qq22*rinv22*(rinvsq22-felec);
507
508 /* Update potential sums from outer loop */
509 velecsum += velec;
510
511 fscal = felec;
512
513 /* Calculate temporary vectorial force */
514 tx = fscal*dx22;
515 ty = fscal*dy22;
516 tz = fscal*dz22;
517
518 /* Update vectorial force */
519 fix2 += tx;
520 fiy2 += ty;
521 fiz2 += tz;
522 f[j_coord_offset+DIM3*2+XX0] -= tx;
523 f[j_coord_offset+DIM3*2+YY1] -= ty;
524 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
525
526 /**************************
527 * CALCULATE INTERACTIONS *
528 **************************/
529
530 r23 = rsq23*rinv23;
531
532 /* EWALD ELECTROSTATICS */
533
534 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
535 ewrt = r23*ewtabscale;
536 ewitab = ewrt;
537 eweps = ewrt-ewitab;
538 ewitab = 4*ewitab;
539 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
540 velec = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
541 felec = qq23*rinv23*(rinvsq23-felec);
542
543 /* Update potential sums from outer loop */
544 velecsum += velec;
545
546 fscal = felec;
547
548 /* Calculate temporary vectorial force */
549 tx = fscal*dx23;
550 ty = fscal*dy23;
551 tz = fscal*dz23;
552
553 /* Update vectorial force */
554 fix2 += tx;
555 fiy2 += ty;
556 fiz2 += tz;
557 f[j_coord_offset+DIM3*3+XX0] -= tx;
558 f[j_coord_offset+DIM3*3+YY1] -= ty;
559 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
560
561 /**************************
562 * CALCULATE INTERACTIONS *
563 **************************/
564
565 r31 = rsq31*rinv31;
566
567 /* EWALD ELECTROSTATICS */
568
569 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570 ewrt = r31*ewtabscale;
571 ewitab = ewrt;
572 eweps = ewrt-ewitab;
573 ewitab = 4*ewitab;
574 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
575 velec = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
576 felec = qq31*rinv31*(rinvsq31-felec);
577
578 /* Update potential sums from outer loop */
579 velecsum += velec;
580
581 fscal = felec;
582
583 /* Calculate temporary vectorial force */
584 tx = fscal*dx31;
585 ty = fscal*dy31;
586 tz = fscal*dz31;
587
588 /* Update vectorial force */
589 fix3 += tx;
590 fiy3 += ty;
591 fiz3 += tz;
592 f[j_coord_offset+DIM3*1+XX0] -= tx;
593 f[j_coord_offset+DIM3*1+YY1] -= ty;
594 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
595
596 /**************************
597 * CALCULATE INTERACTIONS *
598 **************************/
599
600 r32 = rsq32*rinv32;
601
602 /* EWALD ELECTROSTATICS */
603
604 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605 ewrt = r32*ewtabscale;
606 ewitab = ewrt;
607 eweps = ewrt-ewitab;
608 ewitab = 4*ewitab;
609 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
610 velec = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
611 felec = qq32*rinv32*(rinvsq32-felec);
612
613 /* Update potential sums from outer loop */
614 velecsum += velec;
615
616 fscal = felec;
617
618 /* Calculate temporary vectorial force */
619 tx = fscal*dx32;
620 ty = fscal*dy32;
621 tz = fscal*dz32;
622
623 /* Update vectorial force */
624 fix3 += tx;
625 fiy3 += ty;
626 fiz3 += tz;
627 f[j_coord_offset+DIM3*2+XX0] -= tx;
628 f[j_coord_offset+DIM3*2+YY1] -= ty;
629 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
630
631 /**************************
632 * CALCULATE INTERACTIONS *
633 **************************/
634
635 r33 = rsq33*rinv33;
636
637 /* EWALD ELECTROSTATICS */
638
639 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
640 ewrt = r33*ewtabscale;
641 ewitab = ewrt;
642 eweps = ewrt-ewitab;
643 ewitab = 4*ewitab;
644 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
645 velec = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
646 felec = qq33*rinv33*(rinvsq33-felec);
647
648 /* Update potential sums from outer loop */
649 velecsum += velec;
650
651 fscal = felec;
652
653 /* Calculate temporary vectorial force */
654 tx = fscal*dx33;
655 ty = fscal*dy33;
656 tz = fscal*dz33;
657
658 /* Update vectorial force */
