Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse4_1_single.c
Location:line 757, column 22
Description:Value stored to 'two' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LJEwald
56 * Geometry: Water3-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 int nvdwtype;
99 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100 int *vdwtype;
101 real *vdwparam;
102 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
103 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
104 __m128 c6grid_00;
105 __m128 c6grid_10;
106 __m128 c6grid_20;
107 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
108 real *vdwgridparam;
109 __m128 one_half = _mm_set1_ps(0.5);
110 __m128 minus_one = _mm_set1_ps(-1.0);
111 __m128i ewitab;
112 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113 real *ewtab;
114 __m128 dummy_mask,cutoff_mask;
115 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
116 __m128 one = _mm_set1_ps(1.0);
117 __m128 two = _mm_set1_ps(2.0);
118 x = xx[0];
119 f = ff[0];
120
121 nri = nlist->nri;
122 iinr = nlist->iinr;
123 jindex = nlist->jindex;
124 jjnr = nlist->jjnr;
125 shiftidx = nlist->shift;
126 gid = nlist->gid;
127 shiftvec = fr->shift_vec[0];
128 fshift = fr->fshift[0];
129 facel = _mm_set1_ps(fr->epsfac);
130 charge = mdatoms->chargeA;
131 nvdwtype = fr->ntype;
132 vdwparam = fr->nbfp;
133 vdwtype = mdatoms->typeA;
134 vdwgridparam = fr->ljpme_c6grid;
135 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
136 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
137 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
138
139 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
140 ewtab = fr->ic->tabq_coul_FDV0;
141 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
142 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
143
144 /* Setup water-specific parameters */
145 inr = nlist->iinr[0];
146 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
147 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
150
151 /* Avoid stupid compiler warnings */
152 jnrA = jnrB = jnrC = jnrD = 0;
153 j_coord_offsetA = 0;
154 j_coord_offsetB = 0;
155 j_coord_offsetC = 0;
156 j_coord_offsetD = 0;
157
158 outeriter = 0;
159 inneriter = 0;
160
161 for(iidx=0;iidx<4*DIM3;iidx++)
162 {
163 scratch[iidx] = 0.0;
164 }
165
166 /* Start outer loop over neighborlists */
167 for(iidx=0; iidx<nri; iidx++)
168 {
169 /* Load shift vector for this list */
170 i_shift_offset = DIM3*shiftidx[iidx];
171
172 /* Load limits for loop over neighbors */
173 j_index_start = jindex[iidx];
174 j_index_end = jindex[iidx+1];
175
176 /* Get outer coordinate index */
177 inr = iinr[iidx];
178 i_coord_offset = DIM3*inr;
179
180 /* Load i particle coords and add shift vector */
181 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183
184 fix0 = _mm_setzero_ps();
185 fiy0 = _mm_setzero_ps();
186 fiz0 = _mm_setzero_ps();
187 fix1 = _mm_setzero_ps();
188 fiy1 = _mm_setzero_ps();
189 fiz1 = _mm_setzero_ps();
190 fix2 = _mm_setzero_ps();
191 fiy2 = _mm_setzero_ps();
192 fiz2 = _mm_setzero_ps();
193
194 /* Reset potential sums */
195 velecsum = _mm_setzero_ps();
196 vvdwsum = _mm_setzero_ps();
197
198 /* Start inner kernel loop */
199 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200 {
201
202 /* Get j neighbor index, and coordinate index */
203 jnrA = jjnr[jidx];
204 jnrB = jjnr[jidx+1];
205 jnrC = jjnr[jidx+2];
206 jnrD = jjnr[jidx+3];
207 j_coord_offsetA = DIM3*jnrA;
208 j_coord_offsetB = DIM3*jnrB;
209 j_coord_offsetC = DIM3*jnrC;
210 j_coord_offsetD = DIM3*jnrD;
211
212 /* load j atom coordinates */
213 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214 x+j_coord_offsetC,x+j_coord_offsetD,
215 &jx0,&jy0,&jz0);
216
217 /* Calculate displacement vector */
218 dx00 = _mm_sub_ps(ix0,jx0);
219 dy00 = _mm_sub_ps(iy0,jy0);
220 dz00 = _mm_sub_ps(iz0,jz0);
221 dx10 = _mm_sub_ps(ix1,jx0);
222 dy10 = _mm_sub_ps(iy1,jy0);
223 dz10 = _mm_sub_ps(iz1,jz0);
224 dx20 = _mm_sub_ps(ix2,jx0);
225 dy20 = _mm_sub_ps(iy2,jy0);
226 dz20 = _mm_sub_ps(iz2,jz0);
227
228 /* Calculate squared distance and things based on it */
229 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232
233 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
234 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
235 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
236
237 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
238 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
239 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
240
241 /* Load parameters for j particles */
242 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243 charge+jnrC+0,charge+jnrD+0);
244 vdwjidx0A = 2*vdwtype[jnrA+0];
245 vdwjidx0B = 2*vdwtype[jnrB+0];
246 vdwjidx0C = 2*vdwtype[jnrC+0];
247 vdwjidx0D = 2*vdwtype[jnrD+0];
248
249 fjx0 = _mm_setzero_ps();
250 fjy0 = _mm_setzero_ps();
251 fjz0 = _mm_setzero_ps();
252
253 /**************************
254 * CALCULATE INTERACTIONS *
255 **************************/
256
257 r00 = _mm_mul_ps(rsq00,rinv00);
258
259 /* Compute parameters for interactions between i and j atoms */
260 qq00 = _mm_mul_ps(iq0,jq0);
261 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
262 vdwparam+vdwioffset0+vdwjidx0B,
263 vdwparam+vdwioffset0+vdwjidx0C,
264 vdwparam+vdwioffset0+vdwjidx0D,
265 &c6_00,&c12_00);
266
267 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
268 vdwgridparam+vdwioffset0+vdwjidx0B,
269 vdwgridparam+vdwioffset0+vdwjidx0C,
270 vdwgridparam+vdwioffset0+vdwjidx0D);
271
272 /* EWALD ELECTROSTATICS */
273
274 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
275 ewrt = _mm_mul_ps(r00,ewtabscale);
276 ewitab = _mm_cvttps_epi32(ewrt);
