Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_c.c
Location:line 696, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100
101 x = xx[0];
102 f = ff[0];
103
104 nri = nlist->nri;
105 iinr = nlist->iinr;
106 jindex = nlist->jindex;
107 jjnr = nlist->jjnr;
108 shiftidx = nlist->shift;
109 gid = nlist->gid;
110 shiftvec = fr->shift_vec[0];
111 fshift = fr->fshift[0];
112 facel = fr->epsfac;
113 charge = mdatoms->chargeA;
114 krf = fr->ic->k_rf;
115 krf2 = krf*2.0;
116 crf = fr->ic->c_rf;
117 nvdwtype = fr->ntype;
118 vdwparam = fr->nbfp;
119 vdwtype = mdatoms->typeA;
120
121 /* Setup water-specific parameters */
122 inr = nlist->iinr[0];
123 iq0 = facel*charge[inr+0];
124 iq1 = facel*charge[inr+1];
125 iq2 = facel*charge[inr+2];
126 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
127
128 jq0 = charge[inr+0];
129 jq1 = charge[inr+1];
130 jq2 = charge[inr+2];
131 vdwjidx0 = 3*vdwtype[inr+0];
132 qq00 = iq0*jq0;
133 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
134 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
135 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
136 qq01 = iq0*jq1;
137 qq02 = iq0*jq2;
138 qq10 = iq1*jq0;
139 qq11 = iq1*jq1;
140 qq12 = iq1*jq2;
141 qq20 = iq2*jq0;
142 qq21 = iq2*jq1;
143 qq22 = iq2*jq2;
144
145 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
146 rcutoff = fr->rcoulomb;
147 rcutoff2 = rcutoff*rcutoff;
148
149 rswitch = fr->rvdw_switch;
150 /* Setup switch parameters */
151 d = rcutoff-rswitch;
152 swV3 = -10.0/(d*d*d);
153 swV4 = 15.0/(d*d*d*d);
154 swV5 = -6.0/(d*d*d*d*d);
155 swF2 = -30.0/(d*d*d);
156 swF3 = 60.0/(d*d*d*d);
157 swF4 = -30.0/(d*d*d*d*d);
158
159 outeriter = 0;
160 inneriter = 0;
161
162 /* Start outer loop over neighborlists */
163 for(iidx=0; iidx<nri; iidx++)
164 {
165 /* Load shift vector for this list */
166 i_shift_offset = DIM3*shiftidx[iidx];
167 shX = shiftvec[i_shift_offset+XX0];
168 shY = shiftvec[i_shift_offset+YY1];
169 shZ = shiftvec[i_shift_offset+ZZ2];
170
171 /* Load limits for loop over neighbors */
172 j_index_start = jindex[iidx];
173 j_index_end = jindex[iidx+1];
174
175 /* Get outer coordinate index */
176 inr = iinr[iidx];
177 i_coord_offset = DIM3*inr;
178
179 /* Load i particle coords and add shift vector */
180 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
181 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
182 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
183 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
184 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
185 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
186 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
187 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
188 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
189
190 fix0 = 0.0;
191 fiy0 = 0.0;
192 fiz0 = 0.0;
193 fix1 = 0.0;
194 fiy1 = 0.0;
195 fiz1 = 0.0;
196 fix2 = 0.0;
197 fiy2 = 0.0;
198 fiz2 = 0.0;
199
200 /* Reset potential sums */
201 velecsum = 0.0;
202 vvdwsum = 0.0;
203
204 /* Start inner kernel loop */
205 for(jidx=j_index_start; jidx<j_index_end; jidx++)
206 {
207 /* Get j neighbor index, and coordinate index */
208 jnr = jjnr[jidx];
209 j_coord_offset = DIM3*jnr;
210
211 /* load j atom coordinates */
212 jx0 = x[j_coord_offset+DIM3*0+XX0];
213 jy0 = x[j_coord_offset+DIM3*0+YY1];
214 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
215 jx1 = x[j_coord_offset+DIM3*1+XX0];
216 jy1 = x[j_coord_offset+DIM3*1+YY1];
217 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
218 jx2 = x[j_coord_offset+DIM3*2+XX0];
219 jy2 = x[j_coord_offset+DIM3*2+YY1];
