Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwLJ_GeomW3P1_sse4_1_single.c
Location:line 143, column 5
Description:Value stored to 'j_coord_offsetB' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LennardJones
56 * Geometry: Water3-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 int nvdwtype;
99 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100 int *vdwtype;
101 real *vdwparam;
102 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
103 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
104 __m128i ewitab;
105 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106 real *ewtab;
107 __m128 dummy_mask,cutoff_mask;
108 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109 __m128 one = _mm_set1_ps(1.0);
110 __m128 two = _mm_set1_ps(2.0);
111 x = xx[0];
112 f = ff[0];
113
114 nri = nlist->nri;
115 iinr = nlist->iinr;
116 jindex = nlist->jindex;
117 jjnr = nlist->jjnr;
118 shiftidx = nlist->shift;
119 gid = nlist->gid;
120 shiftvec = fr->shift_vec[0];
121 fshift = fr->fshift[0];
122 facel = _mm_set1_ps(fr->epsfac);
123 charge = mdatoms->chargeA;
124 nvdwtype = fr->ntype;
125 vdwparam = fr->nbfp;
126 vdwtype = mdatoms->typeA;
127
128 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
129 ewtab = fr->ic->tabq_coul_FDV0;
130 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
131 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
132
133 /* Setup water-specific parameters */
134 inr = nlist->iinr[0];
135 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
136 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
139
140 /* Avoid stupid compiler warnings */
141 jnrA = jnrB = jnrC = jnrD = 0;
142 j_coord_offsetA = 0;
143 j_coord_offsetB = 0;
Value stored to 'j_coord_offsetB' is never read
144 j_coord_offsetC = 0;
145 j_coord_offsetD = 0;
146
147 outeriter = 0;
148 inneriter = 0;
149
150 for(iidx=0;iidx<4*DIM3;iidx++)
151 {
152 scratch[iidx] = 0.0;
153 }
154
155 /* Start outer loop over neighborlists */
156 for(iidx=0; iidx<nri; iidx++)
157 {
158 /* Load shift vector for this list */
159 i_shift_offset = DIM3*shiftidx[iidx];
160
161 /* Load limits for loop over neighbors */
162 j_index_start = jindex[iidx];
163 j_index_end = jindex[iidx+1];
164
165 /* Get outer coordinate index */
166 inr = iinr[iidx];
167 i_coord_offset = DIM3*inr;
168
169 /* Load i particle coords and add shift vector */
170 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
172
173 fix0 = _mm_setzero_ps();
174 fiy0 = _mm_setzero_ps();
175 fiz0 = _mm_setzero_ps();
176 fix1 = _mm_setzero_ps();
177 fiy1 = _mm_setzero_ps();
178 fiz1 = _mm_setzero_ps();
179 fix2 = _mm_setzero_ps();
180 fiy2 = _mm_setzero_ps();
181 fiz2 = _mm_setzero_ps();
182
183 /* Reset potential sums */
184 velecsum = _mm_setzero_ps();
185 vvdwsum = _mm_setzero_ps();
186
187 /* Start inner kernel loop */
188 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189 {
190
191 /* Get j neighbor index, and coordinate index */
192 jnrA = jjnr[jidx];
193 jnrB = jjnr[jidx+1];
194 jnrC = jjnr[jidx+2];
195 jnrD = jjnr[jidx+3];
196 j_coord_offsetA = DIM3*jnrA;
197 j_coord_offsetB = DIM3*jnrB;
198 j_coord_offsetC = DIM3*jnrC;
199 j_coord_offsetD = DIM3*jnrD;
200
201 /* load j atom coordinates */
202 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
203 x+j_coord_offsetC,x+j_coord_offsetD,
204 &jx0,&jy0,&jz0);
205
206 /* Calculate displacement vector */
207 dx00 = _mm_sub_ps(ix0,jx0);
208 dy00 = _mm_sub_ps(iy0,jy0);
209 dz00 = _mm_sub_ps(iz0,jz0);
210 dx10 = _mm_sub_ps(ix1,jx0);
211 dy10 = _mm_sub_ps(iy1,jy0);
212 dz10 = _mm_sub_ps(iz1,jz0);
213 dx20 = _mm_sub_ps(ix2,jx0);
214 dy20 = _mm_sub_ps(iy2,jy0);
215 dz20 = _mm_sub_ps(iz2,jz0);
216
217 /* Calculate squared distance and things based on it */
218 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221
222 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
223 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
224 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
225
226 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
227 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
228 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
229
230 /* Load parameters for j particles */
231 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232 charge+jnrC+0,charge+jnrD+0);
233 vdwjidx0A = 2*vdwtype[jnrA+0];
234 vdwjidx0B = 2*vdwtype[jnrB+0];
235 vdwjidx0C = 2*vdwtype[jnrC+0];
236 vdwjidx0D = 2*vdwtype[jnrD+0];
237
238 fjx0 = _mm_setzero_ps();
239 fjy0 = _mm_setzero_ps();
240 fjz0 = _mm_setzero_ps();
241
242 /**************************
243 * CALCULATE INTERACTIONS *
244 **************************/
245
246 r00 = _mm_mul_ps(rsq00,rinv00);
247
248 /* Compute parameters for interactions between i and j atoms */
249 qq00 = _mm_mul_ps(iq0,jq0);
250 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
251 vdwparam+vdwioffset0+vdwjidx0B,
252 vdwparam+vdwioffset0+vdwjidx0C,
253 vdwparam+vdwioffset0+vdwjidx0D,
254 &c6_00,&c12_00);
255
256 /* EWALD ELECTROSTATICS */
257
258 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
259 ewrt = _mm_mul_ps(r00,ewtabscale);
260 ewitab = _mm_cvttps_epi32(ewrt);
261 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