277 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
278 ewitab = _mm_slli_epi32(ewitab,2);
279 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
280 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
281 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
282 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
283 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
284 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
285 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
286 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
287 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
288
289 /* Analytical LJ-PME */
290 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
291 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
292 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
293 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
294 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
295 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
296 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
297 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
298 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
299 vvdw = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
300 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
301 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
302
303 /* Update potential sum for this i atom from the interaction with this j atom. */
304 velecsum = _mm_add_ps(velecsum,velec);
305 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
306
307 fscal = _mm_add_ps(felec,fvdw);
308
309 /* Calculate temporary vectorial force */
310 tx = _mm_mul_ps(fscal,dx00);
311 ty = _mm_mul_ps(fscal,dy00);
312 tz = _mm_mul_ps(fscal,dz00);
313
314 /* Update vectorial force */
315 fix0 = _mm_add_ps(fix0,tx);
316 fiy0 = _mm_add_ps(fiy0,ty);
317 fiz0 = _mm_add_ps(fiz0,tz);
318
319 fjx0 = _mm_add_ps(fjx0,tx);
320 fjy0 = _mm_add_ps(fjy0,ty);
321 fjz0 = _mm_add_ps(fjz0,tz);
322
323 /**************************
324 * CALCULATE INTERACTIONS *
325 **************************/
326
327 r10 = _mm_mul_ps(rsq10,rinv10);
328
329 /* Compute parameters for interactions between i and j atoms */
330 qq10 = _mm_mul_ps(iq1,jq0);
331
332 /* EWALD ELECTROSTATICS */
333
334 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335 ewrt = _mm_mul_ps(r10,ewtabscale);
336 ewitab = _mm_cvttps_epi32(ewrt);
337 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
338 ewitab = _mm_slli_epi32(ewitab,2);
339 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
340 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
341 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
342 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
343 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
344 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
345 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
346 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
347 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
348
349 /* Update potential sum for this i atom from the interaction with this j atom. */
350 velecsum = _mm_add_ps(velecsum,velec);
351
352 fscal = felec;
353
354 /* Calculate temporary vectorial force */
355 tx = _mm_mul_ps(fscal,dx10);
356 ty = _mm_mul_ps(fscal,dy10);
357 tz = _mm_mul_ps(fscal,dz10);
358
359 /* Update vectorial force */
360 fix1 = _mm_add_ps(fix1,tx);
361 fiy1 = _mm_add_ps(fiy1,ty);
362 fiz1 = _mm_add_ps(fiz1,tz);
363
364 fjx0 = _mm_add_ps(fjx0,tx);
365 fjy0 = _mm_add_ps(fjy0,ty);
366 fjz0 = _mm_add_ps(fjz0,tz);
367
368 /**************************
369 * CALCULATE INTERACTIONS *
370 **************************/
371
372 r20 = _mm_mul_ps(rsq20,rinv20);
373
374 /* Compute parameters for interactions between i and j atoms */
375 qq20 = _mm_mul_ps(iq2,jq0);
376
377 /* EWALD ELECTROSTATICS */
378
379 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
380 ewrt = _mm_mul_ps(r20,ewtabscale);
381 ewitab = _mm_cvttps_epi32(ewrt);
382 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
383 ewitab = _mm_slli_epi32(ewitab,2);
384 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
385 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
386 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
387 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
388 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
389 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
390 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
391 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
392 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
393
394 /* Update potential sum for this i atom from the interaction with this j atom. */
395 velecsum = _mm_add_ps(velecsum,velec);
396
397 fscal = felec;
398
399 /* Calculate temporary vectorial force */
400 tx = _mm_mul_ps(fscal,dx20);
401 ty = _mm_mul_ps(fscal,dy20);
402 tz = _mm_mul_ps(fscal,dz20);
403
404 /* Update vectorial force */
405 fix2 = _mm_add_ps(fix2,tx);
406 fiy2 = _mm_add_ps(fiy2,ty);
407 fiz2 = _mm_add_ps(fiz2,tz);
408
409 fjx0 = _mm_add_ps(fjx0,tx);
410 fjy0 = _mm_add_ps(fjy0,ty);
411 fjz0 = _mm_add_ps(fjz0,tz);
412
413 fjptrA = f+j_coord_offsetA;
414 fjptrB = f+j_coord_offsetB;
415 fjptrC = f+j_coord_offsetC;
416 fjptrD = f+j_coord_offsetD;
417
418 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
419
420 /* Inner loop uses 151 flops */
421 }
422
423 if(jidx<j_index_end)
424 {
425
426 /* Get j neighbor index, and coordinate index */
427 jnrlistA = jjnr[jidx];
428 jnrlistB = jjnr[jidx+1];
429 jnrlistC = jjnr[jidx+2];
430 jnrlistD = jjnr[jidx+3];
431 /* Sign of each element will be negative for non-real atoms.