220 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
221
222 /* Calculate displacement vector */
223 dx00 = ix0 - jx0;
224 dy00 = iy0 - jy0;
225 dz00 = iz0 - jz0;
226 dx01 = ix0 - jx1;
227 dy01 = iy0 - jy1;
228 dz01 = iz0 - jz1;
229 dx02 = ix0 - jx2;
230 dy02 = iy0 - jy2;
231 dz02 = iz0 - jz2;
232 dx10 = ix1 - jx0;
233 dy10 = iy1 - jy0;
234 dz10 = iz1 - jz0;
235 dx11 = ix1 - jx1;
236 dy11 = iy1 - jy1;
237 dz11 = iz1 - jz1;
238 dx12 = ix1 - jx2;
239 dy12 = iy1 - jy2;
240 dz12 = iz1 - jz2;
241 dx20 = ix2 - jx0;
242 dy20 = iy2 - jy0;
243 dz20 = iz2 - jz0;
244 dx21 = ix2 - jx1;
245 dy21 = iy2 - jy1;
246 dz21 = iz2 - jz1;
247 dx22 = ix2 - jx2;
248 dy22 = iy2 - jy2;
249 dz22 = iz2 - jz2;
250
251 /* Calculate squared distance and things based on it */
252 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
253 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
254 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
255 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
256 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
257 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
258 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
259 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
260 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
261
262 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
263 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
264 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
265 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
266 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
267 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
268 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
269 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
270 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
271
272 rinvsq00 = rinv00*rinv00;
273 rinvsq01 = rinv01*rinv01;
274 rinvsq02 = rinv02*rinv02;
275 rinvsq10 = rinv10*rinv10;
276 rinvsq11 = rinv11*rinv11;
277 rinvsq12 = rinv12*rinv12;
278 rinvsq20 = rinv20*rinv20;
279 rinvsq21 = rinv21*rinv21;
280 rinvsq22 = rinv22*rinv22;
281
282 /**************************
283 * CALCULATE INTERACTIONS *
284 **************************/
285
286 if (rsq00<rcutoff2)
287 {
288
289 r00 = rsq00*rinv00;
290
291 /* REACTION-FIELD ELECTROSTATICS */
292 velec = qq00*(rinv00+krf*rsq00-crf);
293 felec = qq00*(rinv00*rinvsq00-krf2);
294
295 /* BUCKINGHAM DISPERSION/REPULSION */
296 rinvsix = rinvsq00*rinvsq00*rinvsq00;
297 vvdw6 = c6_00*rinvsix;
298 br = cexp2_00*r00;
299 vvdwexp = cexp1_00*exp(-br);
300 vvdw = vvdwexp - vvdw6*(1.0/6.0);
301 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
302
303 d = r00-rswitch;
304 d = (d>0.0) ? d : 0.0;
305 d2 = d*d;
306 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
307
308 dsw = d2*(swF2+d*(swF3+d*swF4));
309
310 /* Evaluate switch function */
311 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
312 fvdw = fvdw*sw - rinv00*vvdw*dsw;
313 vvdw *= sw;
314
315 /* Update potential sums from outer loop */
316 velecsum += velec;
317 vvdwsum += vvdw;
318
319 fscal = felec+fvdw;
320
321 /* Calculate temporary vectorial force */
322 tx = fscal*dx00;
323 ty = fscal*dy00;
324 tz = fscal*dz00;
325
326 /* Update vectorial force */
327 fix0 += tx;
328 fiy0 += ty;
329 fiz0 += tz;
330 f[j_coord_offset+DIM3*0+XX0] -= tx;
331 f[j_coord_offset+DIM3*0+YY1] -= ty;
332 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
333
334 }
335
336 /**************************
337 * CALCULATE INTERACTIONS *
338 **************************/
339
340 if (rsq01<rcutoff2)
341 {
342
343 /* REACTION-FIELD ELECTROSTATICS */
344 velec = qq01*(rinv01+krf*rsq01-crf);
