Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse4_1_single.c
Location:line 405, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: None
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 __m128 dummy_mask,cutoff_mask;
93 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94 __m128 one = _mm_set1_ps(1.0);
95 __m128 two = _mm_set1_ps(2.0);
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = _mm_set1_ps(fr->epsfac);
108 charge = mdatoms->chargeA;
109 krf = _mm_set1_ps(fr->ic->k_rf);
110 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
111 crf = _mm_set1_ps(fr->ic->c_rf);
112
113 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114 rcutoff_scalar = fr->rcoulomb;
115 rcutoff = _mm_set1_ps(rcutoff_scalar);
116 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
117
118 /* Avoid stupid compiler warnings */
119 jnrA = jnrB = jnrC = jnrD = 0;
120 j_coord_offsetA = 0;
121 j_coord_offsetB = 0;
122 j_coord_offsetC = 0;
123 j_coord_offsetD = 0;
124
125 outeriter = 0;
126 inneriter = 0;
127
128 for(iidx=0;iidx<4*DIM3;iidx++)
129 {
130 scratch[iidx] = 0.0;
131 }
132
133 /* Start outer loop over neighborlists */
134 for(iidx=0; iidx<nri; iidx++)
135 {
136 /* Load shift vector for this list */
137 i_shift_offset = DIM3*shiftidx[iidx];
138
139 /* Load limits for loop over neighbors */
140 j_index_start = jindex[iidx];
141 j_index_end = jindex[iidx+1];
142
143 /* Get outer coordinate index */
144 inr = iinr[iidx];
145 i_coord_offset = DIM3*inr;
146
147 /* Load i particle coords and add shift vector */
148 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150 fix0 = _mm_setzero_ps();
151 fiy0 = _mm_setzero_ps();
152 fiz0 = _mm_setzero_ps();
153
154 /* Load parameters for i particles */
155 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
156
157 /* Reset potential sums */
158 velecsum = _mm_setzero_ps();
159
160 /* Start inner kernel loop */
161 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162 {
163
164 /* Get j neighbor index, and coordinate index */
165 jnrA = jjnr[jidx];
166 jnrB = jjnr[jidx+1];
167 jnrC = jjnr[jidx+2];
168 jnrD = jjnr[jidx+3];
169 j_coord_offsetA = DIM3*jnrA;
170 j_coord_offsetB = DIM3*jnrB;
171 j_coord_offsetC = DIM3*jnrC;
172 j_coord_offsetD = DIM3*jnrD;
173
174 /* load j atom coordinates */
175 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176 x+j_coord_offsetC,x+j_coord_offsetD,
177 &jx0,&jy0,&jz0);
178
179 /* Calculate displacement vector */
180 dx00 = _mm_sub_ps(ix0,jx0);
181 dy00 = _mm_sub_ps(iy0,jy0);
182 dz00 = _mm_sub_ps(iz0,jz0);
183
184 /* Calculate squared distance and things based on it */
185 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
186
187 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
188
189 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
190
191 /* Load parameters for j particles */
192 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
193 charge+jnrC+0,charge+jnrD+0);
194
195 /**************************
196 * CALCULATE INTERACTIONS *
197 **************************/
198
199 if (gmx_mm_any_lt(rsq00,rcutoff2))
200 {
201
202 /* Compute parameters for interactions between i and j atoms */
203 qq00 = _mm_mul_ps(iq0,jq0);
204
205 /* REACTION-FIELD ELECTROSTATICS */
206 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
207 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
208
209 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
210
211 /* Update potential sum for this i atom from the interaction with this j atom. */
212 velec = _mm_and_ps(velec,cutoff_mask);
213 velecsum = _mm_add_ps(velecsum,velec);
214
215 fscal = felec;
216
217 fscal = _mm_and_ps(fscal,cutoff_mask);
218
219 /* Calculate temporary vectorial force */
220 tx = _mm_mul_ps(fscal,dx00);
221 ty = _mm_mul_ps(fscal,dy00);
222 tz = _mm_mul_ps(fscal,dz00);
223
224 /* Update vectorial force */
225 fix0 = _mm_add_ps(fix0,tx);
226 fiy0 = _mm_add_ps(fiy0,ty);
227 fiz0 = _mm_add_ps(fiz0,tz);
228
229 fjptrA = f+j_coord_offsetA;
230 fjptrB = f+j_coord_offsetB;
231 fjptrC = f+j_coord_offsetC;
232 fjptrD = f+j_coord_offsetD;
233 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
234
235 }
236
237 /* Inner loop uses 36 flops */
238 }
239
240 if(jidx<j_index_end)
241 {
242
243 /* Get j neighbor index, and coordinate index */
244 jnrlistA = jjnr[jidx];
245 jnrlistB = jjnr[jidx+1];
246 jnrlistC = jjnr[jidx+2];
247 jnrlistD = jjnr[jidx+3];
248 /* Sign of each element will be negative for non-real atoms.