432 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
433 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
434 */
435 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
436 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
437 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
438 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
439 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
440 j_coord_offsetA = DIM3*jnrA;
441 j_coord_offsetB = DIM3*jnrB;
442 j_coord_offsetC = DIM3*jnrC;
443 j_coord_offsetD = DIM3*jnrD;
444
445 /* load j atom coordinates */
446 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
447 x+j_coord_offsetC,x+j_coord_offsetD,
448 &jx0,&jy0,&jz0);
449
450 /* Calculate displacement vector */
451 dx00 = _mm_sub_ps(ix0,jx0);
452 dy00 = _mm_sub_ps(iy0,jy0);
453 dz00 = _mm_sub_ps(iz0,jz0);
454 dx10 = _mm_sub_ps(ix1,jx0);
455 dy10 = _mm_sub_ps(iy1,jy0);
456 dz10 = _mm_sub_ps(iz1,jz0);
457 dx20 = _mm_sub_ps(ix2,jx0);
458 dy20 = _mm_sub_ps(iy2,jy0);
459 dz20 = _mm_sub_ps(iz2,jz0);
460
461 /* Calculate squared distance and things based on it */
462 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
463 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
464 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
465
466 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
467 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
468 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
469
470 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
471 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
472 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
473
474 /* Load parameters for j particles */
475 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
476 charge+jnrC+0,charge+jnrD+0);
477 vdwjidx0A = 2*vdwtype[jnrA+0];
478 vdwjidx0B = 2*vdwtype[jnrB+0];
479 vdwjidx0C = 2*vdwtype[jnrC+0];
480 vdwjidx0D = 2*vdwtype[jnrD+0];
481
482 fjx0 = _mm_setzero_ps();
483 fjy0 = _mm_setzero_ps();
484 fjz0 = _mm_setzero_ps();
485
486 /**************************
487 * CALCULATE INTERACTIONS *
488 **************************/
489
490 r00 = _mm_mul_ps(rsq00,rinv00);
491 r00 = _mm_andnot_ps(dummy_mask,r00);
492
493 /* Compute parameters for interactions between i and j atoms */
494 qq00 = _mm_mul_ps(iq0,jq0);
495 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
496 vdwparam+vdwioffset0+vdwjidx0B,
497 vdwparam+vdwioffset0+vdwjidx0C,
498 vdwparam+vdwioffset0+vdwjidx0D,
499 &c6_00,&c12_00);
500
501 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
502 vdwgridparam+vdwioffset0+vdwjidx0B,
503 vdwgridparam+vdwioffset0+vdwjidx0C,
504 vdwgridparam+vdwioffset0+vdwjidx0D);
505
506 /* EWALD ELECTROSTATICS */
507
508 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
509 ewrt = _mm_mul_ps(r00,ewtabscale);
510 ewitab = _mm_cvttps_epi32(ewrt);
511 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
512 ewitab = _mm_slli_epi32(ewitab,2);
513 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
514 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
515 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
516 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
517 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
518 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
519 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
520 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
521 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
522
523 /* Analytical LJ-PME */
524 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
525 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
526 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
527 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
528 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
529 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
530 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
531 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
532 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
533 vvdw = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
534 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
535 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
536
537 /* Update potential sum for this i atom from the interaction with this j atom. */
538 velec = _mm_andnot_ps(dummy_mask,velec);
539 velecsum = _mm_add_ps(velecsum,velec);
540 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
541 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
542
543 fscal = _mm_add_ps(felec,fvdw);
544
545 fscal = _mm_andnot_ps(dummy_mask,fscal);
546
547 /* Calculate temporary vectorial force */
548 tx = _mm_mul_ps(fscal,dx00);
549 ty = _mm_mul_ps(fscal,dy00);
550 tz = _mm_mul_ps(fscal,dz00);
551
552 /* Update vectorial force */
553 fix0 = _mm_add_ps(fix0,tx);
554 fiy0 = _mm_add_ps(fiy0,ty);
555 fiz0 = _mm_add_ps(fiz0,tz);
556
557 fjx0 = _mm_add_ps(fjx0,tx);
558 fjy0 = _mm_add_ps(fjy0,ty);
559 fjz0 = _mm_add_ps(fjz0,tz);
560
561 /**************************
562 * CALCULATE INTERACTIONS *