345 felec = qq01*(rinv01*rinvsq01-krf2);
346
347 /* Update potential sums from outer loop */
348 velecsum += velec;
349
350 fscal = felec;
351
352 /* Calculate temporary vectorial force */
353 tx = fscal*dx01;
354 ty = fscal*dy01;
355 tz = fscal*dz01;
356
357 /* Update vectorial force */
358 fix0 += tx;
359 fiy0 += ty;
360 fiz0 += tz;
361 f[j_coord_offset+DIM3*1+XX0] -= tx;
362 f[j_coord_offset+DIM3*1+YY1] -= ty;
363 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
364
365 }
366
367 /**************************
368 * CALCULATE INTERACTIONS *
369 **************************/
370
371 if (rsq02<rcutoff2)
372 {
373
374 /* REACTION-FIELD ELECTROSTATICS */
375 velec = qq02*(rinv02+krf*rsq02-crf);
376 felec = qq02*(rinv02*rinvsq02-krf2);
377
378 /* Update potential sums from outer loop */
379 velecsum += velec;
380
381 fscal = felec;
382
383 /* Calculate temporary vectorial force */
384 tx = fscal*dx02;
385 ty = fscal*dy02;
386 tz = fscal*dz02;
387
388 /* Update vectorial force */
389 fix0 += tx;
390 fiy0 += ty;
391 fiz0 += tz;
392 f[j_coord_offset+DIM3*2+XX0] -= tx;
393 f[j_coord_offset+DIM3*2+YY1] -= ty;
394 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
395
396 }
397
398 /**************************
399 * CALCULATE INTERACTIONS *
400 **************************/
401
402 if (rsq10<rcutoff2)
403 {
404
405 /* REACTION-FIELD ELECTROSTATICS */
406 velec = qq10*(rinv10+krf*rsq10-crf);
407 felec = qq10*(rinv10*rinvsq10-krf2);
408
409 /* Update potential sums from outer loop */
410 velecsum += velec;
411
412 fscal = felec;
413
414 /* Calculate temporary vectorial force */
415 tx = fscal*dx10;
416 ty = fscal*dy10;
417 tz = fscal*dz10;
418
419 /* Update vectorial force */
420 fix1 += tx;
421 fiy1 += ty;
422 fiz1 += tz;
423 f[j_coord_offset+DIM3*0+XX0] -= tx;
424 f[j_coord_offset+DIM3*0+YY1] -= ty;
425 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
426
427 }
428
429 /**************************
430 * CALCULATE INTERACTIONS *
431 **************************/
432
433 if (rsq11<rcutoff2)
434 {
435
436 /* REACTION-FIELD ELECTROSTATICS */
437 velec = qq11*(rinv11+krf*rsq11-crf);
438 felec = qq11*(rinv11*rinvsq11-krf2);
439
440 /* Update potential sums from outer loop */
441 velecsum += velec;
442
443 fscal = felec;
444
445 /* Calculate temporary vectorial force */
446 tx = fscal*dx11;
447 ty = fscal*dy11;
448 tz = fscal*dz11;
449
450 /* Update vectorial force */
451 fix1 += tx;
452 fiy1 += ty;
453 fiz1 += tz;
454 f[j_coord_offset+DIM3*1+XX0] -= tx;
455 f[j_coord_offset+DIM3*1+YY1] -= ty;
456 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
457
458 }
459
460 /**************************
461 * CALCULATE INTERACTIONS *
462 **************************/
463
464 if (rsq12<rcutoff2)
465 {
466
467 /* REACTION-FIELD ELECTROSTATICS */
468 velec = qq12*(rinv12+krf*rsq12-crf);
469 felec = qq12*(rinv12*rinvsq12-krf2);
470
471 /* Update potential sums from outer loop */
472 velecsum += velec;
473
474 fscal = felec;
475
476 /* Calculate temporary vectorial force */
477 tx = fscal*dx12;
478 ty = fscal*dy12;
479 tz = fscal*dz12;
480
481 /* Update vectorial force */
482 fix1 += tx;
483 fiy1 += ty;
484 fiz1 += tz;
485 f[j_coord_offset+DIM3*2+XX0] -= tx;
486 f[j_coord_offset+DIM3*2+YY1] -= ty;
487 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
488
489 }
490
491 /**************************
492 * CALCULATE INTERACTIONS *
493 **************************/
494
495 if (rsq20<rcutoff2)
496 {
497
498 /* REACTION-FIELD ELECTROSTATICS */
499 velec = qq20*(rinv20+krf*rsq20-crf);
500 felec = qq20*(rinv20*rinvsq20-krf2);
501
502 /* Update potential sums from outer loop */