659 fix3 += tx;
660 fiy3 += ty;
661 fiz3 += tz;
662 f[j_coord_offset+DIM3*3+XX0] -= tx;
663 f[j_coord_offset+DIM3*3+YY1] -= ty;
664 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
665
666 /* Inner loop uses 415 flops */
667 }
668 /* End of innermost loop */
669
670 tx = ty = tz = 0;
671 f[i_coord_offset+DIM3*0+XX0] += fix0;
672 f[i_coord_offset+DIM3*0+YY1] += fiy0;
673 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
674 tx += fix0;
675 ty += fiy0;
676 tz += fiz0;
677 f[i_coord_offset+DIM3*1+XX0] += fix1;
678 f[i_coord_offset+DIM3*1+YY1] += fiy1;
679 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
680 tx += fix1;
681 ty += fiy1;
682 tz += fiz1;
683 f[i_coord_offset+DIM3*2+XX0] += fix2;
684 f[i_coord_offset+DIM3*2+YY1] += fiy2;
685 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
686 tx += fix2;
687 ty += fiy2;
688 tz += fiz2;
689 f[i_coord_offset+DIM3*3+XX0] += fix3;
690 f[i_coord_offset+DIM3*3+YY1] += fiy3;
691 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
692 tx += fix3;
693 ty += fiy3;
694 tz += fiz3;
695 fshift[i_shift_offset+XX0] += tx;
696 fshift[i_shift_offset+YY1] += ty;
697 fshift[i_shift_offset+ZZ2] += tz;
698
699 ggid = gid[iidx];
700 /* Update potential energies */
701 kernel_data->energygrp_elec[ggid] += velecsum;
702 kernel_data->energygrp_vdw[ggid] += vvdwsum;
703
704 /* Increment number of inner iterations */
705 inneriter += j_index_end - j_index_start;
706
707 /* Outer loop uses 41 flops */
708 }
709
710 /* Increment number of outer iterations */
711 outeriter += nri;
712
713 /* Update outer/inner flops */
714
715 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*415)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*415
;
716}
717/*
718 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW4W4_F_c
719 * Electrostatics interaction: Ewald
720 * VdW interaction: CubicSplineTable
721 * Geometry: Water4-Water4
722 * Calculate force/pot: Force
723 */
724void
725nb_kernel_ElecEw_VdwCSTab_GeomW4W4_F_c
726 (t_nblist * gmx_restrict__restrict nlist,
727 rvec * gmx_restrict__restrict xx,
728 rvec * gmx_restrict__restrict ff,
729 t_forcerec * gmx_restrict__restrict fr,
730 t_mdatoms * gmx_restrict__restrict mdatoms,
731 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
732 t_nrnb * gmx_restrict__restrict nrnb)
733{
734 int i_shift_offset,i_coord_offset,j_coord_offset;
735 int j_index_start,j_index_end;
736 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
737 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
738 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
739 real *shiftvec,*fshift,*x,*f;
740 int vdwioffset0;
741 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
742 int vdwioffset1;
743 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
744 int vdwioffset2;
745 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
746 int vdwioffset3;
747 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
748 int vdwjidx0;
749 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
750 int vdwjidx1;
751 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
752 int vdwjidx2;
753 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
754 int vdwjidx3;
755 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
756 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
757 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
758 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
759 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
760 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
761 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
762 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
763 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
764 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
765 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
766 real velec,felec,velecsum,facel,crf,krf,krf2;
767 real *charge;
768 int nvdwtype;