563 **************************/
564
565 r10 = _mm_mul_ps(rsq10,rinv10);
566 r10 = _mm_andnot_ps(dummy_mask,r10);
567
568 /* Compute parameters for interactions between i and j atoms */
569 qq10 = _mm_mul_ps(iq1,jq0);
570
571 /* EWALD ELECTROSTATICS */
572
573 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
574 ewrt = _mm_mul_ps(r10,ewtabscale);
575 ewitab = _mm_cvttps_epi32(ewrt);
576 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
577 ewitab = _mm_slli_epi32(ewitab,2);
578 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
579 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
580 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
581 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
582 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
583 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
584 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
585 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
586 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
587
588 /* Update potential sum for this i atom from the interaction with this j atom. */
589 velec = _mm_andnot_ps(dummy_mask,velec);
590 velecsum = _mm_add_ps(velecsum,velec);
591
592 fscal = felec;
593
594 fscal = _mm_andnot_ps(dummy_mask,fscal);
595
596 /* Calculate temporary vectorial force */
597 tx = _mm_mul_ps(fscal,dx10);
598 ty = _mm_mul_ps(fscal,dy10);
599 tz = _mm_mul_ps(fscal,dz10);
600
601 /* Update vectorial force */
602 fix1 = _mm_add_ps(fix1,tx);
603 fiy1 = _mm_add_ps(fiy1,ty);
604 fiz1 = _mm_add_ps(fiz1,tz);
605
606 fjx0 = _mm_add_ps(fjx0,tx);
607 fjy0 = _mm_add_ps(fjy0,ty);
608 fjz0 = _mm_add_ps(fjz0,tz);
609
610 /**************************
611 * CALCULATE INTERACTIONS *
612 **************************/
613
614 r20 = _mm_mul_ps(rsq20,rinv20);
615 r20 = _mm_andnot_ps(dummy_mask,r20);
616
617 /* Compute parameters for interactions between i and j atoms */
618 qq20 = _mm_mul_ps(iq2,jq0);
619
620 /* EWALD ELECTROSTATICS */
621
622 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623 ewrt = _mm_mul_ps(r20,ewtabscale);
624 ewitab = _mm_cvttps_epi32(ewrt);
625 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
626 ewitab = _mm_slli_epi32(ewitab,2);
627 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
628 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
629 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
630 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
631 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
632 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
633 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
634 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
635 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
636
637 /* Update potential sum for this i atom from the interaction with this j atom. */
638 velec = _mm_andnot_ps(dummy_mask,velec);
639 velecsum = _mm_add_ps(velecsum,velec);
640
641 fscal = felec;
642
643 fscal = _mm_andnot_ps(dummy_mask,fscal);
644
645 /* Calculate temporary vectorial force */
646 tx = _mm_mul_ps(fscal,dx20);
647 ty = _mm_mul_ps(fscal,dy20);
648 tz = _mm_mul_ps(fscal,dz20);
649
650 /* Update vectorial force */
651 fix2 = _mm_add_ps(fix2,tx);
652 fiy2 = _mm_add_ps(fiy2,ty);
653 fiz2 = _mm_add_ps(fiz2,tz);
654
655 fjx0 = _mm_add_ps(fjx0,tx);
656 fjy0 = _mm_add_ps(fjy0,ty);
657 fjz0 = _mm_add_ps(fjz0,tz);
658
659 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
660 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
661 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
662 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
663
664 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
665
666 /* Inner loop uses 154 flops */
667 }
668
669 /* End of innermost loop */
670
671 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
672 f+i_coord_offset,fshift+i_shift_offset);
673
674 ggid = gid[iidx];
675 /* Update potential energies */
676 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
677 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
678
679 /* Increment number of inner iterations */
680 inneriter += j_index_end - j_index_start;
681
682 /* Outer loop uses 20 flops */
683 }
684
685 /* Increment number of outer iterations */
686 outeriter += nri;
687
688 /* Update outer/inner flops */
689
690 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*20 + inneriter
*154
;
691}
692/*
693 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_single
694 * Electrostatics interaction: Ewald
695 * VdW interaction: LJEwald
696 * Geometry: Water3-Particle
697 * Calculate force/pot: Force
698 */
699void
700nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_single
701 (t_nblist * gmx_restrict nlist,
702 rvec * gmx_restrict xx,
703 rvec * gmx_restrict ff,
704 t_forcerec * gmx_restrict fr,
705 t_mdatoms * gmx_restrict mdatoms,
706 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
707 t_nrnb * gmx_restrict nrnb)
708{
709 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
710 * just 0 for non-waters.