503 velecsum += velec;
504
505 fscal = felec;
506
507 /* Calculate temporary vectorial force */
508 tx = fscal*dx20;
509 ty = fscal*dy20;
510 tz = fscal*dz20;
511
512 /* Update vectorial force */
513 fix2 += tx;
514 fiy2 += ty;
515 fiz2 += tz;
516 f[j_coord_offset+DIM3*0+XX0] -= tx;
517 f[j_coord_offset+DIM3*0+YY1] -= ty;
518 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
519
520 }
521
522 /**************************
523 * CALCULATE INTERACTIONS *
524 **************************/
525
526 if (rsq21<rcutoff2)
527 {
528
529 /* REACTION-FIELD ELECTROSTATICS */
530 velec = qq21*(rinv21+krf*rsq21-crf);
531 felec = qq21*(rinv21*rinvsq21-krf2);
532
533 /* Update potential sums from outer loop */
534 velecsum += velec;
535
536 fscal = felec;
537
538 /* Calculate temporary vectorial force */
539 tx = fscal*dx21;
540 ty = fscal*dy21;
541 tz = fscal*dz21;
542
543 /* Update vectorial force */
544 fix2 += tx;
545 fiy2 += ty;
546 fiz2 += tz;
547 f[j_coord_offset+DIM3*1+XX0] -= tx;
548 f[j_coord_offset+DIM3*1+YY1] -= ty;
549 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
550
551 }
552
553 /**************************
554 * CALCULATE INTERACTIONS *
555 **************************/
556
557 if (rsq22<rcutoff2)
558 {
559
560 /* REACTION-FIELD ELECTROSTATICS */
561 velec = qq22*(rinv22+krf*rsq22-crf);
562 felec = qq22*(rinv22*rinvsq22-krf2);
563
564 /* Update potential sums from outer loop */
565 velecsum += velec;
566
567 fscal = felec;
568
569 /* Calculate temporary vectorial force */
570 tx = fscal*dx22;
571 ty = fscal*dy22;
572 tz = fscal*dz22;
573
574 /* Update vectorial force */
575 fix2 += tx;
576 fiy2 += ty;
577 fiz2 += tz;
578 f[j_coord_offset+DIM3*2+XX0] -= tx;
579 f[j_coord_offset+DIM3*2+YY1] -= ty;
580 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
581
582 }
583
584 /* Inner loop uses 336 flops */
585 }
586 /* End of innermost loop */
587
588 tx = ty = tz = 0;
589 f[i_coord_offset+DIM3*0+XX0] += fix0;
590 f[i_coord_offset+DIM3*0+YY1] += fiy0;
591 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
592 tx += fix0;
593 ty += fiy0;
594 tz += fiz0;
595 f[i_coord_offset+DIM3*1+XX0] += fix1;
596 f[i_coord_offset+DIM3*1+YY1] += fiy1;
597 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
598 tx += fix1;
599 ty += fiy1;
600 tz += fiz1;
601 f[i_coord_offset+DIM3*2+XX0] += fix2;
602 f[i_coord_offset+DIM3*2+YY1] += fiy2;
603 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
604 tx += fix2;
605 ty += fiy2;
606 tz += fiz2;
607 fshift[i_shift_offset+XX0] += tx;
608 fshift[i_shift_offset+YY1] += ty;
609 fshift[i_shift_offset+ZZ2] += tz;
610
611 ggid = gid[iidx];
612 /* Update potential energies */
613 kernel_data->energygrp_elec[ggid] += velecsum;
614 kernel_data->energygrp_vdw[ggid] += vvdwsum;
615
616 /* Increment number of inner iterations */
617 inneriter += j_index_end - j_index_start;
618
619 /* Outer loop uses 32 flops */
620 }
621
622 /* Increment number of outer iterations */
623 outeriter += nri;
624
625 /* Update outer/inner flops */
626
627 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*336)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*336
;
628}
629/*
630 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_F_c
631 * Electrostatics interaction: ReactionField
632 * VdW interaction: Buckingham
633 * Geometry: Water3-Water3
634 * Calculate force/pot: Force
635 */
636void
637nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_F_c
638 (t_nblist * gmx_restrict__restrict nlist,
639 rvec * gmx_restrict__restrict xx,
640 rvec * gmx_restrict__restrict ff,
641 t_forcerec * gmx_restrict__restrict fr,