262 ewitab = _mm_slli_epi32(ewitab,2);
263 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
264 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
265 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
266 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
267 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
268 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
269 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
270 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
271 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
272
273 /* LENNARD-JONES DISPERSION/REPULSION */
274
275 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
276 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
277 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
278 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
279 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
280
281 /* Update potential sum for this i atom from the interaction with this j atom. */
282 velecsum = _mm_add_ps(velecsum,velec);
283 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
284
285 fscal = _mm_add_ps(felec,fvdw);
286
287 /* Calculate temporary vectorial force */
288 tx = _mm_mul_ps(fscal,dx00);
289 ty = _mm_mul_ps(fscal,dy00);
290 tz = _mm_mul_ps(fscal,dz00);
291
292 /* Update vectorial force */
293 fix0 = _mm_add_ps(fix0,tx);
294 fiy0 = _mm_add_ps(fiy0,ty);
295 fiz0 = _mm_add_ps(fiz0,tz);
296
297 fjx0 = _mm_add_ps(fjx0,tx);
298 fjy0 = _mm_add_ps(fjy0,ty);
299 fjz0 = _mm_add_ps(fjz0,tz);
300
301 /**************************
302 * CALCULATE INTERACTIONS *
303 **************************/
304
305 r10 = _mm_mul_ps(rsq10,rinv10);
306
307 /* Compute parameters for interactions between i and j atoms */
308 qq10 = _mm_mul_ps(iq1,jq0);
309
310 /* EWALD ELECTROSTATICS */
311
312 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313 ewrt = _mm_mul_ps(r10,ewtabscale);
314 ewitab = _mm_cvttps_epi32(ewrt);
315 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
316 ewitab = _mm_slli_epi32(ewitab,2);
317 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
318 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
319 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
320 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
321 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
322 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
323 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
324 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
325 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
326
327 /* Update potential sum for this i atom from the interaction with this j atom. */
328 velecsum = _mm_add_ps(velecsum,velec);
329
330 fscal = felec;
331
332 /* Calculate temporary vectorial force */
333 tx = _mm_mul_ps(fscal,dx10);
334 ty = _mm_mul_ps(fscal,dy10);
335 tz = _mm_mul_ps(fscal,dz10);
336
337 /* Update vectorial force */
338 fix1 = _mm_add_ps(fix1,tx);
339 fiy1 = _mm_add_ps(fiy1,ty);
340 fiz1 = _mm_add_ps(fiz1,tz);
341
342 fjx0 = _mm_add_ps(fjx0,tx);
343 fjy0 = _mm_add_ps(fjy0,ty);
344 fjz0 = _mm_add_ps(fjz0,tz);
345
346 /**************************
347 * CALCULATE INTERACTIONS *
348 **************************/
349
350 r20 = _mm_mul_ps(rsq20,rinv20);
351
352 /* Compute parameters for interactions between i and j atoms */
353 qq20 = _mm_mul_ps(iq2,jq0);
354
355 /* EWALD ELECTROSTATICS */
356
357 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358 ewrt = _mm_mul_ps(r20,ewtabscale);
359 ewitab = _mm_cvttps_epi32(ewrt);
360 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
361 ewitab = _mm_slli_epi32(ewitab,2);
362 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
363 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
364 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
365 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
366 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
367 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
368 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
369 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
370 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
371
372 /* Update potential sum for this i atom from the interaction with this j atom. */
373 velecsum = _mm_add_ps(velecsum,velec);
374
375 fscal = felec;
376
377 /* Calculate temporary vectorial force */
378 tx = _mm_mul_ps(fscal,dx20);
379 ty = _mm_mul_ps(fscal,dy20);
380 tz = _mm_mul_ps(fscal,dz20);
381
382 /* Update vectorial force */
383 fix2 = _mm_add_ps(fix2,tx);
384 fiy2 = _mm_add_ps(fiy2,ty);
385 fiz2 = _mm_add_ps(fiz2,tz);
386
387 fjx0 = _mm_add_ps(fjx0,tx);
388 fjy0 = _mm_add_ps(fjy0,ty);
389 fjz0 = _mm_add_ps(fjz0,tz);
390
391 fjptrA = f+j_coord_offsetA;
392 fjptrB = f+j_coord_offsetB;
393 fjptrC = f+j_coord_offsetC;
394 fjptrD = f+j_coord_offsetD;
395
396 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
397
398 /* Inner loop uses 135 flops */
399 }
400
401 if(jidx<j_index_end)
402 {
403
404 /* Get j neighbor index, and coordinate index */
405 jnrlistA = jjnr[jidx];
406 jnrlistB = jjnr[jidx+1];
407 jnrlistC = jjnr[jidx+2];
408 jnrlistD = jjnr[jidx+3];
409 /* Sign of each element will be negative for non-real atoms.