711 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
712 * jnr indices corresponding to data put in the four positions in the SIMD register.
713 */
714 int i_shift_offset,i_coord_offset,outeriter,inneriter;
715 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
716 int jnrA,jnrB,jnrC,jnrD;
717 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
718 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
719 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
720 real rcutoff_scalar;
721 real *shiftvec,*fshift,*x,*f;
722 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
723 real scratch[4*DIM3];
724 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
725 int vdwioffset0;
726 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
727 int vdwioffset1;
728 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
729 int vdwioffset2;
730 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
731 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
732 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
733 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
734 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
735 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
736 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
737 real *charge;
738 int nvdwtype;
739 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
740 int *vdwtype;
741 real *vdwparam;
742 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
743 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
744 __m128 c6grid_00;
745 __m128 c6grid_10;
746 __m128 c6grid_20;
747 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
748 real *vdwgridparam;
749 __m128 one_half = _mm_set1_ps(0.5);
750 __m128 minus_one = _mm_set1_ps(-1.0);
751 __m128i ewitab;
752 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
753 real *ewtab;
754 __m128 dummy_mask,cutoff_mask;
755 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
756 __m128 one = _mm_set1_ps(1.0);
757 __m128 two = _mm_set1_ps(2.0);
Value stored to 'two' during its initialization is never read
758 x = xx[0];
759 f = ff[0];
760
761 nri = nlist->nri;
762 iinr = nlist->iinr;
763 jindex = nlist->jindex;
764 jjnr = nlist->jjnr;
765 shiftidx = nlist->shift;
766 gid = nlist->gid;
767 shiftvec = fr->shift_vec[0];
768 fshift = fr->fshift[0];
769 facel = _mm_set1_ps(fr->epsfac);
770 charge = mdatoms->chargeA;
771 nvdwtype = fr->ntype;
772 vdwparam = fr->nbfp;
773 vdwtype = mdatoms->typeA;
774 vdwgridparam = fr->ljpme_c6grid;
775 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
776 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
777 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
778
779 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
780 ewtab = fr->ic->tabq_coul_F;
781 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
782 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
783
784 /* Setup water-specific parameters */
785 inr = nlist->iinr[0];
786 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
787 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
788 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
789 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
790
791 /* Avoid stupid compiler warnings */
792 jnrA = jnrB = jnrC = jnrD = 0;
793 j_coord_offsetA = 0;
794 j_coord_offsetB = 0;
795 j_coord_offsetC = 0;
796 j_coord_offsetD = 0;
797
798 outeriter = 0;
799 inneriter = 0;
800
801 for(iidx=0;iidx<4*DIM3;iidx++)
802 {
803 scratch[iidx] = 0.0;
804 }
805
806 /* Start outer loop over neighborlists */
807 for(iidx=0; iidx<nri; iidx++)
808 {
809 /* Load shift vector for this list */
810 i_shift_offset = DIM3*shiftidx[iidx];
811
812 /* Load limits for loop over neighbors */
813 j_index_start = jindex[iidx];
814 j_index_end = jindex[iidx+1];
815
816 /* Get outer coordinate index */
817 inr = iinr[iidx];
818 i_coord_offset = DIM3*inr;
819
820 /* Load i particle coords and add shift vector */
821 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
822 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
823
824 fix0 = _mm_setzero_ps();
825 fiy0 = _mm_setzero_ps();
826 fiz0 = _mm_setzero_ps();
827 fix1 = _mm_setzero_ps();
828 fiy1 = _mm_setzero_ps();
829 fiz1 = _mm_setzero_ps();
830 fix2 = _mm_setzero_ps();
831 fiy2 = _mm_setzero_ps();
832 fiz2 = _mm_setzero_ps();
833
834 /* Start inner kernel loop */
835 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
836 {
837
838 /* Get j neighbor index, and coordinate index */
839 jnrA = jjnr[jidx];
840 jnrB = jjnr[jidx+1];
841 jnrC = jjnr[jidx+2];
842 jnrD = jjnr[jidx+3];
843 j_coord_offsetA = DIM3*jnrA;
844 j_coord_offsetB = DIM3*jnrB;
845 j_coord_offsetC = DIM3*jnrC;
846 j_coord_offsetD = DIM3*jnrD;
847
848 /* load j atom coordinates */