642 t_mdatoms * gmx_restrict__restrict mdatoms,
643 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
644 t_nrnb * gmx_restrict__restrict nrnb)
645{
646 int i_shift_offset,i_coord_offset,j_coord_offset;
647 int j_index_start,j_index_end;
648 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
649 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
650 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
651 real *shiftvec,*fshift,*x,*f;
652 int vdwioffset0;
653 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
654 int vdwioffset1;
655 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
656 int vdwioffset2;
657 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
658 int vdwjidx0;
659 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
660 int vdwjidx1;
661 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
662 int vdwjidx2;
663 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
664 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
665 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
666 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
667 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
668 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
669 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
670 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
671 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
672 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
673 real velec,felec,velecsum,facel,crf,krf,krf2;
674 real *charge;
675 int nvdwtype;
676 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
677 int *vdwtype;
678 real *vdwparam;
679 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
680
681 x = xx[0];
682 f = ff[0];
683
684 nri = nlist->nri;
685 iinr = nlist->iinr;
686 jindex = nlist->jindex;
687 jjnr = nlist->jjnr;
688 shiftidx = nlist->shift;
689 gid = nlist->gid;
690 shiftvec = fr->shift_vec[0];
691 fshift = fr->fshift[0];
692 facel = fr->epsfac;
693 charge = mdatoms->chargeA;
694 krf = fr->ic->k_rf;
695 krf2 = krf*2.0;
696 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
697 nvdwtype = fr->ntype;
698 vdwparam = fr->nbfp;
699 vdwtype = mdatoms->typeA;
700
701 /* Setup water-specific parameters */
702 inr = nlist->iinr[0];
703 iq0 = facel*charge[inr+0];
704 iq1 = facel*charge[inr+1];
705 iq2 = facel*charge[inr+2];
706 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
707
708 jq0 = charge[inr+0];
709 jq1 = charge[inr+1];
710 jq2 = charge[inr+2];
711 vdwjidx0 = 3*vdwtype[inr+0];
712 qq00 = iq0*jq0;
713 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
714 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
715 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
716 qq01 = iq0*jq1;
717 qq02 = iq0*jq2;
718 qq10 = iq1*jq0;
719 qq11 = iq1*jq1;
720 qq12 = iq1*jq2;
721 qq20 = iq2*jq0;
722 qq21 = iq2*jq1;
723 qq22 = iq2*jq2;
724
725 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
726 rcutoff = fr->rcoulomb;
727 rcutoff2 = rcutoff*rcutoff;
728
729 rswitch = fr->rvdw_switch;
730 /* Setup switch parameters */
731 d = rcutoff-rswitch;
732 swV3 = -10.0/(d*d*d);
733 swV4 = 15.0/(d*d*d*d);
734 swV5 = -6.0/(d*d*d*d*d);
735 swF2 = -30.0/(d*d*d);
736 swF3 = 60.0/(d*d*d*d);
737 swF4 = -30.0/(d*d*d*d*d);
738
739 outeriter = 0;
740 inneriter = 0;
741
742 /* Start outer loop over neighborlists */
743 for(iidx=0; iidx<nri; iidx++)
744 {
745 /* Load shift vector for this list */
746 i_shift_offset = DIM3*shiftidx[iidx];
747 shX = shiftvec[i_shift_offset+XX0];
748 shY = shiftvec[i_shift_offset+YY1];
749 shZ = shiftvec[i_shift_offset+ZZ2];
750
751 /* Load limits for loop over neighbors */