410 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
411 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
412 */
413 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
414 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
415 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
416 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
417 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
418 j_coord_offsetA = DIM3*jnrA;
419 j_coord_offsetB = DIM3*jnrB;
420 j_coord_offsetC = DIM3*jnrC;
421 j_coord_offsetD = DIM3*jnrD;
422
423 /* load j atom coordinates */
424 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
425 x+j_coord_offsetC,x+j_coord_offsetD,
426 &jx0,&jy0,&jz0);
427
428 /* Calculate displacement vector */
429 dx00 = _mm_sub_ps(ix0,jx0);
430 dy00 = _mm_sub_ps(iy0,jy0);
431 dz00 = _mm_sub_ps(iz0,jz0);
432 dx10 = _mm_sub_ps(ix1,jx0);
433 dy10 = _mm_sub_ps(iy1,jy0);
434 dz10 = _mm_sub_ps(iz1,jz0);
435 dx20 = _mm_sub_ps(ix2,jx0);
436 dy20 = _mm_sub_ps(iy2,jy0);
437 dz20 = _mm_sub_ps(iz2,jz0);
438
439 /* Calculate squared distance and things based on it */
440 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
441 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
442 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
443
444 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
445 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
446 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
447
448 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
449 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
450 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
451
452 /* Load parameters for j particles */
453 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
454 charge+jnrC+0,charge+jnrD+0);
455 vdwjidx0A = 2*vdwtype[jnrA+0];
456 vdwjidx0B = 2*vdwtype[jnrB+0];
457 vdwjidx0C = 2*vdwtype[jnrC+0];
458 vdwjidx0D = 2*vdwtype[jnrD+0];
459
460 fjx0 = _mm_setzero_ps();
461 fjy0 = _mm_setzero_ps();
462 fjz0 = _mm_setzero_ps();
463
464 /**************************
465 * CALCULATE INTERACTIONS *
466 **************************/
467
468 r00 = _mm_mul_ps(rsq00,rinv00);
469 r00 = _mm_andnot_ps(dummy_mask,r00);
470
471 /* Compute parameters for interactions between i and j atoms */
472 qq00 = _mm_mul_ps(iq0,jq0);
473 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
474 vdwparam+vdwioffset0+vdwjidx0B,
475 vdwparam+vdwioffset0+vdwjidx0C,
476 vdwparam+vdwioffset0+vdwjidx0D,
477 &c6_00,&c12_00);
478
479 /* EWALD ELECTROSTATICS */
480
481 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
482 ewrt = _mm_mul_ps(r00,ewtabscale);
483 ewitab = _mm_cvttps_epi32(ewrt);
484 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
485 ewitab = _mm_slli_epi32(ewitab,2);
486 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
487 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
488 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
489 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
490 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
491 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
492 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
493 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
494 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
495
496 /* LENNARD-JONES DISPERSION/REPULSION */
497
498 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
499 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
500 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
501 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
502 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
503
504 /* Update potential sum for this i atom from the interaction with this j atom. */
505 velec = _mm_andnot_ps(dummy_mask,velec);
506 velecsum = _mm_add_ps(velecsum,velec);
507 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
508 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
509
510 fscal = _mm_add_ps(felec,fvdw);
511
512 fscal = _mm_andnot_ps(dummy_mask,fscal);
513
514 /* Calculate temporary vectorial force */
515 tx = _mm_mul_ps(fscal,dx00);
516 ty = _mm_mul_ps(fscal,dy00);
517 tz = _mm_mul_ps(fscal,dz00);
518
519 /* Update vectorial force */
520 fix0 = _mm_add_ps(fix0,tx);
521 fiy0 = _mm_add_ps(fiy0,ty);
522 fiz0 = _mm_add_ps(fiz0,tz);
523
524 fjx0 = _mm_add_ps(fjx0,tx);
525 fjy0 = _mm_add_ps(fjy0,ty);
526 fjz0 = _mm_add_ps(fjz0,tz);
527
528 /**************************
529 * CALCULATE INTERACTIONS *
530 **************************/
531
532 r10 = _mm_mul_ps(rsq10,rinv10);
533 r10 = _mm_andnot_ps(dummy_mask,r10);
534
535 /* Compute parameters for interactions between i and j atoms */
536 qq10 = _mm_mul_ps(iq1,jq0);
537
538 /* EWALD ELECTROSTATICS */
539
540 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541 ewrt = _mm_mul_ps(r10,ewtabscale);