849 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
850 x+j_coord_offsetC,x+j_coord_offsetD,
851 &jx0,&jy0,&jz0);
852
853 /* Calculate displacement vector */
854 dx00 = _mm_sub_ps(ix0,jx0);
855 dy00 = _mm_sub_ps(iy0,jy0);
856 dz00 = _mm_sub_ps(iz0,jz0);
857 dx10 = _mm_sub_ps(ix1,jx0);
858 dy10 = _mm_sub_ps(iy1,jy0);
859 dz10 = _mm_sub_ps(iz1,jz0);
860 dx20 = _mm_sub_ps(ix2,jx0);
861 dy20 = _mm_sub_ps(iy2,jy0);
862 dz20 = _mm_sub_ps(iz2,jz0);
863
864 /* Calculate squared distance and things based on it */
865 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
866 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
867 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
868
869 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
870 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
871 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
872
873 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
874 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
875 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
876
877 /* Load parameters for j particles */
878 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
879 charge+jnrC+0,charge+jnrD+0);
880 vdwjidx0A = 2*vdwtype[jnrA+0];
881 vdwjidx0B = 2*vdwtype[jnrB+0];
882 vdwjidx0C = 2*vdwtype[jnrC+0];
883 vdwjidx0D = 2*vdwtype[jnrD+0];
884
885 fjx0 = _mm_setzero_ps();
886 fjy0 = _mm_setzero_ps();
887 fjz0 = _mm_setzero_ps();
888
889 /**************************
890 * CALCULATE INTERACTIONS *
891 **************************/
892
893 r00 = _mm_mul_ps(rsq00,rinv00);
894
895 /* Compute parameters for interactions between i and j atoms */
896 qq00 = _mm_mul_ps(iq0,jq0);
897 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
898 vdwparam+vdwioffset0+vdwjidx0B,
899 vdwparam+vdwioffset0+vdwjidx0C,
900 vdwparam+vdwioffset0+vdwjidx0D,
901 &c6_00,&c12_00);
902
903 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
904 vdwgridparam+vdwioffset0+vdwjidx0B,
905 vdwgridparam+vdwioffset0+vdwjidx0C,
906 vdwgridparam+vdwioffset0+vdwjidx0D);
907
908 /* EWALD ELECTROSTATICS */
909
910 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
911 ewrt = _mm_mul_ps(r00,ewtabscale);
912 ewitab = _mm_cvttps_epi32(ewrt);
913 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
914 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
915 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
916 &ewtabF,&ewtabFn);
917 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
918 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
919
920 /* Analytical LJ-PME */
921 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
922 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
923 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
924 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
925 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
926 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
927 /* f6A = 6 * C6grid * (1 - poly) */
928 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
929 /* f6B = C6grid * exponent * beta^6 */
930 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
931 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
932 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
933
934 fscal = _mm_add_ps(felec,fvdw);
935
936 /* Calculate temporary vectorial force */
937 tx = _mm_mul_ps(fscal,dx00);
938 ty = _mm_mul_ps(fscal,dy00);
939 tz = _mm_mul_ps(fscal,dz00);
940
941 /* Update vectorial force */
942 fix0 = _mm_add_ps(fix0,tx);
943 fiy0 = _mm_add_ps(fiy0,ty);
944 fiz0 = _mm_add_ps(fiz0,tz);
945
946 fjx0 = _mm_add_ps(fjx0,tx);
947 fjy0 = _mm_add_ps(fjy0,ty);
948 fjz0 = _mm_add_ps(fjz0,tz);
949
950 /**************************
951 * CALCULATE INTERACTIONS *
952 **************************/
953
954 r10 = _mm_mul_ps(rsq10,rinv10);
955
956 /* Compute parameters for interactions between i and j atoms */
957 qq10 = _mm_mul_ps(iq1,jq0);
958
959 /* EWALD ELECTROSTATICS */
960
961 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962 ewrt = _mm_mul_ps(r10,ewtabscale);
963 ewitab = _mm_cvttps_epi32(ewrt);
964 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
965 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
966 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
967 &ewtabF,&ewtabFn);
968 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
969 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
970
971 fscal = felec;
972
973 /* Calculate temporary vectorial force */
974 tx = _mm_mul_ps(fscal,dx10);
975 ty = _mm_mul_ps(fscal,dy10);
976 tz = _mm_mul_ps(fscal,dz10);
977
978 /* Update vectorial force */
979 fix1 = _mm_add_ps(fix1,tx);
980 fiy1 = _mm_add_ps(fiy1,ty);
981 fiz1 = _mm_add_ps(fiz1,tz);
982
983 fjx0 = _mm_add_ps(fjx0,tx);
984 fjy0 = _mm_add_ps(fjy0,ty);