752 j_index_start = jindex[iidx];
753 j_index_end = jindex[iidx+1];
754
755 /* Get outer coordinate index */
756 inr = iinr[iidx];
757 i_coord_offset = DIM3*inr;
758
759 /* Load i particle coords and add shift vector */
760 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
761 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
762 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
763 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
764 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
765 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
766 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
767 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
768 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
769
770 fix0 = 0.0;
771 fiy0 = 0.0;
772 fiz0 = 0.0;
773 fix1 = 0.0;
774 fiy1 = 0.0;
775 fiz1 = 0.0;
776 fix2 = 0.0;
777 fiy2 = 0.0;
778 fiz2 = 0.0;
779
780 /* Start inner kernel loop */
781 for(jidx=j_index_start; jidx<j_index_end; jidx++)
782 {
783 /* Get j neighbor index, and coordinate index */
784 jnr = jjnr[jidx];
785 j_coord_offset = DIM3*jnr;
786
787 /* load j atom coordinates */
788 jx0 = x[j_coord_offset+DIM3*0+XX0];
789 jy0 = x[j_coord_offset+DIM3*0+YY1];
790 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
791 jx1 = x[j_coord_offset+DIM3*1+XX0];
792 jy1 = x[j_coord_offset+DIM3*1+YY1];
793 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
794 jx2 = x[j_coord_offset+DIM3*2+XX0];
795 jy2 = x[j_coord_offset+DIM3*2+YY1];
796 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
797
798 /* Calculate displacement vector */
799 dx00 = ix0 - jx0;
800 dy00 = iy0 - jy0;
801 dz00 = iz0 - jz0;
802 dx01 = ix0 - jx1;
803 dy01 = iy0 - jy1;
804 dz01 = iz0 - jz1;
805 dx02 = ix0 - jx2;
806 dy02 = iy0 - jy2;
807 dz02 = iz0 - jz2;
808 dx10 = ix1 - jx0;
809 dy10 = iy1 - jy0;
810 dz10 = iz1 - jz0;
811 dx11 = ix1 - jx1;
812 dy11 = iy1 - jy1;
813 dz11 = iz1 - jz1;
814 dx12 = ix1 - jx2;
815 dy12 = iy1 - jy2;
816 dz12 = iz1 - jz2;
817 dx20 = ix2 - jx0;
818 dy20 = iy2 - jy0;
819 dz20 = iz2 - jz0;
820 dx21 = ix2 - jx1;
821 dy21 = iy2 - jy1;
822 dz21 = iz2 - jz1;
823 dx22 = ix2 - jx2;
824 dy22 = iy2 - jy2;
825 dz22 = iz2 - jz2;
826
827 /* Calculate squared distance and things based on it */
828 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
829 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
830 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
831 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
832 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
833 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
834 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
835 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
836 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
837
838 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
839 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
840 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
841 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
842 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
843 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
844 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
845 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
846 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
847
848 rinvsq00 = rinv00*rinv00;
849 rinvsq01 = rinv01*rinv01;
850 rinvsq02 = rinv02*rinv02;
851 rinvsq10 = rinv10*rinv10;
852 rinvsq11 = rinv11*rinv11;
853 rinvsq12 = rinv12*rinv12;
854 rinvsq20 = rinv20*rinv20;
855 rinvsq21 = rinv21*rinv21;
856 rinvsq22 = rinv22*rinv22;
857
858 /**************************