249 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
250 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
251 */
252 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
253 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
254 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
255 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
256 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
257 j_coord_offsetA = DIM3*jnrA;
258 j_coord_offsetB = DIM3*jnrB;
259 j_coord_offsetC = DIM3*jnrC;
260 j_coord_offsetD = DIM3*jnrD;
261
262 /* load j atom coordinates */
263 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
264 x+j_coord_offsetC,x+j_coord_offsetD,
265 &jx0,&jy0,&jz0);
266
267 /* Calculate displacement vector */
268 dx00 = _mm_sub_ps(ix0,jx0);
269 dy00 = _mm_sub_ps(iy0,jy0);
270 dz00 = _mm_sub_ps(iz0,jz0);
271
272 /* Calculate squared distance and things based on it */
273 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
274
275 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
276
277 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
278
279 /* Load parameters for j particles */
280 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
281 charge+jnrC+0,charge+jnrD+0);
282
283 /**************************
284 * CALCULATE INTERACTIONS *
285 **************************/
286
287 if (gmx_mm_any_lt(rsq00,rcutoff2))
288 {
289
290 /* Compute parameters for interactions between i and j atoms */
291 qq00 = _mm_mul_ps(iq0,jq0);
292
293 /* REACTION-FIELD ELECTROSTATICS */
294 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
295 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
296
297 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
298
299 /* Update potential sum for this i atom from the interaction with this j atom. */
300 velec = _mm_and_ps(velec,cutoff_mask);
301 velec = _mm_andnot_ps(dummy_mask,velec);
302 velecsum = _mm_add_ps(velecsum,velec);
303
304 fscal = felec;
305
306 fscal = _mm_and_ps(fscal,cutoff_mask);
307
308 fscal = _mm_andnot_ps(dummy_mask,fscal);
309
310 /* Calculate temporary vectorial force */
311 tx = _mm_mul_ps(fscal,dx00);
312 ty = _mm_mul_ps(fscal,dy00);
313 tz = _mm_mul_ps(fscal,dz00);
314
315 /* Update vectorial force */
316 fix0 = _mm_add_ps(fix0,tx);
317 fiy0 = _mm_add_ps(fiy0,ty);
318 fiz0 = _mm_add_ps(fiz0,tz);
319
320 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
321 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
322 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
323 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
324 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
325
326 }
327
328 /* Inner loop uses 36 flops */
329 }
330
331 /* End of innermost loop */
332
333 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
334 f+i_coord_offset,fshift+i_shift_offset);
335
336 ggid = gid[iidx];
337 /* Update potential energies */
338 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
339
340 /* Increment number of inner iterations */
341 inneriter += j_index_end - j_index_start;
342
343 /* Outer loop uses 8 flops */
344 }
345
346 /* Increment number of outer iterations */
347 outeriter += nri;
348
349 /* Update outer/inner flops */
350
351 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*8 + inneriter
*36
;
352}
353/*
354 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_single
355 * Electrostatics interaction: ReactionField
356 * VdW interaction: None
357 * Geometry: Particle-Particle
358 * Calculate force/pot: Force
359 */
360void
361nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_single
362 (t_nblist * gmx_restrict nlist,
363 rvec * gmx_restrict xx,
364 rvec * gmx_restrict ff,
365 t_forcerec * gmx_restrict fr,
366 t_mdatoms * gmx_restrict mdatoms,
367 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
368 t_nrnb * gmx_restrict nrnb)
369{
370 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
371 * just 0 for non-waters.