985 fjz0 = _mm_add_ps(fjz0,tz);
986
987 /**************************
988 * CALCULATE INTERACTIONS *
989 **************************/
990
991 r20 = _mm_mul_ps(rsq20,rinv20);
992
993 /* Compute parameters for interactions between i and j atoms */
994 qq20 = _mm_mul_ps(iq2,jq0);
995
996 /* EWALD ELECTROSTATICS */
997
998 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
999 ewrt = _mm_mul_ps(r20,ewtabscale);
1000 ewitab = _mm_cvttps_epi32(ewrt);
1001 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1002 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1003 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1004 &ewtabF,&ewtabFn);
1005 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1006 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1007
1008 fscal = felec;
1009
1010 /* Calculate temporary vectorial force */
1011 tx = _mm_mul_ps(fscal,dx20);
1012 ty = _mm_mul_ps(fscal,dy20);
1013 tz = _mm_mul_ps(fscal,dz20);
1014
1015 /* Update vectorial force */
1016 fix2 = _mm_add_ps(fix2,tx);
1017 fiy2 = _mm_add_ps(fiy2,ty);
1018 fiz2 = _mm_add_ps(fiz2,tz);
1019
1020 fjx0 = _mm_add_ps(fjx0,tx);
1021 fjy0 = _mm_add_ps(fjy0,ty);
1022 fjz0 = _mm_add_ps(fjz0,tz);
1023
1024 fjptrA = f+j_coord_offsetA;
1025 fjptrB = f+j_coord_offsetB;
1026 fjptrC = f+j_coord_offsetC;
1027 fjptrD = f+j_coord_offsetD;
1028
1029 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1030
1031 /* Inner loop uses 131 flops */
1032 }
1033
1034 if(jidx<j_index_end)
1035 {
1036
1037 /* Get j neighbor index, and coordinate index */
1038 jnrlistA = jjnr[jidx];
1039 jnrlistB = jjnr[jidx+1];
1040 jnrlistC = jjnr[jidx+2];
1041 jnrlistD = jjnr[jidx+3];
1042 /* Sign of each element will be negative for non-real atoms.
1043 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1044 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1045 */
1046 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1047 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1048 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1049 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1050 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1051 j_coord_offsetA = DIM3*jnrA;
1052 j_coord_offsetB = DIM3*jnrB;
1053 j_coord_offsetC = DIM3*jnrC;
1054 j_coord_offsetD = DIM3*jnrD;
1055
1056 /* load j atom coordinates */
1057 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1058 x+j_coord_offsetC,x+j_coord_offsetD,
1059 &jx0,&jy0,&jz0);
1060
1061 /* Calculate displacement vector */
1062 dx00 = _mm_sub_ps(ix0,jx0);
1063 dy00 = _mm_sub_ps(iy0,jy0);
1064 dz00 = _mm_sub_ps(iz0,jz0);
1065 dx10 = _mm_sub_ps(ix1,jx0);
1066 dy10 = _mm_sub_ps(iy1,jy0);
1067 dz10 = _mm_sub_ps(iz1,jz0);
1068 dx20 = _mm_sub_ps(ix2,jx0);
1069 dy20 = _mm_sub_ps(iy2,jy0);
1070 dz20 = _mm_sub_ps(iz2,jz0);
1071
1072 /* Calculate squared distance and things based on it */
1073 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1074 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1075 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1076
1077 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1078 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1079 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1080
1081 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
1082 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1083 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1084
1085 /* Load parameters for j particles */
1086 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1087 charge+jnrC+0,charge+jnrD+0);
1088 vdwjidx0A = 2*vdwtype[jnrA+0];
1089 vdwjidx0B = 2*vdwtype[jnrB+0];
1090 vdwjidx0C = 2*vdwtype[jnrC+0];
1091 vdwjidx0D = 2*vdwtype[jnrD+0];
1092
1093 fjx0 = _mm_setzero_ps();
1094 fjy0 = _mm_setzero_ps();
1095 fjz0 = _mm_setzero_ps();
1096
1097 /**************************
1098 * CALCULATE INTERACTIONS *
1099 **************************/
1100
1101 r00 = _mm_mul_ps(rsq00,rinv00);
1102 r00 = _mm_andnot_ps(dummy_mask,r00);
1103
1104 /* Compute parameters for interactions between i and j atoms */
1105 qq00 = _mm_mul_ps(iq0,jq0);
1106 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1107 vdwparam+vdwioffset0+vdwjidx0B,
1108 vdwparam+vdwioffset0+vdwjidx0C,
1109 vdwparam+vdwioffset0+vdwjidx0D,
1110 &c6_00,&c12_00);
1111
1112 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1113 vdwgridparam+vdwioffset0+vdwjidx0B,
1114 vdwgridparam+vdwioffset0+vdwjidx0C,
1115 vdwgridparam+vdwioffset0+vdwjidx0D);
1116
1117 /* EWALD ELECTROSTATICS */
1118
1119 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120 ewrt = _mm_mul_ps(r00,ewtabscale);
1121 ewitab = _mm_cvttps_epi32(ewrt);
1122 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1123 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1124 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1125 &ewtabF,&ewtabFn);