859 * CALCULATE INTERACTIONS *
860 **************************/
861
862 if (rsq00<rcutoff2)
863 {
864
865 r00 = rsq00*rinv00;
866
867 /* REACTION-FIELD ELECTROSTATICS */
868 felec = qq00*(rinv00*rinvsq00-krf2);
869
870 /* BUCKINGHAM DISPERSION/REPULSION */
871 rinvsix = rinvsq00*rinvsq00*rinvsq00;
872 vvdw6 = c6_00*rinvsix;
873 br = cexp2_00*r00;
874 vvdwexp = cexp1_00*exp(-br);
875 vvdw = vvdwexp - vvdw6*(1.0/6.0);
876 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
877
878 d = r00-rswitch;
879 d = (d>0.0) ? d : 0.0;
880 d2 = d*d;
881 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
882
883 dsw = d2*(swF2+d*(swF3+d*swF4));
884
885 /* Evaluate switch function */
886 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
887 fvdw = fvdw*sw - rinv00*vvdw*dsw;
888
889 fscal = felec+fvdw;
890
891 /* Calculate temporary vectorial force */
892 tx = fscal*dx00;
893 ty = fscal*dy00;
894 tz = fscal*dz00;
895
896 /* Update vectorial force */
897 fix0 += tx;
898 fiy0 += ty;
899 fiz0 += tz;
900 f[j_coord_offset+DIM3*0+XX0] -= tx;
901 f[j_coord_offset+DIM3*0+YY1] -= ty;
902 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
903
904 }
905
906 /**************************
907 * CALCULATE INTERACTIONS *
908 **************************/
909
910 if (rsq01<rcutoff2)
911 {
912
913 /* REACTION-FIELD ELECTROSTATICS */
914 felec = qq01*(rinv01*rinvsq01-krf2);
915
916 fscal = felec;
917
918 /* Calculate temporary vectorial force */
919 tx = fscal*dx01;
920 ty = fscal*dy01;
921 tz = fscal*dz01;
922
923 /* Update vectorial force */
924 fix0 += tx;
925 fiy0 += ty;
926 fiz0 += tz;
927 f[j_coord_offset+DIM3*1+XX0] -= tx;
928 f[j_coord_offset+DIM3*1+YY1] -= ty;
929 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
930
931 }
932
933 /**************************
934 * CALCULATE INTERACTIONS *
935 **************************/
936
937 if (rsq02<rcutoff2)
938 {
939
940 /* REACTION-FIELD ELECTROSTATICS */
941 felec = qq02*(rinv02*rinvsq02-krf2);
942
943 fscal = felec;
944
945 /* Calculate temporary vectorial force */
946 tx = fscal*dx02;
947 ty = fscal*dy02;
948 tz = fscal*dz02;
949
950 /* Update vectorial force */
951 fix0 += tx;
952 fiy0 += ty;
953 fiz0 += tz;
954 f[j_coord_offset+DIM3*2+XX0] -= tx;
955 f[j_coord_offset+DIM3*2+YY1] -= ty;
956 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
957
958 }
959
960 /**************************
961 * CALCULATE INTERACTIONS *
962 **************************/
963
964 if (rsq10<rcutoff2)
965 {
966
967 /* REACTION-FIELD ELECTROSTATICS */
968 felec = qq10*(rinv10*rinvsq10-krf2);
969
970 fscal = felec;
971
972 /* Calculate temporary vectorial force */
973 tx = fscal*dx10;
974 ty = fscal*dy10;
975 tz = fscal*dz10;
976
977 /* Update vectorial force */
978 fix1 += tx;
979 fiy1 += ty;
980 fiz1 += tz;
981 f[j_coord_offset+DIM3*0+XX0] -= tx;
982 f[j_coord_offset+DIM3*0+YY1] -= ty;
983 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
984
985 }
986
987 /**************************
988 * CALCULATE INTERACTIONS *
989 **************************/
990
991 if (rsq11<rcutoff2)
992 {
993
994 /* REACTION-FIELD ELECTROSTATICS */
995 felec = qq11*(rinv11*rinvsq11-krf2);
996
997 fscal = felec;
998
999 /* Calculate temporary vectorial force */
1000 tx = fscal*dx11;
1001 ty = fscal*dy11;
1002 tz = fscal*dz11;
1003
1004 /* Update vectorial force */
1005 fix1 += tx;
1006 fiy1 += ty;
1007 fiz1 += tz;
1008 f[j_coord_offset+DIM3*1+XX0] -= tx;
1009 f[j_coord_offset+DIM3*1+YY1] -= ty;
1010 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1011
1012 }
1013
1014 /**************************
1015 * CALCULATE INTERACTIONS *
1016 **************************/