769 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
770 int *vdwtype;
771 real *vdwparam;
772 int vfitab;
773 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
774 real *vftab;
775 int ewitab;
776 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
777 real *ewtab;
778
779 x = xx[0];
780 f = ff[0];
781
782 nri = nlist->nri;
783 iinr = nlist->iinr;
784 jindex = nlist->jindex;
785 jjnr = nlist->jjnr;
786 shiftidx = nlist->shift;
787 gid = nlist->gid;
Value stored to 'gid' is never read
788 shiftvec = fr->shift_vec[0];
789 fshift = fr->fshift[0];
790 facel = fr->epsfac;
791 charge = mdatoms->chargeA;
792 nvdwtype = fr->ntype;
793 vdwparam = fr->nbfp;
794 vdwtype = mdatoms->typeA;
795
796 vftab = kernel_data->table_vdw->data;
797 vftabscale = kernel_data->table_vdw->scale;
798
799 sh_ewald = fr->ic->sh_ewald;
800 ewtab = fr->ic->tabq_coul_F;
801 ewtabscale = fr->ic->tabq_scale;
802 ewtabhalfspace = 0.5/ewtabscale;
803
804 /* Setup water-specific parameters */
805 inr = nlist->iinr[0];
806 iq1 = facel*charge[inr+1];
807 iq2 = facel*charge[inr+2];
808 iq3 = facel*charge[inr+3];
809 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
810
811 jq1 = charge[inr+1];
812 jq2 = charge[inr+2];
813 jq3 = charge[inr+3];
814 vdwjidx0 = 2*vdwtype[inr+0];
815 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
816 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
817 qq11 = iq1*jq1;
818 qq12 = iq1*jq2;
819 qq13 = iq1*jq3;
820 qq21 = iq2*jq1;
821 qq22 = iq2*jq2;
822 qq23 = iq2*jq3;
823 qq31 = iq3*jq1;
824 qq32 = iq3*jq2;
825 qq33 = iq3*jq3;
826
827 outeriter = 0;
828 inneriter = 0;
829
830 /* Start outer loop over neighborlists */
831 for(iidx=0; iidx<nri; iidx++)
832 {
833 /* Load shift vector for this list */
834 i_shift_offset = DIM3*shiftidx[iidx];
835 shX = shiftvec[i_shift_offset+XX0];
836 shY = shiftvec[i_shift_offset+YY1];
837 shZ = shiftvec[i_shift_offset+ZZ2];
838
839 /* Load limits for loop over neighbors */
840 j_index_start = jindex[iidx];
841 j_index_end = jindex[iidx+1];
842
843 /* Get outer coordinate index */
844 inr = iinr[iidx];
845 i_coord_offset = DIM3*inr;
846
847 /* Load i particle coords and add shift vector */
848 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
849 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
850 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
851 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
852 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
853 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
854 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
855 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
856 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
857 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
858 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
859 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
860
861 fix0 = 0.0;
862 fiy0 = 0.0;
863 fiz0 = 0.0;
864 fix1 = 0.0;
865 fiy1 = 0.0;
866 fiz1 = 0.0;
867 fix2 = 0.0;
868 fiy2 = 0.0;
869 fiz2 = 0.0;
870 fix3 = 0.0;
871 fiy3 = 0.0;
872 fiz3 = 0.0;
873
874 /* Start inner kernel loop */
875 for(jidx=j_index_start; jidx<j_index_end; jidx++)
876 {
877 /* Get j neighbor index, and coordinate index */
878 jnr = jjnr[jidx];
879 j_coord_offset = DIM3*jnr;
880
881 /* load j atom coordinates */
882 jx0 = x[j_coord_offset+DIM3*0+XX0];
883 jy0 = x[j_coord_offset+DIM3*0+YY1];
884 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
885 jx1 = x[j_coord_offset+DIM3*1+XX0];
886 jy1 = x[j_coord_offset+DIM3*1+YY1];
887 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
888 jx2 = x[j_coord_offset+DIM3*2+XX0];
889 jy2 = x[j_coord_offset+DIM3*2+YY1];
890 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
891 jx3 = x[j_coord_offset+DIM3*3+XX0];
892 jy3 = x[j_coord_offset+DIM3*3+YY1];
893 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
894
895 /* Calculate displacement vector */
896 dx00 = ix0 - jx0;
897 dy00 = iy0 - jy0;