542 ewitab = _mm_cvttps_epi32(ewrt);
543 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
544 ewitab = _mm_slli_epi32(ewitab,2);
545 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
546 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
547 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
548 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
549 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
550 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
551 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
552 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
553 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
554
555 /* Update potential sum for this i atom from the interaction with this j atom. */
556 velec = _mm_andnot_ps(dummy_mask,velec);
557 velecsum = _mm_add_ps(velecsum,velec);
558
559 fscal = felec;
560
561 fscal = _mm_andnot_ps(dummy_mask,fscal);
562
563 /* Calculate temporary vectorial force */
564 tx = _mm_mul_ps(fscal,dx10);
565 ty = _mm_mul_ps(fscal,dy10);
566 tz = _mm_mul_ps(fscal,dz10);
567
568 /* Update vectorial force */
569 fix1 = _mm_add_ps(fix1,tx);
570 fiy1 = _mm_add_ps(fiy1,ty);
571 fiz1 = _mm_add_ps(fiz1,tz);
572
573 fjx0 = _mm_add_ps(fjx0,tx);
574 fjy0 = _mm_add_ps(fjy0,ty);
575 fjz0 = _mm_add_ps(fjz0,tz);
576
577 /**************************
578 * CALCULATE INTERACTIONS *
579 **************************/
580
581 r20 = _mm_mul_ps(rsq20,rinv20);
582 r20 = _mm_andnot_ps(dummy_mask,r20);
583
584 /* Compute parameters for interactions between i and j atoms */
585 qq20 = _mm_mul_ps(iq2,jq0);
586
587 /* EWALD ELECTROSTATICS */
588
589 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
590 ewrt = _mm_mul_ps(r20,ewtabscale);
591 ewitab = _mm_cvttps_epi32(ewrt);
592 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
593 ewitab = _mm_slli_epi32(ewitab,2);
594 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
595 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
596 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
597 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
598 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
599 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
600 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
601 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
602 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
603
604 /* Update potential sum for this i atom from the interaction with this j atom. */
605 velec = _mm_andnot_ps(dummy_mask,velec);
606 velecsum = _mm_add_ps(velecsum,velec);
607
608 fscal = felec;
609
610 fscal = _mm_andnot_ps(dummy_mask,fscal);
611
612 /* Calculate temporary vectorial force */
613 tx = _mm_mul_ps(fscal,dx20);
614 ty = _mm_mul_ps(fscal,dy20);
615 tz = _mm_mul_ps(fscal,dz20);
616
617 /* Update vectorial force */
618 fix2 = _mm_add_ps(fix2,tx);
619 fiy2 = _mm_add_ps(fiy2,ty);
620 fiz2 = _mm_add_ps(fiz2,tz);
621
622 fjx0 = _mm_add_ps(fjx0,tx);
623 fjy0 = _mm_add_ps(fjy0,ty);
624 fjz0 = _mm_add_ps(fjz0,tz);
625
626 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
627 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
628 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
629 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
630
631 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
632
633 /* Inner loop uses 138 flops */
634 }
635
636 /* End of innermost loop */
637
638 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
639 f+i_coord_offset,fshift+i_shift_offset);
640
641 ggid = gid[iidx];
642 /* Update potential energies */
643 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
644 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
645
646 /* Increment number of inner iterations */
647 inneriter += j_index_end - j_index_start;
648
649 /* Outer loop uses 20 flops */
650 }
651
652 /* Increment number of outer iterations */
653 outeriter += nri;
654
655 /* Update outer/inner flops */
656
657 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*138)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*20 + inneriter
*138
;
658}
659/*
660 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse4_1_single
661 * Electrostatics interaction: Ewald
662 * VdW interaction: LennardJones
663 * Geometry: Water3-Particle
664 * Calculate force/pot: Force
665 */
666void
667nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse4_1_single
668 (t_nblist * gmx_restrict nlist,
669 rvec * gmx_restrict xx,
670 rvec * gmx_restrict ff,
671 t_forcerec * gmx_restrict fr,
672 t_mdatoms * gmx_restrict mdatoms,
673 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
674 t_nrnb * gmx_restrict nrnb)
675{
676 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
677 * just 0 for non-waters.