1017
1018 if (rsq12<rcutoff2)
1019 {
1020
1021 /* REACTION-FIELD ELECTROSTATICS */
1022 felec = qq12*(rinv12*rinvsq12-krf2);
1023
1024 fscal = felec;
1025
1026 /* Calculate temporary vectorial force */
1027 tx = fscal*dx12;
1028 ty = fscal*dy12;
1029 tz = fscal*dz12;
1030
1031 /* Update vectorial force */
1032 fix1 += tx;
1033 fiy1 += ty;
1034 fiz1 += tz;
1035 f[j_coord_offset+DIM3*2+XX0] -= tx;
1036 f[j_coord_offset+DIM3*2+YY1] -= ty;
1037 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1038
1039 }
1040
1041 /**************************
1042 * CALCULATE INTERACTIONS *
1043 **************************/
1044
1045 if (rsq20<rcutoff2)
1046 {
1047
1048 /* REACTION-FIELD ELECTROSTATICS */
1049 felec = qq20*(rinv20*rinvsq20-krf2);
1050
1051 fscal = felec;
1052
1053 /* Calculate temporary vectorial force */
1054 tx = fscal*dx20;
1055 ty = fscal*dy20;
1056 tz = fscal*dz20;
1057
1058 /* Update vectorial force */
1059 fix2 += tx;
1060 fiy2 += ty;
1061 fiz2 += tz;
1062 f[j_coord_offset+DIM3*0+XX0] -= tx;
1063 f[j_coord_offset+DIM3*0+YY1] -= ty;
1064 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1065
1066 }
1067
1068 /**************************
1069 * CALCULATE INTERACTIONS *
1070 **************************/
1071
1072 if (rsq21<rcutoff2)
1073 {
1074
1075 /* REACTION-FIELD ELECTROSTATICS */
1076 felec = qq21*(rinv21*rinvsq21-krf2);
1077
1078 fscal = felec;
1079
1080 /* Calculate temporary vectorial force */
1081 tx = fscal*dx21;
1082 ty = fscal*dy21;
1083 tz = fscal*dz21;
1084
1085 /* Update vectorial force */
1086 fix2 += tx;
1087 fiy2 += ty;
1088 fiz2 += tz;
1089 f[j_coord_offset+DIM3*1+XX0] -= tx;
1090 f[j_coord_offset+DIM3*1+YY1] -= ty;
1091 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1092
1093 }
1094
1095 /**************************
1096 * CALCULATE INTERACTIONS *
1097 **************************/
1098
1099 if (rsq22<rcutoff2)
1100 {
1101
1102 /* REACTION-FIELD ELECTROSTATICS */
1103 felec = qq22*(rinv22*rinvsq22-krf2);
1104
1105 fscal = felec;
1106
1107 /* Calculate temporary vectorial force */
1108 tx = fscal*dx22;
1109 ty = fscal*dy22;
1110 tz = fscal*dz22;
1111
1112 /* Update vectorial force */
1113 fix2 += tx;
1114 fiy2 += ty;
1115 fiz2 += tz;
1116 f[j_coord_offset+DIM3*2+XX0] -= tx;
1117 f[j_coord_offset+DIM3*2+YY1] -= ty;
1118 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1119
1120 }
1121
1122 /* Inner loop uses 289 flops */
1123 }
1124 /* End of innermost loop */
1125
1126 tx = ty = tz = 0;
1127 f[i_coord_offset+DIM3*0+XX0] += fix0;
1128 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1129 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1130 tx += fix0;
1131 ty += fiy0;
1132 tz += fiz0;
1133 f[i_coord_offset+DIM3*1+XX0] += fix1;
1134 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1135 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1136 tx += fix1;
1137 ty += fiy1;
1138 tz += fiz1;
1139 f[i_coord_offset+DIM3*2+XX0] += fix2;
1140 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1141 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1142 tx += fix2;
1143 ty += fiy2;
1144 tz += fiz2;
1145 fshift[i_shift_offset+XX0] += tx;
1146 fshift[i_shift_offset+YY1] += ty;
1147 fshift[i_shift_offset+ZZ2] += tz;
1148
1149 /* Increment number of inner iterations */
1150 inneriter += j_index_end - j_index_start;
1151
1152 /* Outer loop uses 30 flops */
1153 }
1154
1155 /* Increment number of outer iterations */
1156 outeriter += nri;
1157
1158 /* Update outer/inner flops */
1159
1160 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*289)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*289
;
1161}