898 dz00 = iz0 - jz0;
899 dx11 = ix1 - jx1;
900 dy11 = iy1 - jy1;
901 dz11 = iz1 - jz1;
902 dx12 = ix1 - jx2;
903 dy12 = iy1 - jy2;
904 dz12 = iz1 - jz2;
905 dx13 = ix1 - jx3;
906 dy13 = iy1 - jy3;
907 dz13 = iz1 - jz3;
908 dx21 = ix2 - jx1;
909 dy21 = iy2 - jy1;
910 dz21 = iz2 - jz1;
911 dx22 = ix2 - jx2;
912 dy22 = iy2 - jy2;
913 dz22 = iz2 - jz2;
914 dx23 = ix2 - jx3;
915 dy23 = iy2 - jy3;
916 dz23 = iz2 - jz3;
917 dx31 = ix3 - jx1;
918 dy31 = iy3 - jy1;
919 dz31 = iz3 - jz1;
920 dx32 = ix3 - jx2;
921 dy32 = iy3 - jy2;
922 dz32 = iz3 - jz2;
923 dx33 = ix3 - jx3;
924 dy33 = iy3 - jy3;
925 dz33 = iz3 - jz3;
926
927 /* Calculate squared distance and things based on it */
928 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
929 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
930 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
931 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
932 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
933 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
934 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
935 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
936 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
937 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
938
939 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
940 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
941 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
942 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
943 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
944 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
945 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
946 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
947 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
948 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
949
950 rinvsq11 = rinv11*rinv11;
951 rinvsq12 = rinv12*rinv12;
952 rinvsq13 = rinv13*rinv13;
953 rinvsq21 = rinv21*rinv21;
954 rinvsq22 = rinv22*rinv22;
955 rinvsq23 = rinv23*rinv23;
956 rinvsq31 = rinv31*rinv31;
957 rinvsq32 = rinv32*rinv32;
958 rinvsq33 = rinv33*rinv33;
959
960 /**************************
961 * CALCULATE INTERACTIONS *
962 **************************/
963
964 r00 = rsq00*rinv00;
965
966 /* Calculate table index by multiplying r with table scale and truncate to integer */
967 rt = r00*vftabscale;
968 vfitab = rt;
969 vfeps = rt-vfitab;
970 vfitab = 2*4*vfitab;
971
972 /* CUBIC SPLINE TABLE DISPERSION */
973 vfitab += 0;
974 F = vftab[vfitab+1];
975 Geps = vfeps*vftab[vfitab+2];
976 Heps2 = vfeps*vfeps*vftab[vfitab+3];
977 Fp = F+Geps+Heps2;
978 FF = Fp+Geps+2.0*Heps2;
979 fvdw6 = c6_00*FF;
980
981 /* CUBIC SPLINE TABLE REPULSION */
982 F = vftab[vfitab+5];
983 Geps = vfeps*vftab[vfitab+6];
984 Heps2 = vfeps*vfeps*vftab[vfitab+7];
985 Fp = F+Geps+Heps2;
986 FF = Fp+Geps+2.0*Heps2;
987 fvdw12 = c12_00*FF;
988 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
989
990 fscal = fvdw;
991
992 /* Calculate temporary vectorial force */
993 tx = fscal*dx00;
994 ty = fscal*dy00;
995 tz = fscal*dz00;
996
997 /* Update vectorial force */
998 fix0 += tx;
999 fiy0 += ty;
1000 fiz0 += tz;
1001 f[j_coord_offset+DIM3*0+XX0] -= tx;
1002 f[j_coord_offset+DIM3*0+YY1] -= ty;
1003 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1004
1005 /**************************
1006 * CALCULATE INTERACTIONS *
1007 **************************/
1008
1009 r11 = rsq11*rinv11;
1010
1011 /* EWALD ELECTROSTATICS */
1012
1013 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014 ewrt = r11*ewtabscale;
1015 ewitab = ewrt;
1016 eweps = ewrt-ewitab;
1017 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1018 felec = qq11*rinv11*(rinvsq11-felec);
1019
1020 fscal = felec;
1021
1022 /* Calculate temporary vectorial force */
1023 tx = fscal*dx11;
1024 ty = fscal*dy11;
1025 tz = fscal*dz11;
1026
1027 /* Update vectorial force */
1028 fix1 += tx;
1029 fiy1 += ty;
1030 fiz1 += tz;