678 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
679 * jnr indices corresponding to data put in the four positions in the SIMD register.
680 */
681 int i_shift_offset,i_coord_offset,outeriter,inneriter;
682 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
683 int jnrA,jnrB,jnrC,jnrD;
684 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
685 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
686 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
687 real rcutoff_scalar;
688 real *shiftvec,*fshift,*x,*f;
689 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
690 real scratch[4*DIM3];
691 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
692 int vdwioffset0;
693 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
694 int vdwioffset1;
695 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
696 int vdwioffset2;
697 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
698 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
699 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
700 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
701 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
702 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
703 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
704 real *charge;
705 int nvdwtype;
706 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
707 int *vdwtype;
708 real *vdwparam;
709 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
710 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
711 __m128i ewitab;
712 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
713 real *ewtab;
714 __m128 dummy_mask,cutoff_mask;
715 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
716 __m128 one = _mm_set1_ps(1.0);
717 __m128 two = _mm_set1_ps(2.0);
718 x = xx[0];
719 f = ff[0];
720
721 nri = nlist->nri;
722 iinr = nlist->iinr;
723 jindex = nlist->jindex;
724 jjnr = nlist->jjnr;
725 shiftidx = nlist->shift;
726 gid = nlist->gid;
727 shiftvec = fr->shift_vec[0];
728 fshift = fr->fshift[0];
729 facel = _mm_set1_ps(fr->epsfac);
730 charge = mdatoms->chargeA;
731 nvdwtype = fr->ntype;
732 vdwparam = fr->nbfp;
733 vdwtype = mdatoms->typeA;
734
735 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
736 ewtab = fr->ic->tabq_coul_F;
737 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
738 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
739
740 /* Setup water-specific parameters */
741 inr = nlist->iinr[0];
742 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
743 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
744 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
745 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
746
747 /* Avoid stupid compiler warnings */
748 jnrA = jnrB = jnrC = jnrD = 0;
749 j_coord_offsetA = 0;
750 j_coord_offsetB = 0;
751 j_coord_offsetC = 0;
752 j_coord_offsetD = 0;
753
754 outeriter = 0;
755 inneriter = 0;
756
757 for(iidx=0;iidx<4*DIM3;iidx++)
758 {
759 scratch[iidx] = 0.0;
760 }
761
762 /* Start outer loop over neighborlists */
763 for(iidx=0; iidx<nri; iidx++)
764 {
765 /* Load shift vector for this list */
766 i_shift_offset = DIM3*shiftidx[iidx];
767
768 /* Load limits for loop over neighbors */
769 j_index_start = jindex[iidx];
770 j_index_end = jindex[iidx+1];
771
772 /* Get outer coordinate index */
773 inr = iinr[iidx];
774 i_coord_offset = DIM3*inr;
775
776 /* Load i particle coords and add shift vector */
777 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
778 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
779
780 fix0 = _mm_setzero_ps();
781 fiy0 = _mm_setzero_ps();
782 fiz0 = _mm_setzero_ps();
783 fix1 = _mm_setzero_ps();
784 fiy1 = _mm_setzero_ps();
785 fiz1 = _mm_setzero_ps();
786 fix2 = _mm_setzero_ps();
787 fiy2 = _mm_setzero_ps();
788 fiz2 = _mm_setzero_ps();
789
790 /* Start inner kernel loop */
791 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
792 {
793
794 /* Get j neighbor index, and coordinate index */
795 jnrA = jjnr[jidx];
796 jnrB = jjnr[jidx+1];
797 jnrC = jjnr[jidx+2];
798 jnrD = jjnr[jidx+3];
799 j_coord_offsetA = DIM3*jnrA;
800 j_coord_offsetB = DIM3*jnrB;
801 j_coord_offsetC = DIM3*jnrC;
802 j_coord_offsetD = DIM3*jnrD;
803
804 /* load j atom coordinates */