1126 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1127 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1128
1129 /* Analytical LJ-PME */
1130 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1131 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
1132 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1133 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
1134 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1135 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1136 /* f6A = 6 * C6grid * (1 - poly) */
1137 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1138 /* f6B = C6grid * exponent * beta^6 */
1139 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1140 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1141 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1142
1143 fscal = _mm_add_ps(felec,fvdw);
1144
1145 fscal = _mm_andnot_ps(dummy_mask,fscal);
1146
1147 /* Calculate temporary vectorial force */
1148 tx = _mm_mul_ps(fscal,dx00);
1149 ty = _mm_mul_ps(fscal,dy00);
1150 tz = _mm_mul_ps(fscal,dz00);
1151
1152 /* Update vectorial force */
1153 fix0 = _mm_add_ps(fix0,tx);
1154 fiy0 = _mm_add_ps(fiy0,ty);
1155 fiz0 = _mm_add_ps(fiz0,tz);
1156
1157 fjx0 = _mm_add_ps(fjx0,tx);
1158 fjy0 = _mm_add_ps(fjy0,ty);
1159 fjz0 = _mm_add_ps(fjz0,tz);
1160
1161 /**************************
1162 * CALCULATE INTERACTIONS *
1163 **************************/
1164
1165 r10 = _mm_mul_ps(rsq10,rinv10);
1166 r10 = _mm_andnot_ps(dummy_mask,r10);
1167
1168 /* Compute parameters for interactions between i and j atoms */
1169 qq10 = _mm_mul_ps(iq1,jq0);
1170
1171 /* EWALD ELECTROSTATICS */
1172
1173 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1174 ewrt = _mm_mul_ps(r10,ewtabscale);
1175 ewitab = _mm_cvttps_epi32(ewrt);
1176 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1177 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1178 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1179 &ewtabF,&ewtabFn);
1180 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1181 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1182
1183 fscal = felec;
1184
1185 fscal = _mm_andnot_ps(dummy_mask,fscal);
1186
1187 /* Calculate temporary vectorial force */
1188 tx = _mm_mul_ps(fscal,dx10);
1189 ty = _mm_mul_ps(fscal,dy10);
1190 tz = _mm_mul_ps(fscal,dz10);
1191
1192 /* Update vectorial force */
1193 fix1 = _mm_add_ps(fix1,tx);
1194 fiy1 = _mm_add_ps(fiy1,ty);
1195 fiz1 = _mm_add_ps(fiz1,tz);
1196
1197 fjx0 = _mm_add_ps(fjx0,tx);
1198 fjy0 = _mm_add_ps(fjy0,ty);
1199 fjz0 = _mm_add_ps(fjz0,tz);
1200
1201 /**************************
1202 * CALCULATE INTERACTIONS *
1203 **************************/
1204
1205 r20 = _mm_mul_ps(rsq20,rinv20);
1206 r20 = _mm_andnot_ps(dummy_mask,r20);
1207
1208 /* Compute parameters for interactions between i and j atoms */
1209 qq20 = _mm_mul_ps(iq2,jq0);
1210
1211 /* EWALD ELECTROSTATICS */
1212
1213 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1214 ewrt = _mm_mul_ps(r20,ewtabscale);
1215 ewitab = _mm_cvttps_epi32(ewrt);
1216 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1217 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1218 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1219 &ewtabF,&ewtabFn);
1220 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1221 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1222
1223 fscal = felec;
1224
1225 fscal = _mm_andnot_ps(dummy_mask,fscal);
1226
1227 /* Calculate temporary vectorial force */
1228 tx = _mm_mul_ps(fscal,dx20);
1229 ty = _mm_mul_ps(fscal,dy20);
1230 tz = _mm_mul_ps(fscal,dz20);
1231
1232 /* Update vectorial force */
1233 fix2 = _mm_add_ps(fix2,tx);
1234 fiy2 = _mm_add_ps(fiy2,ty);
1235 fiz2 = _mm_add_ps(fiz2,tz);
1236
1237 fjx0 = _mm_add_ps(fjx0,tx);
1238 fjy0 = _mm_add_ps(fjy0,ty);
1239 fjz0 = _mm_add_ps(fjz0,tz);
1240
1241 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1242 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1243 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1244 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1245
1246 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1247
1248 /* Inner loop uses 134 flops */
1249 }
1250
1251 /* End of innermost loop */
1252
1253 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1254 f+i_coord_offset,fshift+i_shift_offset);
1255
1256 /* Increment number of inner iterations */
1257 inneriter += j_index_end - j_index_start;
1258
1259 /* Outer loop uses 18 flops */
1260 }
1261
1262 /* Increment number of outer iterations */
1263 outeriter += nri;
1264
1265 /* Update outer/inner flops */
1266
1267 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*18 + inneriter
*134
;
1268}