372 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
373 * jnr indices corresponding to data put in the four positions in the SIMD register.
374 */
375 int i_shift_offset,i_coord_offset,outeriter,inneriter;
376 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
377 int jnrA,jnrB,jnrC,jnrD;
378 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
379 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
380 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
381 real rcutoff_scalar;
382 real *shiftvec,*fshift,*x,*f;
383 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
384 real scratch[4*DIM3];
385 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
386 int vdwioffset0;
387 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
388 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
389 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
390 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
391 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
392 real *charge;
393 __m128 dummy_mask,cutoff_mask;
394 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
395 __m128 one = _mm_set1_ps(1.0);
396 __m128 two = _mm_set1_ps(2.0);
397 x = xx[0];
398 f = ff[0];
399
400 nri = nlist->nri;
401 iinr = nlist->iinr;
402 jindex = nlist->jindex;
403 jjnr = nlist->jjnr;
404 shiftidx = nlist->shift;
405 gid = nlist->gid;
Value stored to 'gid' is never read
406 shiftvec = fr->shift_vec[0];
407 fshift = fr->fshift[0];
408 facel = _mm_set1_ps(fr->epsfac);
409 charge = mdatoms->chargeA;
410 krf = _mm_set1_ps(fr->ic->k_rf);
411 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
412 crf = _mm_set1_ps(fr->ic->c_rf);
413
414 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
415 rcutoff_scalar = fr->rcoulomb;
416 rcutoff = _mm_set1_ps(rcutoff_scalar);
417 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
418
419 /* Avoid stupid compiler warnings */
420 jnrA = jnrB = jnrC = jnrD = 0;
421 j_coord_offsetA = 0;
422 j_coord_offsetB = 0;
423 j_coord_offsetC = 0;
424 j_coord_offsetD = 0;
425
426 outeriter = 0;
427 inneriter = 0;
428
429 for(iidx=0;iidx<4*DIM3;iidx++)
430 {
431 scratch[iidx] = 0.0;
432 }
433
434 /* Start outer loop over neighborlists */
435 for(iidx=0; iidx<nri; iidx++)
436 {
437 /* Load shift vector for this list */
438 i_shift_offset = DIM3*shiftidx[iidx];
439
440 /* Load limits for loop over neighbors */
441 j_index_start = jindex[iidx];
442 j_index_end = jindex[iidx+1];
443
444 /* Get outer coordinate index */
445 inr = iinr[iidx];
446 i_coord_offset = DIM3*inr;
447
448 /* Load i particle coords and add shift vector */
449 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
450
451 fix0 = _mm_setzero_ps();
452 fiy0 = _mm_setzero_ps();
453 fiz0 = _mm_setzero_ps();
454
455 /* Load parameters for i particles */
456 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
457
458 /* Start inner kernel loop */
459 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
460 {
461
462 /* Get j neighbor index, and coordinate index */
463 jnrA = jjnr[jidx];
464 jnrB = jjnr[jidx+1];
465 jnrC = jjnr[jidx+2];
466 jnrD = jjnr[jidx+3];
467 j_coord_offsetA = DIM3*jnrA;
468 j_coord_offsetB = DIM3*jnrB;
469 j_coord_offsetC = DIM3*jnrC;
470 j_coord_offsetD = DIM3*jnrD;
471
472 /* load j atom coordinates */
473 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
474 x+j_coord_offsetC,x+j_coord_offsetD,
475 &jx0,&jy0,&jz0);
476
477 /* Calculate displacement vector */
478 dx00 = _mm_sub_ps(ix0,jx0);
479 dy00 = _mm_sub_ps(iy0,jy0);
480 dz00 = _mm_sub_ps(iz0,jz0);
481
482 /* Calculate squared distance and things based on it */
483 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
484
485 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
486
487 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
488
489 /* Load parameters for j particles */
490 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
491 charge+jnrC+0,charge+jnrD+0);
492
493 /**************************
494 * CALCULATE INTERACTIONS *
495 **************************/
496
497 if (gmx_mm_any_lt(rsq00,rcutoff2))