1031 f[j_coord_offset+DIM3*1+XX0] -= tx;
1032 f[j_coord_offset+DIM3*1+YY1] -= ty;
1033 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1034
1035 /**************************
1036 * CALCULATE INTERACTIONS *
1037 **************************/
1038
1039 r12 = rsq12*rinv12;
1040
1041 /* EWALD ELECTROSTATICS */
1042
1043 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1044 ewrt = r12*ewtabscale;
1045 ewitab = ewrt;
1046 eweps = ewrt-ewitab;
1047 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1048 felec = qq12*rinv12*(rinvsq12-felec);
1049
1050 fscal = felec;
1051
1052 /* Calculate temporary vectorial force */
1053 tx = fscal*dx12;
1054 ty = fscal*dy12;
1055 tz = fscal*dz12;
1056
1057 /* Update vectorial force */
1058 fix1 += tx;
1059 fiy1 += ty;
1060 fiz1 += tz;
1061 f[j_coord_offset+DIM3*2+XX0] -= tx;
1062 f[j_coord_offset+DIM3*2+YY1] -= ty;
1063 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1064
1065 /**************************
1066 * CALCULATE INTERACTIONS *
1067 **************************/
1068
1069 r13 = rsq13*rinv13;
1070
1071 /* EWALD ELECTROSTATICS */
1072
1073 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074 ewrt = r13*ewtabscale;
1075 ewitab = ewrt;
1076 eweps = ewrt-ewitab;
1077 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1078 felec = qq13*rinv13*(rinvsq13-felec);
1079
1080 fscal = felec;
1081
1082 /* Calculate temporary vectorial force */
1083 tx = fscal*dx13;
1084 ty = fscal*dy13;
1085 tz = fscal*dz13;
1086
1087 /* Update vectorial force */
1088 fix1 += tx;
1089 fiy1 += ty;
1090 fiz1 += tz;
1091 f[j_coord_offset+DIM3*3+XX0] -= tx;
1092 f[j_coord_offset+DIM3*3+YY1] -= ty;
1093 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1094
1095 /**************************
1096 * CALCULATE INTERACTIONS *
1097 **************************/
1098
1099 r21 = rsq21*rinv21;
1100
1101 /* EWALD ELECTROSTATICS */
1102
1103 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1104 ewrt = r21*ewtabscale;
1105 ewitab = ewrt;
1106 eweps = ewrt-ewitab;
1107 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1108 felec = qq21*rinv21*(rinvsq21-felec);
1109
1110 fscal = felec;
1111
1112 /* Calculate temporary vectorial force */
1113 tx = fscal*dx21;
1114 ty = fscal*dy21;
1115 tz = fscal*dz21;
1116
1117 /* Update vectorial force */
1118 fix2 += tx;
1119 fiy2 += ty;
1120 fiz2 += tz;
1121 f[j_coord_offset+DIM3*1+XX0] -= tx;
1122 f[j_coord_offset+DIM3*1+YY1] -= ty;
1123 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1124
1125 /**************************
1126 * CALCULATE INTERACTIONS *
1127 **************************/
1128
1129 r22 = rsq22*rinv22;
1130
1131 /* EWALD ELECTROSTATICS */
1132
1133 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1134 ewrt = r22*ewtabscale;
1135 ewitab = ewrt;
1136 eweps = ewrt-ewitab;
1137 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1138 felec = qq22*rinv22*(rinvsq22-felec);
1139
1140 fscal = felec;
1141
1142 /* Calculate temporary vectorial force */
1143 tx = fscal*dx22;
1144 ty = fscal*dy22;
1145 tz = fscal*dz22;
1146
1147 /* Update vectorial force */
1148 fix2 += tx;
1149 fiy2 += ty;
1150 fiz2 += tz;
1151 f[j_coord_offset+DIM3*2+XX0] -= tx;
1152 f[j_coord_offset+DIM3*2+YY1] -= ty;
1153 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1154
1155 /**************************
1156 * CALCULATE INTERACTIONS *
1157 **************************/
1158
1159 r23 = rsq23*rinv23;
1160
1161 /* EWALD ELECTROSTATICS */
1162
1163 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1164 ewrt = r23*ewtabscale;
1165 ewitab = ewrt;
1166 eweps = ewrt-ewitab;
1167 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1168 felec = qq23*rinv23*(rinvsq23-felec);
1169
1170 fscal = felec;
1171
1172 /* Calculate temporary vectorial force */
1173 tx = fscal*dx23;
1174 ty = fscal*dy23;
1175 tz = fscal*dz23;
1176
1177 /* Update vectorial force */
1178 fix2 += tx;
1179 fiy2 += ty;
1180 fiz2 += tz;