805 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
806 x+j_coord_offsetC,x+j_coord_offsetD,
807 &jx0,&jy0,&jz0);
808
809 /* Calculate displacement vector */
810 dx00 = _mm_sub_ps(ix0,jx0);
811 dy00 = _mm_sub_ps(iy0,jy0);
812 dz00 = _mm_sub_ps(iz0,jz0);
813 dx10 = _mm_sub_ps(ix1,jx0);
814 dy10 = _mm_sub_ps(iy1,jy0);
815 dz10 = _mm_sub_ps(iz1,jz0);
816 dx20 = _mm_sub_ps(ix2,jx0);
817 dy20 = _mm_sub_ps(iy2,jy0);
818 dz20 = _mm_sub_ps(iz2,jz0);
819
820 /* Calculate squared distance and things based on it */
821 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
822 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
823 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
824
825 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
826 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
827 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
828
829 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
830 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
831 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
832
833 /* Load parameters for j particles */
834 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
835 charge+jnrC+0,charge+jnrD+0);
836 vdwjidx0A = 2*vdwtype[jnrA+0];
837 vdwjidx0B = 2*vdwtype[jnrB+0];
838 vdwjidx0C = 2*vdwtype[jnrC+0];
839 vdwjidx0D = 2*vdwtype[jnrD+0];
840
841 fjx0 = _mm_setzero_ps();
842 fjy0 = _mm_setzero_ps();
843 fjz0 = _mm_setzero_ps();
844
845 /**************************
846 * CALCULATE INTERACTIONS *
847 **************************/
848
849 r00 = _mm_mul_ps(rsq00,rinv00);
850
851 /* Compute parameters for interactions between i and j atoms */
852 qq00 = _mm_mul_ps(iq0,jq0);
853 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
854 vdwparam+vdwioffset0+vdwjidx0B,
855 vdwparam+vdwioffset0+vdwjidx0C,
856 vdwparam+vdwioffset0+vdwjidx0D,
857 &c6_00,&c12_00);
858
859 /* EWALD ELECTROSTATICS */
860
861 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
862 ewrt = _mm_mul_ps(r00,ewtabscale);
863 ewitab = _mm_cvttps_epi32(ewrt);
864 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
865 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
866 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
867 &ewtabF,&ewtabFn);
868 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
869 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
870
871 /* LENNARD-JONES DISPERSION/REPULSION */
872
873 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
874 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
875
876 fscal = _mm_add_ps(felec,fvdw);
877
878 /* Calculate temporary vectorial force */
879 tx = _mm_mul_ps(fscal,dx00);
880 ty = _mm_mul_ps(fscal,dy00);
881 tz = _mm_mul_ps(fscal,dz00);
882
883 /* Update vectorial force */
884 fix0 = _mm_add_ps(fix0,tx);
885 fiy0 = _mm_add_ps(fiy0,ty);
886 fiz0 = _mm_add_ps(fiz0,tz);
887
888 fjx0 = _mm_add_ps(fjx0,tx);
889 fjy0 = _mm_add_ps(fjy0,ty);
890 fjz0 = _mm_add_ps(fjz0,tz);
891
892 /**************************
893 * CALCULATE INTERACTIONS *
894 **************************/
895
896 r10 = _mm_mul_ps(rsq10,rinv10);
897
898 /* Compute parameters for interactions between i and j atoms */
899 qq10 = _mm_mul_ps(iq1,jq0);
900
901 /* EWALD ELECTROSTATICS */
902
903 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
904 ewrt = _mm_mul_ps(r10,ewtabscale);
905 ewitab = _mm_cvttps_epi32(ewrt);
906 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
907 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
908 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
909 &ewtabF,&ewtabFn);
910 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
911 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
912
913 fscal = felec;
914
915 /* Calculate temporary vectorial force */
916 tx = _mm_mul_ps(fscal,dx10);
917 ty = _mm_mul_ps(fscal,dy10);
918 tz = _mm_mul_ps(fscal,dz10);
919
920 /* Update vectorial force */
921 fix1 = _mm_add_ps(fix1,tx);
922 fiy1 = _mm_add_ps(fiy1,ty);
923 fiz1 = _mm_add_ps(fiz1,tz);
924
925 fjx0 = _mm_add_ps(fjx0,tx);
926 fjy0 = _mm_add_ps(fjy0,ty);
927 fjz0 = _mm_add_ps(fjz0,tz);
928
929 /**************************
930 * CALCULATE INTERACTIONS *
931 **************************/
932
933 r20 = _mm_mul_ps(rsq20,rinv20);
934
935 /* Compute parameters for interactions between i and j atoms */