498 {
499
500 /* Compute parameters for interactions between i and j atoms */
501 qq00 = _mm_mul_ps(iq0,jq0);
502
503 /* REACTION-FIELD ELECTROSTATICS */
504 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
505
506 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
507
508 fscal = felec;
509
510 fscal = _mm_and_ps(fscal,cutoff_mask);
511
512 /* Calculate temporary vectorial force */
513 tx = _mm_mul_ps(fscal,dx00);
514 ty = _mm_mul_ps(fscal,dy00);
515 tz = _mm_mul_ps(fscal,dz00);
516
517 /* Update vectorial force */
518 fix0 = _mm_add_ps(fix0,tx);
519 fiy0 = _mm_add_ps(fiy0,ty);
520 fiz0 = _mm_add_ps(fiz0,tz);
521
522 fjptrA = f+j_coord_offsetA;
523 fjptrB = f+j_coord_offsetB;
524 fjptrC = f+j_coord_offsetC;
525 fjptrD = f+j_coord_offsetD;
526 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
527
528 }
529
530 /* Inner loop uses 30 flops */
531 }
532
533 if(jidx<j_index_end)
534 {
535
536 /* Get j neighbor index, and coordinate index */
537 jnrlistA = jjnr[jidx];
538 jnrlistB = jjnr[jidx+1];
539 jnrlistC = jjnr[jidx+2];
540 jnrlistD = jjnr[jidx+3];
541 /* Sign of each element will be negative for non-real atoms.
542 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
543 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
544 */
545 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
546 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
547 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
548 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
549 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
550 j_coord_offsetA = DIM3*jnrA;
551 j_coord_offsetB = DIM3*jnrB;
552 j_coord_offsetC = DIM3*jnrC;
553 j_coord_offsetD = DIM3*jnrD;
554
555 /* load j atom coordinates */
556 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
557 x+j_coord_offsetC,x+j_coord_offsetD,
558 &jx0,&jy0,&jz0);
559
560 /* Calculate displacement vector */
561 dx00 = _mm_sub_ps(ix0,jx0);
562 dy00 = _mm_sub_ps(iy0,jy0);
563 dz00 = _mm_sub_ps(iz0,jz0);
564
565 /* Calculate squared distance and things based on it */
566 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
567
568 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
569
570 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
571
572 /* Load parameters for j particles */
573 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
574 charge+jnrC+0,charge+jnrD+0);
575
576 /**************************
577 * CALCULATE INTERACTIONS *
578 **************************/
579
580 if (gmx_mm_any_lt(rsq00,rcutoff2))
581 {
582
583 /* Compute parameters for interactions between i and j atoms */
584 qq00 = _mm_mul_ps(iq0,jq0);
585
586 /* REACTION-FIELD ELECTROSTATICS */
587 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
588
589 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
590
591 fscal = felec;
592
593 fscal = _mm_and_ps(fscal,cutoff_mask);
594
595 fscal = _mm_andnot_ps(dummy_mask,fscal);
596
597 /* Calculate temporary vectorial force */
598 tx = _mm_mul_ps(fscal,dx00);
599 ty = _mm_mul_ps(fscal,dy00);
600 tz = _mm_mul_ps(fscal,dz00);
601
602 /* Update vectorial force */
603 fix0 = _mm_add_ps(fix0,tx);
604 fiy0 = _mm_add_ps(fiy0,ty);
605 fiz0 = _mm_add_ps(fiz0,tz);
606
607 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
608 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
609 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
610 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
611 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
612
613 }
614
615 /* Inner loop uses 30 flops */
616 }
617
618 /* End of innermost loop */
619
620 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
621 f+i_coord_offset,fshift+i_shift_offset);
622
623 /* Increment number of inner iterations */
624 inneriter += j_index_end - j_index_start;
625
626 /* Outer loop uses 7 flops */
627 }
628
629 /* Increment number of outer iterations */
630 outeriter += nri;
631
632 /* Update outer/inner flops */
633
634 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*7 + inneriter*
30
;
635}