1181 f[j_coord_offset+DIM3*3+XX0] -= tx;
1182 f[j_coord_offset+DIM3*3+YY1] -= ty;
1183 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1184
1185 /**************************
1186 * CALCULATE INTERACTIONS *
1187 **************************/
1188
1189 r31 = rsq31*rinv31;
1190
1191 /* EWALD ELECTROSTATICS */
1192
1193 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1194 ewrt = r31*ewtabscale;
1195 ewitab = ewrt;
1196 eweps = ewrt-ewitab;
1197 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1198 felec = qq31*rinv31*(rinvsq31-felec);
1199
1200 fscal = felec;
1201
1202 /* Calculate temporary vectorial force */
1203 tx = fscal*dx31;
1204 ty = fscal*dy31;
1205 tz = fscal*dz31;
1206
1207 /* Update vectorial force */
1208 fix3 += tx;
1209 fiy3 += ty;
1210 fiz3 += tz;
1211 f[j_coord_offset+DIM3*1+XX0] -= tx;
1212 f[j_coord_offset+DIM3*1+YY1] -= ty;
1213 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1214
1215 /**************************
1216 * CALCULATE INTERACTIONS *
1217 **************************/
1218
1219 r32 = rsq32*rinv32;
1220
1221 /* EWALD ELECTROSTATICS */
1222
1223 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1224 ewrt = r32*ewtabscale;
1225 ewitab = ewrt;
1226 eweps = ewrt-ewitab;
1227 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1228 felec = qq32*rinv32*(rinvsq32-felec);
1229
1230 fscal = felec;
1231
1232 /* Calculate temporary vectorial force */
1233 tx = fscal*dx32;
1234 ty = fscal*dy32;
1235 tz = fscal*dz32;
1236
1237 /* Update vectorial force */
1238 fix3 += tx;
1239 fiy3 += ty;
1240 fiz3 += tz;
1241 f[j_coord_offset+DIM3*2+XX0] -= tx;
1242 f[j_coord_offset+DIM3*2+YY1] -= ty;
1243 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1244
1245 /**************************
1246 * CALCULATE INTERACTIONS *
1247 **************************/
1248
1249 r33 = rsq33*rinv33;
1250
1251 /* EWALD ELECTROSTATICS */
1252
1253 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254 ewrt = r33*ewtabscale;
1255 ewitab = ewrt;
1256 eweps = ewrt-ewitab;
1257 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1258 felec = qq33*rinv33*(rinvsq33-felec);
1259
1260 fscal = felec;
1261
1262 /* Calculate temporary vectorial force */
1263 tx = fscal*dx33;
1264 ty = fscal*dy33;
1265 tz = fscal*dz33;
1266
1267 /* Update vectorial force */
1268 fix3 += tx;
1269 fiy3 += ty;
1270 fiz3 += tz;
1271 f[j_coord_offset+DIM3*3+XX0] -= tx;
1272 f[j_coord_offset+DIM3*3+YY1] -= ty;
1273 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1274
1275 /* Inner loop uses 344 flops */
1276 }
1277 /* End of innermost loop */
1278
1279 tx = ty = tz = 0;
1280 f[i_coord_offset+DIM3*0+XX0] += fix0;
1281 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1282 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1283 tx += fix0;
1284 ty += fiy0;
1285 tz += fiz0;
1286 f[i_coord_offset+DIM3*1+XX0] += fix1;
1287 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1288 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1289 tx += fix1;
1290 ty += fiy1;
1291 tz += fiz1;
1292 f[i_coord_offset+DIM3*2+XX0] += fix2;
1293 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1294 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1295 tx += fix2;
1296 ty += fiy2;
1297 tz += fiz2;
1298 f[i_coord_offset+DIM3*3+XX0] += fix3;
1299 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1300 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1301 tx += fix3;
1302 ty += fiy3;
1303 tz += fiz3;
1304 fshift[i_shift_offset+XX0] += tx;
1305 fshift[i_shift_offset+YY1] += ty;
1306 fshift[i_shift_offset+ZZ2] += tz;
1307
1308 /* Increment number of inner iterations */
1309 inneriter += j_index_end - j_index_start;
1310
1311 /* Outer loop uses 39 flops */
1312 }
1313
1314 /* Increment number of outer iterations */
1315 outeriter += nri;
1316
1317 /* Update outer/inner flops */
1318
1319 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*344)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*344
;
1320}