936 qq20 = _mm_mul_ps(iq2,jq0);
937
938 /* EWALD ELECTROSTATICS */
939
940 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
941 ewrt = _mm_mul_ps(r20,ewtabscale);
942 ewitab = _mm_cvttps_epi32(ewrt);
943 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
944 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
945 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
946 &ewtabF,&ewtabFn);
947 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
948 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
949
950 fscal = felec;
951
952 /* Calculate temporary vectorial force */
953 tx = _mm_mul_ps(fscal,dx20);
954 ty = _mm_mul_ps(fscal,dy20);
955 tz = _mm_mul_ps(fscal,dz20);
956
957 /* Update vectorial force */
958 fix2 = _mm_add_ps(fix2,tx);
959 fiy2 = _mm_add_ps(fiy2,ty);
960 fiz2 = _mm_add_ps(fiz2,tz);
961
962 fjx0 = _mm_add_ps(fjx0,tx);
963 fjy0 = _mm_add_ps(fjy0,ty);
964 fjz0 = _mm_add_ps(fjz0,tz);
965
966 fjptrA = f+j_coord_offsetA;
967 fjptrB = f+j_coord_offsetB;
968 fjptrC = f+j_coord_offsetC;
969 fjptrD = f+j_coord_offsetD;
970
971 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
972
973 /* Inner loop uses 115 flops */
974 }
975
976 if(jidx<j_index_end)
977 {
978
979 /* Get j neighbor index, and coordinate index */
980 jnrlistA = jjnr[jidx];
981 jnrlistB = jjnr[jidx+1];
982 jnrlistC = jjnr[jidx+2];
983 jnrlistD = jjnr[jidx+3];
984 /* Sign of each element will be negative for non-real atoms.
985 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
986 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
987 */
988 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
989 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
990 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
991 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
992 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
993 j_coord_offsetA = DIM3*jnrA;
994 j_coord_offsetB = DIM3*jnrB;
995 j_coord_offsetC = DIM3*jnrC;
996 j_coord_offsetD = DIM3*jnrD;
997
998 /* load j atom coordinates */
999 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1000 x+j_coord_offsetC,x+j_coord_offsetD,
1001 &jx0,&jy0,&jz0);
1002
1003 /* Calculate displacement vector */
1004 dx00 = _mm_sub_ps(ix0,jx0);
1005 dy00 = _mm_sub_ps(iy0,jy0);
1006 dz00 = _mm_sub_ps(iz0,jz0);
1007 dx10 = _mm_sub_ps(ix1,jx0);
1008 dy10 = _mm_sub_ps(iy1,jy0);
1009 dz10 = _mm_sub_ps(iz1,jz0);
1010 dx20 = _mm_sub_ps(ix2,jx0);
1011 dy20 = _mm_sub_ps(iy2,jy0);
1012 dz20 = _mm_sub_ps(iz2,jz0);
1013
1014 /* Calculate squared distance and things based on it */
1015 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1016 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1017 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1018
1019 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1020 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1021 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1022
1023 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
1024 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1025 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1026
1027 /* Load parameters for j particles */
1028 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1029 charge+jnrC+0,charge+jnrD+0);
1030 vdwjidx0A = 2*vdwtype[jnrA+0];
1031 vdwjidx0B = 2*vdwtype[jnrB+0];
1032 vdwjidx0C = 2*vdwtype[jnrC+0];
1033 vdwjidx0D = 2*vdwtype[jnrD+0];
1034
1035 fjx0 = _mm_setzero_ps();
1036 fjy0 = _mm_setzero_ps();
1037 fjz0 = _mm_setzero_ps();
1038
1039 /**************************
1040 * CALCULATE INTERACTIONS *
1041 **************************/
1042
1043 r00 = _mm_mul_ps(rsq00,rinv00);
1044 r00 = _mm_andnot_ps(dummy_mask,r00);
1045
1046 /* Compute parameters for interactions between i and j atoms */
1047 qq00 = _mm_mul_ps(iq0,jq0);
1048 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1049 vdwparam+vdwioffset0+vdwjidx0B,
1050 vdwparam+vdwioffset0+vdwjidx0C,
1051 vdwparam+vdwioffset0+vdwjidx0D,
1052 &c6_00,&c12_00);
1053
1054 /* EWALD ELECTROSTATICS */
1055
1056 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1057 ewrt = _mm_mul_ps(r00,ewtabscale);
1058 ewitab = _mm_cvttps_epi32(ewrt);
1059 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1060 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1061 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1062 &ewtabF,&ewtabFn);
1063 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1064 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1065
1066 /* LENNARD-JONES DISPERSION/REPULSION */
1067
1068 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1069 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1070
1071 fscal = _mm_add_ps(felec,fvdw);
1072
1073 fscal = _mm_andnot_ps(dummy_mask,fscal);
1074
1075 /* Calculate temporary vectorial force */
1076 tx = _mm_mul_ps(fscal,dx00);
1077 ty = _mm_mul_ps(fscal,dy00);
1078 tz = _mm_mul_ps(fscal,dz00);
1079
1080 /* Update vectorial force */
1081 fix0 = _mm_add_ps(fix0,tx);
1082 fiy0 = _mm_add_ps(fiy0,ty);
1083 fiz0 = _mm_add_ps(fiz0,tz);
1084
1085 fjx0 = _mm_add_ps(fjx0,tx);
1086 fjy0 = _mm_add_ps(fjy0,ty);
1087 fjz0 = _mm_add_ps(fjz0,tz);
1088
1089 /**************************
1090 * CALCULATE INTERACTIONS *
1091 **************************/
1092
1093 r10 = _mm_mul_ps(rsq10,rinv10);
1094 r10 = _mm_andnot_ps(dummy_mask,r10);
1095
1096 /* Compute parameters for interactions between i and j atoms */
1097 qq10 = _mm_mul_ps(iq1,jq0);
1098
1099 /* EWALD ELECTROSTATICS */
1100
1101 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1102 ewrt = _mm_mul_ps(r10,ewtabscale);
1103 ewitab = _mm_cvttps_epi32(ewrt);
1104 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1105 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1106 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1107 &ewtabF,&ewtabFn);
1108 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1109 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1110
1111 fscal = felec;
1112
1113 fscal = _mm_andnot_ps(dummy_mask,fscal);
1114
1115 /* Calculate temporary vectorial force */
1116 tx = _mm_mul_ps(fscal,dx10);
1117 ty = _mm_mul_ps(fscal,dy10);
1118 tz = _mm_mul_ps(fscal,dz10);
1119
1120 /* Update vectorial force */
1121 fix1 = _mm_add_ps(fix1,tx);
1122 fiy1 = _mm_add_ps(fiy1,ty);
1123 fiz1 = _mm_add_ps(fiz1,tz);
1124
1125 fjx0 = _mm_add_ps(fjx0,tx);
1126 fjy0 = _mm_add_ps(fjy0,ty);
1127 fjz0 = _mm_add_ps(fjz0,tz);
1128
1129 /**************************
1130 * CALCULATE INTERACTIONS *
1131 **************************/
1132
1133 r20 = _mm_mul_ps(rsq20,rinv20);
1134 r20 = _mm_andnot_ps(dummy_mask,r20);
1135
1136 /* Compute parameters for interactions between i and j atoms */
1137 qq20 = _mm_mul_ps(iq2,jq0);
1138
1139 /* EWALD ELECTROSTATICS */
1140
1141 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1142 ewrt = _mm_mul_ps(r20,ewtabscale);
1143 ewitab = _mm_cvttps_epi32(ewrt);
1144 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1145 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1146 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1147 &ewtabF,&ewtabFn);
1148 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1149 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1150
1151 fscal = felec;
1152
1153 fscal = _mm_andnot_ps(dummy_mask,fscal);
1154
1155 /* Calculate temporary vectorial force */
1156 tx = _mm_mul_ps(fscal,dx20);
1157 ty = _mm_mul_ps(fscal,dy20);
1158 tz = _mm_mul_ps(fscal,dz20);
1159
1160 /* Update vectorial force */
1161 fix2 = _mm_add_ps(fix2,tx);
1162 fiy2 = _mm_add_ps(fiy2,ty);
1163 fiz2 = _mm_add_ps(fiz2,tz);
1164
1165 fjx0 = _mm_add_ps(fjx0,tx);
1166 fjy0 = _mm_add_ps(fjy0,ty);
1167 fjz0 = _mm_add_ps(fjz0,tz);
1168
1169 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1170 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1171 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1172 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1173
1174 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1175
1176 /* Inner loop uses 118 flops */
1177 }
1178
1179 /* End of innermost loop */
1180
1181 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1182 f+i_coord_offset,fshift+i_shift_offset);
1183
1184 /* Increment number of inner iterations */
1185 inneriter += j_index_end - j_index_start;
1186
1187 /* Outer loop uses 18 flops */
1188 }
1189
1190 /* Increment number of outer iterations */
1191 outeriter += nri;
1192
1193 /* Update outer/inner flops */
1194
1195 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*18 + inneriter
*118
;
1196}